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Abstract 

A virtual relation (or view) can be defined with a 
recursive statement that is a function of one or 
more base relations. In general, the number of 
times such a statement must be applied in order to 
retrieve all the tuples in the virtual relation 
depends on the contents of the base relations 
involved in the definition. However, there exist 
statements for which there is an upper bound on 
the number of applications necessary to form the 
virtual relation, independent of the contents of the 
base relations. Considering a restricted class of 
recursive statements, we give necessary and 
sufficient conditions for statements in the class to 
have this bound. 

1. INTRODUCTION 

In the past few years major attempts have been 
made to improve the power of database systems, in 

P 
articular those based on the relational model (see 
Codd70] ). A significant part of this effort has been in 

the direction of the formalization, design and 
development of deductive databases. As deflned in 
[Gal1641 , “a deductive database is a database in which 
new facts may be derived from facts that were explicitly 
introduced”. A very important difference between a 
deductive and a conventional relational database is that 
in the former new facts may be derived recursively. This 
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very characteristic of deductive databases is what 
makes query processing a difficult task in such an 
environment. The main problem that arises is how to 
detect the point at which further processing will give no 
more answers to a given query. Many researchers have 
studied and proposed solutions to this termination 

P 
roblem for various cases (see, for example, [Naqv64] , 
Reit78] and [ChanBl] ). However no single solution is 

known for the general problem 
A common characteristic among all the proposed 

solutions that we are aware of is that the termination 
condition relies on the data explicitly stored in the 
database. In general this is necessary. However, there 
are some cases where a termination condition exists, 
which is independent of the particular instance of the 
database. The purpose of this paper is to identify and 
characterize these cases. Restricting ourselves to a 
particular class of recursive statements, we give 
necessary and sufficient conditions for the existence of 
a data-independent termination condition. 

We assume that the reader has some familiarity 
with mathematical logic and graph theory, although 
nothing extremely involved from these fields will be 
needed. Nevertheless, we are going to use some of their 
notions without definition. The first few chapters of any 
standard text in mathematical logic (e.g. [Ende72] ) 
and graph theory (e.g. [Bond761 ) provide the necessary 
background. Furthermore we assume that the reader is 
familiar with relational databases at the level of 
[Date621 . Finally, we would refer the reader to. [Gall761 
and [~aii61] as extremely valuable sources of 
information on the relationship between mathematical 
logic and deductive databases. 

The paper is organized as follows. In Section 2 we 
give the formal framework of a deductive database that 
we will be considering. Our investigation is restricted to 
a subset of all possible deductive databases. We outline 
all the restrictions we are imposing on the database and 
explain the reasons for doing so. In Section 3 we 
introduce some examples of cases where even though 
data is derived recursively, the termination condition is 
known a priori (i.e. it does not depend on the explicitly 
stored data). Section 4 contains the description of the 
graph model we used as a tool to derive our results. In 
Section 5, we state the main result of this paper: the 
necessary and sufficient conditions for a termination 
condition to exist that is independent of the data 
explicitly stored in the database. Furthermore we 
illustrate our result with a number of characteristic 
examples. The theorem is presented here without any 
formal proof. For a detailed analysis and proof we refer 
the reader to [Ioan65] . In Section 6 we discuss the 
importance of our results and investigate ways in which 
they can be used to speed up query processing in 
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deductive databases. Finally, in section 7 we summarize 
our results and discuss more problems for future work 
in the area. 

2. ASSIJMPTIONS 

The following definitions about first-order formulas 
( [Ende72] ) will be useful in our analysis. 

Definition 2.1: A tist-order formula is equivalent to 
a I&n Claire if and only if it is of the form 

with all the variables appearing in the formula being 
(implicitly) universally quantified. 

The formula to the left of + will be called the 
antecedent and that to the right of + the consequent. 
Each one of C. A,, AZ, rEnde721 ) ,t. 

, 1.e 1 1s 0 
f ihk$rE an atoe formula (see 

where P is a predicate symbol and ti, 1 <i In, is a term 
(a variable symbol or a constant symbol or a function 
symbol “applied” on one or more terms). Finally, a Horn 
clause is recursive when the predicate that appears in 
the consequent appears at least once in the antecedent 
as well. Throughout the paper we will be using the terms 
“formula” and “statement” indistinguishably. We will 
also alternate between the terms “predicate” and 
“relation”, in light of the discussions in [Gal1781 . 

Definition 2.2: Two variables z, y appear under the 
same predicate in a statement if and only if there is an 
atomic formula P( . . . . z ,..., y ,...) appearing in the 
statement, where P is a predicate symbol. 

Definition 2.3: Consider a recursive statement 
which is equivalent to a Horn clause. The sole predicate 
appearing in the consequent of the statement will be 
called the recursiue predicate of the statement. Any 
other predicate in the statement will be called 
non -recurshe. 

Detition 2.4: A variable will be called consequent 
if and only if it appears under the recursive predicate in 
the consequent of the statement. Otherwise it will be 
called antecedent. 

We consider a deductive database to be a relational 
database (in the sense of rCodd70i ) enhanced with a 
set of Horn clauses. If c there -is some recursive 
statement or a set of mutually recursive statements 
appearing in the database, then the termination 
problem mentioned in Section 1 arises. We will examine 
this problem with respect to the processing of a single 
recursive statement only. 

We restrict our attention to recursive statements 
that satisfy the following conditions: 

1) The recursive predicate of the statement appears 
only once in the antecedent. 

2) There are no function symbols in the statement. 

3) There are no constant symbols in the statement. 

4) No variable appears more than once under the 
recursive predicate in the consequent. 
Furthermore, no subsequence of the variables 
appearing under the recursive predicate in the 
consequent is a permutation of the corresponding 
subsequence of the variables in the recursive 
predicate in the antecedent. 

Our motivation behind restriction (1) is simplicity. 
Having more than one appearance of the recursive 
predicate in the antecedent severely complicates our 

analysis. Since most of the recursive statements 
expected in a real world system will bave the recursive 
predicate appearing only once in the antecedent, we 
believe that assumption (1) is reasonable. Function 
symbols appearing in a recursive statement may lead to 
infinite relations. For example, consider the following 
recursive statement containing the ‘+’ function: 

P(z) + P(z+l) 

Suppose that initially P contained the single tuple <l>. 
It is clear that the above statement makes P an infInite 
relation containing all the positive integers. Situations 
like that are not easily handled in a database 
environment, if at all; to avoid them we have imposed 
restriction (2). The last two restrictions were imposed 
for the sole purpose of getting a uniform result. We 
speculate that it will not be very difficult to remove 
them thereby generalizing ou; results. In fact, 
considering a recursive statement that does contain 
constant symbols, we may remove them by performing 
selections and projections on the relations involved 
(see [Codd70] ). The new statement is free of constant 
symbols and if applied to the new set of relations 
produced by the operations mentioned above, will give 
the same result as if the original statement was applied 
on the original relations. Regarding restriction (4), it 
may appear somewhat artificial, but its meaning will 
become clear shortly, when we will describe the way we 
model a recursive statement. 

A final point worth mentioning here is that without 
loss of generality we may assume that there are no 
equalities in the statement. If there is any equality 
between two variables, we may easily remove it by 
replacing one of its variables with the other wherever it 
appears in the statement. It is clear that the new 
statement is equivalent to the initial one. 

Definition 2.4: A recursive statement will be called 
simple if and only if it satisfies conditions (1) through 
(4) above and does not contain any equality symbol. 

3. SOME EXAMPLES 

Consider the following simple recursive statement 
a: 

a: P(z) A Qb.Y) -) P(Y) 

Relation Q is a base relation in the system (that is, it is 
stored explicitly), whereas P is a derived relation. It is 
clear that in addition to a above, there has to be some 
non-recursive way to get some initial tuples into P. As 
an example assume that this is done with /3: 

8: R(z) -+ P(z) 

Assume that R is a base relation as well. A natural way 
of thinking about the processing of a is iteration. In 
particular, the statement is applied once on the initial 
contents of the relations involved and produces some 
new tuples for P. This process is repeated for these new 
tuples and then again, until no new tuples are produced. 
It is obvious that in general there is no upper bound on 
the number of times this process has to be repeated in 
order to get all the derivable tuples for P. If we 
consider Q to represent a directed graph and R to 
contain some nodes of the graph, then P comes to 
contain all nodes reachable from those in R. At step i 
of the iterative process described above, we insert into 
P all those nodes of the graph that are reachable from 
some node in R through a path of length i. Since the 
graph may contain arbitrarily long paths, it is not 
possible to know in advance how many iterations will be 
needed. 
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As another example of a simple recursive 
statement, consider 7: 

7: Pb)AQ(z)AR(Y) -4p(Yl) 
where Q and R are base relations. Clearly. one 
application of the statement is enough, regardless of the 
initial contents of the relations P, Q and R. Statement 
7 derives for P all the tuples in R, as long as there is 
initially one tuole in P that ioins with (that is. is eaual 
to) some tuple-in Q. Any f&her step‘in the .itera&on 
will fail to produce any new tuples for P. So for 7, 
unlike a, there exists an upper bound on the number of 
times the statement has to be applied to derive all the 
tuples possible in the recursive relation, that number 
being equal to 1. 

As a third example consider 6: 

6: P(~J)AQ(Y) -, P(z.Y) 

with Q being a base relation. In this case we are takinn 
the cartes& product of the projection on the second 
attribute of the initial CODY of P with Q. However one 
step is not enough for 6. *One more step-will be needed, 
where actually the Cartesian product of Q with itself will 
be derived for P. Nevertheless, there will be no need for 
a third step. Further processing -will only continue 
producing the Cartesian product of Q with itself. 
Therefore 6. like y, has an upper bound on the number 
of times it needs to be applied, only that now the tight 
upper bound is equal to two. This is not to say that the 
second step of the iteration will always produce new 
tuples for P. In fact, if Q is initially empty, not even the 
first step will be needed. However the point is that 
there exists an instance of Q and P that will need two 
steps, whereas there exists no instance of these 
relations that will need three. 

The examples given above indicate that the way in 
which the variables appearing in the statement are 
connected with each other through the predicates, plays 
an important role on whether an upper bound on the 
number of iterative steps needed to produce all 
derivable tuples exists or not. In order to study the 
properties of these statements we developed a graph 
model for them which reflects this connection among 
the variables. The description of this model is the 
subject of the next section. 

4. THEMODEL 
Suppose that we are given a simple recursive 

statement. We will model this statement by a labeled, 
weighted, directed graph constructed as follows: 

6) 

(ii) 

(iii) 

To every variable appearing in the statement we 
associate a node in the graph. 

For every pair of variables x,y that appear under 
the same non-recursive predicate Q in the 
statement there is a labeled undirected edge (Z ‘y ) 
in the graph between the corresponding two nodes 
z,y, for each such predicate Q. The label of the 
edge is Q and its weight is 0. 

For every pair of variables z,y such that z appears 
under the recursive predicate P in the antecedent 
and y appears in the corresponding position of the 
recursive predicate in the consequent, there is a 
directed edge (z+y) in the graph from node z to 
node y with weight 1 and its inverse edge (y+z) 
with weight - 1. Each directed edge has label P. 

The graph constructed in this way from a simple 
recursive statement a will be called the a-graph. The 
subgraph induced on the a-graph by the undirected 
edges defined in (ii) will be called the static a-graph. 

The spanning subgraph of the a-graph with edge set its 
directed edges deflned in (iii) will be called the dynamic 
a-graph. Finally, the length of a path (cycle) in the 
graph is dellned to be the sum of the weights of the 
edges along the path (cycle). Regarding undirected 
edges, they can be traversed in both directions, as if 
there were two opposite directed edges. 

As an example consider the following simple 
recursive statement: 

a: P(z.w) A Q(z.z) A R(wP) A 

S(US.Y) + Pb,Y) 
The a-graph is shown in figure 4.1. 

z u R.0 W 

2 Y 

Fig. 4.1 : The a-graph 

We can now see the meaning of restriction (4) in 
Section 2. All it says is that the dynamic subgraph of a 
simple recursive statement (restricted on the positive 
edges) is a forest. This has the implication that there is 
at most one path from any node to any other node in 
the subgraph, which proved to be crucial for the 
accuracy of our results. 

For those familiar with the unification algorithm 
(see rRobi651 ). we would like to indicate an imnortant 
relatibnship between that and the graph model analyzed 
above. Unification is a first-order theorem proving 
algorithm The iterative process used for recursive 
statements in Section 2, is equivalent, with respect to 
the Anal outcome, to a unification process. In 
particular, consider two copies of the statement, with 
distinct variable symbols for all the antecedent 
variables. That is, consider a as given above and a’ as 
given below: 

a’ : P(z’,w’) A Q(z’.x) /\ R(w’.u’) A 

Clearly a is equivalent to a’, since all we did was to 
change some variable names. We can now unify the 
recursive predicate in the antecedent of the first copy 
with that in the consequent of the second copy (the 
unification algorithm would work with the statements 
put in clause form but its actions are equivalent to the 
ones we describe here). The resolvent is a new simple 
recursive statement, which if applied on the initial 
instance of the recursive predicate, will give exactly the 
same result with the application of the original 
statement on the outcome of the first step of the 
iterative process. For our example the resolvent comes 
out to be: 

P(z’,W’) A Q(z’.z) A R(w’,u’) AS(u’,Z,W) A 

Q(z.z) A R(w.u) A S(UJ.Y) + J'hsy) 

Regarding unification, the dynamic subgraph of a 
simple recursive statement captures something very 
important. Namely, it shows the substitution of the 
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variables that one has to make to unify the two literals 
in the two copies of the statement. For every positive 
directed edge of the graph, the tail should be 
substituted in the second copy for the head, to obtain 
the resolvent. In the example above, z was substituted 
for z and UJ was substituted for Y, which is exactly what 
the directed edges (z +z) and (w-+Y) in figure 4.1 
indicate. We will not be directly referring- to the 
unification algorithm but the ideas behind it have a 
significant i&act on our analysis. 

Finally, there is a notational comment we would 
like to make about the graph model described above. 
According to the definition, there is a one to one 
correspondence between the positive and the negative 
directed edges. The positive ones alone are enough to 
carry all the information captured by the directed edges 
in the graph. In the remainder of this paper we will be 
referring to the dynamic subgraph as containing the 
positive edges of the graph only, the negative ones 
implicitly assumed only whenever the length of a path is 
discussed. Likewise, in all the figures we will draw the 
positive edges only. Finally, since the weight of some 
edge is easily determined from whether it is undirected 
(weight zero) or directed (weight one), we will put no 
weights on the edges. 

5. THE PROBLEM 
Let the following be a simple recursive statement. 

P(~,.~z....J,) A B + P(Y 14/2....*ym) (1) 
The subformula @ is a conjunction of atomic formulas, 
none of which involves the predicate P, and all variables 
are assumed to be universally quantified. There are two 
equivalent ways of expressing (1) in a nonrecursive way. 

l The above statement may be viewed as equivalent to 
the following infinite sequence of statements: 

P,(~,.%w.*%)nB + Pl(Y bY2....9Yrn) 
P,(~,,~,....Jm)AB -a JUY l*YW.*Yrn) 
P2(~,3,....*Gn)AB + MY l.Y2....~Yrn) 

In the above statements, PO denotes the initial contents 
of P, PI denotes the tuples “inserted” into P after 
applying the recursive statement once, Pz denotes the 
tuples “inserted” in P after applying the recursive 
statement on the new tuples produced by the previous 
application, and so on. The Anal result for relation P is 
&Pi. The i-th statement above will be called the i-fh 

application of statement (1). Note that this infinite 
non-recursive expression of (1) actually reflects the 
iterative process to materialize P, along the lines of our 
discussions in the previous sections. 
. Statement (1) may be also viewed as equivalent to 
the statements 

where, for all i-2 0. it is @i = /3 a,] and 
PO(ZP-‘),ZA*-‘) ,,.., ~2~‘)) = Po(Z,,Z, ,..., Z,)[zPi z , with 66 
some substitution of the variables in 8. the details of 
which will not concern us for the moment. Note that IJO 
maps each variable to itself. In a similar but somewhat 
different way than for the applications of (l), the i-th 
statement above will be called the (i-1)th expansion of 
statement (1). so that the first of these statements, 
which is actually the statement itself, is the 0-th 

expansion. Each one of these expansions is applied on 
the initial contents of P. Clearly. the R’s above are the 
same as the ones in the “a&licatidn” view of the 
recursive statement, i.e. the tuples produced by the i-th 
application of (1) for Pt. are the same as those 
produced by the (i -1)-th_expansion of (1) for Pi. In the 
end P is again equal to iioPi. Note that the antecedent 

of each expansion is equal to that of the previous 
expansion with the recursive predicate being replaced 
by yet another instance of the antecedent of the 
original statement (with different variables, of course). 
In terms of the unification algorithm mentioned in 
Section 4, the k-th expansion of a simple recursive 
statement a is the resolvent of its (k-1)-th expansion 
and a itself. In the sequel we will be referring to the 
k -th expansion of a recursive statement a as ok. Since 
the statement itself is its own 0-th expansion we have 
that a = [ro. 

In both cases above, the initial statement becomes 
equivalent to an infinite number of nonrecursive 
statements. However, since in a database environment 
all the relations are finite, and because of the fact that 
we are considering simple recursive statements only, 
which contain no functions, after some point the 
nonrecursive statements will stop producing any new 
tuples for P, and therefore the whole process eventually 
terminates. Moreover the process terminates exactly 
when some i-th application (or the corresponding 
(i-1)-th expansion of (1)) fails to produce any new 
tuples for the first time. 

This is an appropriate place for the following 
definitions. 

DeDnition 5.1: Let a be a simple recursive 
statement. The rank of a is defined to be the smallest i 
such that LX~ does not produce any tuple not already 
contained in some Pj for Olj% i. 

Note that, in general, the rank of o is dependent on 
the contents of the relations involved in a. 

DeDnition 5.2: A simple recursive statement will be 
called bounded if and only if there exists a finite upper 
bound on its rank jndeuenderlf: of the contents of the 
relations involved in the statement. 

In view of the previous definitions we can pose our 
problem as the following question: 

When is a simple recursive statement bounded? 
We are also interested in finding this upper bound 

in the cases it exists. The answer to this question is 
given by the following theorem 

Theorem: Let a be a simple recursive statement. 
Statement a is bounded if and only if the a-graph 
contains no cycle of non-zero length. In that case a tight 
upper bound on the rank of a is equal to the maximum 
length of any path in the a-graph. 

We have mentioned earlier that a detailed analysis 
and proof of this theorem may be found in [Ioan85] . 
However, we will attempt to sketch the important steps 
in our proof there, by means of some examples. 

5.1. SUFFICIENCY OF THE CONDITION 
Consider formula y from Section 3: 

y: -.. -N~)AB(~)AR(Y) + P(Y) 

Figure 5.1 shows that the y-graph contains no cycles at 
all (excluding that formed through the implicitly 
assumed negative edge, which again is of length zero). 
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2 Y 
b 

Fig. 5.1 : The r-graph 

Furthermore the maximum length of any path in the 
graph is 1. In our discussion in Section 3, we have 
concluded that one step of the iteration process is 
enough to derive all possible tuples in P, which is in 
perfect agreement with the theorem above. 

The fact that the rank of 7 is bound by 1, can be 
seen from the first expansion of 7, which is 

71: P(z')/\Q(z')/\R(z)/\Q(2)nR(y) + P(Y) 
If we substitute z for z’ and z’ for z in yl, the 
antecedent of yI becomes equal to the antecedent of 7 
with some additional atomic formulas conjuncted to it. 
The antecedent of rl being strictly more restrictive than 
that of 7, implies that any tuple derived from the former 
is also derived from the latter. Thus y1 need never be 
considered. 

The same conclusion could be drawn, by looking at 
the y- and the 71-graphs, as they appear in figures 5.1 
and 5.2 respectively. 

2’ Y 
l 

. 
z 

Fig. 5.2 : The 7,-graph 

We can see that the r-graph is isomorphic to a subgraph 
of the rl-graph. The isomorphism preserves the 
consequent variables as well as the edges of the dynamic 
y-graph. As for the antecedent variables the 
isomorphism maps them according to the substitution 
mentioned before, that makes the antecedent of 7 part 
of that of yl. 

These properties of the expansions and their 
graphs do not follow from any specific characteristic of 
7, but only from the fact that the y-graph is free of 
non-zero length cycles. To illustrate this, we will now 
consider a much more complicated example. Consider 
the simple recursive formula a: 

p(%J+U@dl) A Q(u~ruz) A R(uaua.x) A 

S(w.2) -) P(v*~J,y,z) 

The a-graph appears in figure 5.3. 
‘113 % 

Y 

V w z 

Fig. 5.3 : The a-graph 

All the cycles in the a-graph have zero length, including 
those formed through the negative directed edges, 
which according to our convention are not drawn (going 
along a negative edge can be thought of as going along a 
positive edge in the opposite direction and inversing the 
weight). Hence, according to our theorem a is bounded. 
The maximum length of any path in the graph being 2. 
we may conclude that a2 is redundant, i.e. two steps are 
enough in the iterative process to get the Anal result 

for P. 
This becomes apparent if we look at the a,- and the 

as-graphs. They are shown in figures 5.4 and 5.5 
respectively. 

U’. 

Fig. 5.4 : The a,-graph 

u’p3 

Ull Q u’ R R 
R -e % 
S 

Fig. 5.5 : The az-graph 

The al-graph in figure 5.4 shows two (connected) 
components, instead of one that initially appeared in 
the a-graph. Furthermore, the latter is not isomorphic 
to any subgraph of the former, which implies that there 
are some instances of the relations involved in a that 
will make a, produce some tuples that are not produced 
by a. Hence a, is necessary. 

On the other hand the as-graph in figure 5.5 has 
three components, one more than the al-graph. Two of 
these components are isomorphic to those in the 
al-graph. Moreover, the isomorphism has all the desired 
properties, i.e. it maps consequent variables to 
themselves and preserves the labeling of the static 
edges. For a, and as this means that changing the 
antecedent variable names in the latter appropriately, 
its antecedent becomes strictly more restrictive than 
that of the former. The rank of a is bounded by 2, 
therefore as is not necessary. 

Notice that the number of components increased in 
the first example with 7 as well. In fact, this is true for 
all graphs free of non-zero length cycles. If, for 
example, the graph of the initial statement is 
connected, then each expansion comes with one more 
component than the previous one. At some point, we get 
a component that contains no directed edges, i.e. no 
consequent variables. This expansion is exactly the first 
one that is redundant and it determines the bound on 
the rank of the initial statement. 

Another general characteristic of the graphs of 
bounded statements, which is proved in [Ioan85] , is 
that the last expansion that is significant (regarding the 
production of new tuples), is the first one with the 
maximum length of any path in its graph being 1. This 
may be seen in both the y- and the al-graphs above. 

5.2. NECESSITYOFTHECONDITION 
We will now attempt to illustrate with an example, 

that the condition given in the theorem for bounded 
statements is as tight as possible. Consider the 
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statement below: 

B : P(UlW ~U23ki) A Q(w *u2) A R(y J4i) A 

S(x,z) -, P(w,z,y,o) 
The ,&graph appears in figure 5.6. 

Ul 

Fig. 5.6 : The p-graph 
The p-graph contains a cycle of length 1, name1 
(W -+~s+u -rug-~ +z-wJ). Recall that the edge (Z-W 3 
with weight -1 does exist, even though it is not show-n in 
the figure, and also that an undirected edge can be 
traversed in both directions. Hence, according to our 
theorem, /3 cannot be bounded. The expansions of /3 
become quite complicated and difficult to read, that is 
why we will attempt to convince ourselves on the 
unboundedness of /? by looking at the graphs of these 
expansions. The PI- and &,-graphs appear in figures 5.7 
and 5.8 respectively. 

Fig. 5.7 : The PI-graph 

Q U2R U’s S UI Q U’2RU”2 ‘11’1 Q U”2 

zt 
S v x II+ R .“” 

Fig. 5.8 : The &-graph 
Looking at the way the graph changes as we move from 
one expansion to the next, we see a distinct difference 
between what happened in the previous cases and what 
happens now. Instead of having the number of 
components increase, we continue to have a single 
component, but the original cycle becomes larger &d 
larger, in terms of the number of the undirected (static) 
edges in it. This continues, no matter how many 

expansions we perform. Clearly, for two cycles to be 
isomorphic, they have to contain the same number of 
edges. Since no expansion can have a graph which is 
isomorphic to a subgraph of any other expansion, there 
can be no upper bound on the number of them that are 
significant for the result. 

In general, as shown in [Ioan85] , every cycle of 
length 1 in a graph increases in size from one expansion 
to the next. Cycles of length greater than 1, have a 
more complicated behavior. The significant chara- 
cteristic of it is that at some expansion they break into 
multiple cycles of length 1. It is not diiult to show 
that the boundedness property of a statement is 
inherited to all expansions of it and vice-versa. From 
this, combined with the general behavior of cycles 
mentioned above, follows the conclusion that if a 
statement has a non-zero length cycle in its graph it is 
not bounded. 

The condition of the theorem given in the beginning 
of the section is sufficient for a statement to be 
bounded even when restrictions (3) and (4) are removed. 
However it is not necessary. For example consider the 
trivial example 

P(YJ) + P(x.l/) 
This statement is not simple. It violates restriction (4) 
by having a subsequence of the variables under the 
recursive predicate in the consequent being a 
permutation of the corresponding variables in the 
antecedent. The graph of the statement appears in 
figure 5.9. 

Fig. 5.9 : Graph violating restriction (4) 
As expected the dynamic graph (restricted to the 
positive edges), which in this case is equal to the whole 
graph, is not a forest. Even though it is clear that the 
statement is bounded with bound 1, the graph contains 
a cycle of length 2, thus violating our theorem Future 
work should attempt to generalize the condition of the 
theorem to include statements like this as well. 

6. AF’PLICATIONS 
Besides its theoretical interest, our result may 

have considerable implications on how general recursive 
statements can be processed in a deductive database 
environment. We have no specific results in that 
direction but we can speculate that many recursive 
statements can be decomposed into “smaller” ones, 
some of which are bounded. Our unbounded statements 
will be smaller than the initial one and this will result in 
faster processing. Furthermore, the parts of the result 
that correspond to bounded statements will be obtained 
in a bounded number of steps independent of the rest of 
the statement. This should result in greater efficiency, 
since the processing of the original statement may 
involve many more steps than the bound of the bounded 
statements. Processing the original statement in its 
initial form would recompute the same things again and 
again. Of course there will be some overhead in the end 
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to combine the results of the various substatements in a 
way that they produce the same result as the original 
statement. In many cases though, the effort will be 
worth some net savings in computational cost. 

As an example of such a decomposition consider 
the following statement 

P(z.w) A Q(z,w) A R(z,y) A S(ZJ) -a P(z~Y) 
The graph of this statement is shown in 6gure 8.1. 

z Q 
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Y 

Fig. 6.1 : Graph of decomposable statement 
The statement can be decomposed into the two 
statements 

The corresponding graphs of the two statements appear 
in figure 6.2. - - - 
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Y 

Fig. 6.2 : Graphs of statements after decomposition 
As we can see the first statement is bounded, with bound 
1, while the second is unbounded. Processing the two 
statements separately and then combining the two 
results may affect the processing time significantly. 

As for a single statement, the information that it is 
bounded might prove to be useful as well. Its deflnition 
can be expressed non-recursively in a finite form This 
makes applicable all the tools used in conventional 
relational databases to find fast access paths to process 
the statement. It also makes it much easier to compile 
such an access path compared to the effort needed for a 
general unbounded statement (e.g. see [Naqv64] ). 
Finally, when we know that a statement is bounded, with 
say bound n, we never need to process the statement 
for an (<+l)-th time, only to discover that no new 
tuples are produced. For statements with small bounds, 
say 1 or 2, this may prove to be quite significant. We 
should also note that, even though we have examined 
the problem of bounded recursive statements in a 
deductive database context, our results apply to other 
similar environments too, like those based on the 
PROLOG programming language. 

All the above lead us to the conclusion that the 
existence of bounded recursive statements and our 
ability to characterize them is an important step 
towards processing efficient algorithms for recursion. 

7. CONCLUSIONS 
We have considered a restricted class of recursive 

statements in the context of a deductive database. We 
have demonstrated that some such statements are 
amenable to an equivalent finite nonrecursive 

expression, i.e. using the first n expansions of the 
statement, where n is its bound. By modeling such a 
statement with a weighted graph, we have shown that 
the property that the statement can be expressed in a 
finite way is equivalent to the property that the graph 
has no cycles of non-zero length. Finally, we have 
indicated some possible implications of our result in the 
construction of efilcient algorithms to process recursive 
statements. 

There are many things left to be done in the future. 
We are currently working on obtaining necessary and 
sufficient conditions for more general classes of 
recursive statements, by remov%g some of the 
restrictions (1) to (4) of section 2. We believe that this 
should not de’difflcuit for restrictions (3) and (4) and 
partly for restriction (2). As an even more important 
task for the future we consider the study of unbounded 
recursive statements. We are currently investigating the 
possibility of decomposing such a statement into smaller 
ones some of which are bounded, in the way it was 
demonstrated in section 6. Finally, much work needs to 
be done for unbounded non-decomposable recursive 
statements. 
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