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A TIME CONTINUATION BASED FAST APPROXIMATE

ALGORITHM FOR COMPRESSED SENSING

RELATED OPTIMIZATION

FARZIN BAREKAT AND STANLEY OSHER

Abstract. In this paper we introduce a fast approximate algorithm to opti-
mize an augmented version of the Basis Pursuit problem and subsequently find
the solution to the compressed sensing problem. Our methodology is to first
solve the Lagrangian dual formulation of the problem and then use the result to
find an approximate solution to the primal problem. Although we emphasize
that our algorithm finds an approximate solution, numerical experiments show
that our algorithm perfectly recovers the solution when the solution is rela-
tively sparse with respect to the number of measurements. In these scenarios,
the recovery is extremely fast compared to other available methods. Numerical
experiments also demonstrate that the algorithm exhibits a sharp phase transi-
tion in success rate of recovery of the solution to compressed sensing problems
as sparsity of solution varies. The algorithm proposed here is parameter free
(except a tolerance parameter due to numerical machine precision), and very

easy to implement.

1. Introduction

The goal of compressed sensing is to find sparse solutions to equation Ay = b,
where A is an m × n matrix with m � n. The compressed sensing problem is
formulated as

(1.1) argmin
y∈Rn

‖y‖0 subject to Ay = b,

where ‖y‖0 counts the number of nonzero entries in y.
It turns out (i.e. see [5]) that the sparse solution is often the same as the solution

to the following minimization problem, also known as Basis Pursuit (i.e., see for
example [6]),

(1.2) argmin
y∈Rn

‖y‖1 subject to Ay = b.

The objective function in (1.2) is nonsmooth, which poses a numerical challenge for
minimization. Moreover, the Lagrangian dual of (1.2),

(1.3) argmax
s∈Rm

〈b, s〉 subject to −−→
1 ≤ AT s ≤ −→

1
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2792 FARZIN BAREKAT AND STANLEY OSHER

is constrained and is not strictly convex. Problem (1.2) can be relaxed in several
ways:

For μ > 0, we can introduce a regularization term and consider problem

(1.4) argmin
y∈Rn

{
‖y‖1 +

1

2μ
|y|2

}
subject to Ay = b.

Throughout this paper, | · | stands for Euclidean norm ‖ · ‖2. It has been shown in
[24] and [11] that the above problem has the exact regularization property : there
exist large fixed μ0, depending on A and b, such that for μ > μ0, the solution
to (1.4) is the same as the solution to (1.2). In [17] it is shown that the exact
regularization property still holds if the polyhedral norm is used in problem (1.4)
instead of the L1 norm. Moreover, as noted in [13], the Lagrange dual problem of
(1.4) is unconstrained and differentiable; consequently, many classical techniques
such as Nesterov’s acceleration method [15], Barzilai–Borwein step sizes [1], and
nonmonotone line search can be used to speed up computation.

Alternatively, we can add a penalty term to problem (1.2) and consider the fol-
lowing problem (known in the literature as LASSO [18] or Basis Pursuit Denoising
[7]):

(1.5) argmin
y∈Rn

{
‖y‖1 +

1

2t
|Ay − b|2

}
.

For certain applications, b may contain noise; which makes solving (1.5) more
preferable than solving (1.2).

The primal problem (1.5) is unconstrained; however, its Lagrangian dual problem
is constrained. In contrast, the primal problem (1.4) is constrained, whereas, its
Lagrangian dual problem is unconstrained.

Motivated by the two relaxation procedures above, we now turn to problem (also
known as Augmented Lasso),

(1.6) argmin
y∈Rn

{
‖y‖1 +

1

2μ
|y|2 + 1

2t
|Ay − b|2

}
,

and a related problem

(1.7) argmin
y∈Rn

{
‖y‖1 +

1

2μ
|y|2 −

√
t2 − |Ay − b|2

}
subject to |Ay − b|2 ≤ t.

Primal problems (1.6) and (1.7) can be written in the general form

(1.8) argmin
y∈Rn

{
‖y‖1 +

1

2μ
|y|2 +R(t, y)

}
,

where R(t, y) incorporates the penalty term (i.e. R(t, y) = 1
2t |Ay−b|2 for problem

(1.6) and R(t, y) = −
√
t2 − |Ay − b|2 for problem (1.7)).

The Lagrangian dual of the above problems is of the form

(1.9) argmax
s∈Rm

{
〈b, s〉 − μ

2
|shrink(AT s,

−→
1 )|2 − tH(|s|)

}
,

with H(x) = x2/2 for problem (1.6), and H(x) =
√
1 + x2 for problem (1.7). Here

shrink is the shrinkage operator (also known as soft-thresholding operator), which
for two vectors with the same length �x and �v, is defined by

shrink(�x,�v)i = max(|xi| − vi, 0)
xi

|xi|
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TIME CONTINUATION COMPRESSED SENSING 2793

Consequently, we can use the Lagrangian dual formulation to solve problems
(1.6) and (1.7) in the following way (see for example [9]): First compute

s∗ = argmax
s∈Rm

{
〈b, s〉 − μ

2
|shrink(AT s,

−→
1 )|2 − tH(|s|)

}
,

then compute

y∗ = μ · shrink(AT s∗,
−→
1 ).

For

• H(x) = 1
2x

2, then y∗ solves (1.6).

• H(x) =
√
1 + x2, then y∗ solves (1.7).

We note that the idea of using duality for (1.8) was first used in [24], for t = 0
and then in [8] to obtain formula (1.9). We note that there is an interesting link
between this duality formulation and viscosity solutions for certain Hamilton-Jacobi
equations, pointed out in [8] (see also [9]). We also note that [3] developed a
general framework to recover sparse data by first smoothing the dual of the conic
formulation of the problem, and then applying optimal first-order methods.

In this paper we propose a new and practical approximate algorithm that uses
the duality correspondence between (1.8) and (1.9) to find an approximate solution
to the compressed sensing problem. We name our algorithm Time Continuation
Compressed Sensing, or TCCS for short. The TCCS algorithm consists of two parts.
The first part of the algorithm finds an approximate solution to the constrained
problem

(1.10) argmax
s∈Rm

{〈b, s〉 − tH(|s|)} subject to −−→
1 ≤ AT s ≤ −→

1 .

The second part of the TCCS algorithm uses the Lagrangian dual correspondence
between (1.8) and (1.9), and a first-order approximation in terms of 1/μ to find an
approximate solution to

(1.11) argmin
y∈Rn

{‖y‖1 +R(t, y)} .

As a consequence, the TCCS algorithm outputs a sparse solution to compressed
sensing problems when we set t = 0.

Although the TCCS algorithm does not find the exact optimal argument for
problem (1.11) (or (1.10)), it performs very well. In section 4 we provide numerical
evidence that shows that when the TCCS algorithm is applied to compressed sensing
problems (i.e. noiseless data), it perfectly recovers the solution when it is relatively
sparse. Moreover, the TCCS algorithm is faster than some of the fastest methods
used for solving compressed sensing problems (see section 4 for more details). An-
other advantage of using the TCCS algorithm for compressed sensing problems is
that it is parameter free. In section 4, we also present numerical evidence that the
TCCS algorithm performs well when the data are noisy.

We also derive some theoretical results that are important in their own right. In
particular, in Corollary 2.7 we provide an alternative proof for the exact regular-
ization property in problem (1.4). We also show in subsection 2.3 how the solution
of problem (1.10) can be used to yield an approximate solution to primal problem
(1.8) for sufficiently large μ.

Some readers might think that the idea used in the first part of the TCCS algo-
rithm resembles the simplex method or the interior method used in optimization.
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However, the resemblance is misleading. Suppose a polytope Ω is defined by

Ω = {s ∈ R
m : aTi s ≤ 1, for i = 1 . . . , n}.

For every point s ∈ R
m, let J(s) be the set of indices i ∈ {1, . . . , n} for which

aTi s ≥ 1. We call J(s) the set of violations of s. We sometimes use J instead
of J(s) when this does not cause confusion. Let AJ be the matrix formed by
appending the columns of A whose index belongs to J .

In each iteration of the simplex method, we move from an extreme point (a
point on the boundary of Ω for which the corresponding matrix AJ has rank m) to
another extreme point. On the other hand, in each iteration of the interior method,
the corresponding points are inside Ω, and therefore their set of violations is empty
(i.e., by convention AJ has rank zero for these points). However, in the TCCS
algorithm, we start with a point inside the polytope Ω and at each iteration we
move to a new point on a face of Ω in such a way that the rank of AJ increases
by at least one. As a consequence the algorithm stops after a maximum of m
iterations.

Indeed, the algorithm we used for the first part of the TCCS algorithm, be-
longs to a class of techniques called homotopy method (see, for example, [21,22] for
general applications of homotopy technique and [10,20,25] for applications of homo-
topy technique to L1 minimization problems), suitably adapted for the particular
problem at hand. Let

gτ (s) = 〈b, s〉 − τH(|s|).

In essence, we generate a sequence τ0 > τ1 > · · · > τ� = t and iteratively find
approximate maximizers s1opt, . . . , s

�
opt, respectively, for functions gτ0(s), . . . , gτ�(s)

subject to constraint −−→
1 ≤ AT s ≤ −→

1 . As a result, s�opt yields a good approximate
maximizer for (1.10) .

The TCCS algorithm also resembles LARS [10] and adaptive inverse scale space
[4], however, it is different from these compressed sensing related algorithms as the
homotopy technique is applied to the dual problem.

The main contribution of our paper is to investigate application of homotopy
technique to the dual formulation of L1 minimization problems. We introduce an
approximate algorithm that perfectly recovers the solution of compressed sensing
problems (i.e. noiseless data) when the solution is relatively sparse with respect to
the number of measurements. For this regime of sparsity, the recovery is extremely
fast compared to other algorithms being used. Moreover, the TCCS algorithm has a
fixed number of iterations. Also, the TCCS algorithm exhibits a sharp phase transi-
tion in the success rate of recovery of solution when sparsity of solution varies. The
TCCS algorithm can also be used to solve problems such as the LASSO problem.

The reminder of this paper is organized as follows. In section 2 we provide
some theoretical result that are used in developing the TCCS algorithm. Section
3 describes the general idea of the TCCS algorithm. Section 4 contains numerical
evidence for the good performance of the TCCS algorithm. In section 5 we give
some concluding remarks. In Appendix A we provide pseudo-codes for the TCCS
algorithm.
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2. Theoretical results

In this section we establish some theoretical results. These results justify and
motivate the construction of the TCCS algorithm described in section 3. In sub-
sections 2.1 and 2.2 we study the trajectory of the solutions for problems (1.9) and
(1.10), respectively, as we vary parameter t. In subsection 2.3 we use a first-order
approximation in terms of 1/μ to establish a relation between the solution of (1.10)
and the solution of the of the primal problem (1.8) when μ is large.

Indeed, in the rest of the paper, we consider the more general problems

(2.1) sopt(t) = argmax{〈b, s〉 − tH(|s|)} subject to AT s ≤ −→
1

and

(2.2) s∗(t, μ) = argmax
s∈Rm

{
〈b, s〉 − μ

2
|S(AT s,

−→
1 )|2 − tH(|s|)

}
,

where operator S is defined by S(�x,�v)i = max(xi − vi, 0) and AT is such that
polytope

Ω = {s : AT s ≤ −→
1 }

is bounded. Here, b, μ and t are fixed, A is m× n matrix with m � n. We make
the following assumptions about function H:

(1) H is a function from positive real numbers to positive real numbers.
(2) H is strictly convex and strictly increasing.
(3) H is differentiable with h denoting its derivative.
(4) h is a composition of polynomials and radicals.
(5) h maps bounded sets to bounded sets.

Remark 2.1. Assumption 4 above is used in Lemma 2.3 and assumption 5 is used
in Theorem 2.4. One might be able to weaken these assumptions.

Remark 2.2. Functions H(x) = 1
2x

2 and H(x) =
√
1 + x2 satisfy all these assump-

tions.

To see that the new formulation yields the original problem, observe that if

(2.3) Ã =
[
A | −A

]
,

then |shrink(AT s,
−→
1 )| = |S(ÃT s,

−→
1 )|. Therefore, the solution to (2.2), with Ã in

place of A, is the same as the solution to (1.9). Moreover, if y = μ · shrink(AT s,
−→
1 )

and ỹ = μ · S(ÃT s,
−→
1 ), then

(2.4) y =
[
I | −I

]
ỹ,

where I is the identity matrix.

2.1. Unconstrained dual problem. In this section we investigate the solution
to problem (2.1).

Set

(2.5) fτ (s) = 〈b, s〉 − τH(|s|)− μ

2
|S(AT s,

−→
1 )|2.

Observe that

∇fτ (s) = b− τh(|s|) s

|s| − μAS(AT s,
−→
1 ).
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Because of the concavity of functions fτ (s) and since fτ (s) is bounded above when
μ > 0, we know that s∗ = s∗(τ, μ) = argmaxs(fτ (s)) is either the origin or satisfies

(2.6) 0 = b− τh(|s∗|) s∗

|s∗| − μAS(AT s∗,
−→
1 ).

It is clear that for nontrivial cases, the optimal argument s∗ is not at the origin.
Indeed, if s∗(τ1, μ) is not at the origin, then, for τ2 < τ1, s

∗(τ2, μ) would not be at
the origin. To see this note that

0 ≤ fτ1(s
∗(τ1, μ))− fτ1(�0) < fτ2(s

∗(τ1, μ))− fτ2(�0),

where the first inequality uses the definition of s∗(τ1, μ) and the second inequal-
ity uses the assumption that function H is strictly increasing. On the other
hand, by definition of s∗(τ2, μ), fτ2(s

∗(τ1, μ)) ≤ fτ2(s
∗(τ2, μ)). Therefore, fτ2(�0) <

fτ2(s
∗(τ2, μ)), which means s∗(τ2, μ) is not at the origin. For this reason, we usually

discard the origin in the discussion that follows.
For every point s ∈ R

m, let J(s) be the set of indices i for which

aTi s ≥ 1.

Here aTi denotes the ith row of matrix AT . We call J(s) the set of violations of s.
We sometimes use J instead of J(s) where this does not cause confusion. Let AT

J

be the matrix formed by appending the rows of AT whose index belongs to J . Let
AJ be the transpose of AT

J ; that is, the matrix formed by appending the columns
of A whose index belongs to J . Now, equation (2.6) is equivalent to

0 = b− τh(|s∗|) s∗

|s∗| − μAJ (A
T
J s

∗ −−→
1 ).

Rearranging implies that

(2.7) s∗ =

(
τ
h(|s∗|)
|s∗| I+ μAJA

T
J

)−1

(b+ μAJ
−→
1 ),

where I is the identity matrix. The matrix inverse in equation (2.7) always exists
for τ > 0, 0 < μ < ∞, and s∗ is not the origin1.

Consider SVD decomposition

AT
J = UΣ

[
V T

WT

]
,

where rows of V T (i.e., {vT1 , . . . , vTk } ) and WT (i.e., {wT
1 . . . , wT

m−k}) correspond,
respectively, to nonzero and zero singular values of AT

J . In particular, span{ai}i∈J

= span{vi}ki=1. Moreover, {v1, . . . , vk, w1 . . . , wm−k} form an orthonormal set of
basis. We also have,

AT
J =

k∑
i=1

uiσiv
T
i and AJA

T
J =

k∑
i=1

σ2
i viv

T
i .

Note that,

(2.8) τ
h(|s∗|)
|s∗| I+ μAJA

T
J = τ

h(|s∗|)
|s∗|

m−k∑
i=1

wiw
T
i +

k∑
i=1

(μσ2
i + τ

h(|s∗|)
|s∗| )viv

T
i .

1One way to see this is noting that eigenvalues of the matrix are strictly positive due to
positivity of h. See also equation (2.8)
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Taking an inverse and substituting in (2.7) yields

s∗ =
|s∗|

τh(|s∗|) (
m−k∑
i=1

wiw
T
i )(b+ μAJ

−→
1 ) +

k∑
i=1

1

μσ2
i + τh(|s∗|)/|s∗|viv

T
i (b+ μAJ

−→
1 ).

The wi’s are in the space perpendicular to span{ai}i∈J , w
T
i AJ = 0. Therefore, the

above equation simplifies to

(2.9) s∗(τ, μ) =
|s∗|

τh(|s∗|) (
m−k∑
i=1

wiw
T
i )b+

k∑
i=1

1

1 + τ
μσ2

i
h(|s∗|)/|s∗|

viv
T
i

σ2
i

(b/μ+AJ
−→
1 ).

This is one of the main equations that is used throughout this paper. Equation
(2.9) describes an implicit equation for the trajectory of optimal argument s∗ as
the function of τ and μ. Note that AJ , σi’s, wi’s and vi’s depend on the set of
violations of s∗, J(s∗). Also equation (2.9) is valid for 0 < τ and 0 ≤ μ (since we
needed the matrix in equation (2.7) to be invertible).

At first glance, equation (2.9) might not seem very helpful, as it is an implicit
equation. However, we can infer many useful properties from this equation. What
follows is not very practical to implement; however, it is useful in deriving some
theoretical results. The TCCS algorithm inspired by these ideas is presented in
section 3.

For every set J , τ and μ, we can write the implicit equation

(2.10) s =
|s|

τh(|s|) (
∑
i

wiw
T
i )b+

∑
i

1

1 + τ
μσ2

i
h(|s|)/|s|

viv
T
i

σ2
i

(b/μ+AJ
−→
1 ).

However, note that s in above equation is not necessarily the optimal solution
because in equation (2.9), the set of violations J (i.e. and therefore AT

J , σi’s, wi’s
and vi’s) implicitly depends on τ and μ.

For every set J and i ∈ {1, . . . , n}, let Θi(J) be the set of τ of positive real
numbers for which there exist s that satisfies both equation (2.10) and aTi s = 1.
The importance of the set Θi(J) will be discussed shortly. However, we first show
the following lemma:

Lemma 2.3. For fixed μ, J and i, set Θi(J) consists of a finite number of intervals
in R.

Proof. First we take Euclidean norm of both sides of equation (2.10) and simplify.
Orthogonality of the basis {w1, . . . , wm−k, v1, . . . , vk} considerably simplifies the
expression. We perform a series of algebraic manipulations (depending on the form
of function h), to reduce the expression to the form

(2.11) P (|s|, τ ) = 0,

where P is a polynomial. For example, in the case of H(|s|) = |s|2/2, equation
(2.10) becomes

(2.12) s =
1

τ

∑
i

(wT
i b)wi +

∑
i

vTi (b/μ+AJ
−→
1 )

σ2
i + τ/μ

vi.

It follows that

|s|2 =
∑
i

∣∣∣∣wT
i b

τ

∣∣∣∣
2

+
∑
i

∣∣∣∣∣v
T
i (b/μ+AJ

−→
1 )

σ2
i + τ/μ

∣∣∣∣∣
2

.
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Multiplying both sides by τ2
∏k

j=1(σ
2
j + τ/μ)2 and rearranging yields that in the

case of H(|s|) = |s|2/2,

P (|s|, τ ) = τ2
∏
j

(σ2
j + τ/μ)2|s|2 −

∏
j

(σ2
j + τ/μ)2

∑
i

∣∣wT
i b

∣∣2

−
∑
i

τ2
∏
j �=i

(σ2
j + τ/μ)2

∣∣∣vTi (b/μ+AJ
−→
1 )

∣∣∣2 .
Next suppose s satisfies aTi s = 1. We multiply both sides of equation (2.10) by

aTi . The LHS is equal to 1. Again, we perform a series of algebraic manipulations
to reduce the expression to the form

(2.13) Q(|s|, τ ) = 0,

where Q is a polynomial. For example in the case of H(|s|) = |s|2/2, multiplying
both sides of equation (2.12) by aTi yields

1 =
1

τ

∑
i

(wT
i b)(a

T
i wi) +

∑
i

vTi (b/μ+AJ
−→
1 )

σ2
i + τ/μ

(aTi vi).

Multiplying both sides by τ
∏k

j=1(σ
2
j + τ/μ) and rearranging yields that in the case

of H(|s|) = |s|2/2,

Q(|s|, τ ) = τ
∏
j

(σ2
j + τ/μ)−

∏
j

(σ2
j + τ/μ)

∑
i

(wT
i b)(a

T
i wi)

−
∑
i

τ
∏
j �=i

(σ2
j + τ/μ)vTi (b/μ+AJ

−→
1 )(aTi vi).

If τ is chosen such that s satisfies equation (2.10) and aTi s = 1, then |s| and τ
must satisfy both (2.11) and (2.13). From Bezout’s theorem, polynomials P and Q
have a finite number of intersections, unless they have a common component. In
either case a set of τ for which there exists |s| such that the pair (|s|, τ ) satisfies
that both (2.11) and (2.13) consist of a finite number of intervals in R. The result
follows. �

Next partition R
m into regions where the points of each region have the same

set of violations. Clearly there are a finite number of regions (although many of
them). Now going back to equation (2.9) recall that AT

J , σi’s, wi’s and vi’s depend
on the set of violations of s∗. Fix μ and think of s∗ as a function of τ (to ease the
notation we use s∗(τ ) in place of s∗(τ, μ) and J(τ ) in place of J(s∗(τ, μ)). Let τ0
be sufficiently large so that s∗(τ0) is close to the origin and J(τ0) is empty. Such
τ0 exist because s∗(τ ) is the maximizer of function (2.5) and it is assumed that
function H is strictly convex and strictly increasing; consequently, as τ → ∞, s∗(τ )
is forced to converge to the origin. Set τ = τ0.

Since the set of violations is empty, from equation (2.9), we conclude that

(2.14) s∗(τ ) =
|s∗(τ )|

τh(|s∗(τ )|)b.

The above equation describes trajectory for s∗(τ ) in the region where the set of
violations of the optimal argument is empty.
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Next, we slowly decrease τ from τ0. As τ → t, by continuity s∗(τ ) → s∗(t).
Equation (2.14) continues to hold until the set of violations of s∗(τ ) changes; that
is, s∗(τ ) enters into a new region. Let τ1 denote the largest τ for which this happens.
We continue this process.

Suppose at τ = τr, s∗(τ ) enters into a new region. Again by continuity, for
τ < τr, s

∗(τ ) follows a trajectory prescribed by equation (2.9) (using J(τr) in place
of J), until the set of violations of s∗(τ ) changes; that is, s∗(τ ) enters into another
region at τ = τr+1. Therefore, as τ decreases from τr, τr+1 is the first τ for which
s∗(τ ) passes through a plane given by {s : aTk s = 1} for some k ∈ {1, . . . , n}. Thus,
τr+1 is equal to the largest element smaller than τr that belongs to Θk(J(τr)) for
some k, where τr and τr+1 are not on the same interval in Θk(J(τr)) (i.e., if τr and
τr+1 are on the same interval of Θk(J(τr)), it means that for τr+1 ≤ τ ≤ τr, s

∗(τ )
lies on the plane given by {s : aTk s = 1}, consequently, the set of violations of s∗(τ )
does not change due to k).

We continue this process until τ reaches t.
The important observation is that because of Lemma 2.8 and since there are a

finite number of regions (i.e. different set of violations) and indices i, the above
process does not continue indefinitely. Therefore we have a sequence τ0 > τ1 >
· · · > τN > τN+1 = 0, where for τ ∈ (τi+1, τi], s

∗(τ ) lies in the same region.
Now we use the above observations to prove several results.

Theorem 2.4. For every μ there exist tc > 0 and matrix AJ with rank m such
that for 0 < τ ≤ tc,

(2.15) s∗(τ, μ) =
∑
i

1

1 + τ
μσ2

i
h(|s∗|)/|s∗|

viv
T
i

σ2
i

(b/μ+AJ
−→
1 ).

Proof. In the discussions above, set tc = τN and AJ = AJ(τN ). First suppose that
J(τN ) is empty. From equation (2.9) (also see equation (2.14)) we conclude that
for τ ∈ (0, tc],

s∗(τ, μ) =
|s∗|

τh(|s∗|)b.

For nontrivial cases, s∗ is not at the origin (see the discussion after equation (2.6)).
Therefore, we can take a Euclidean norm from both sides and simplify to conclude
that

h(|s∗|) = |b|/τ.
However, s∗(τ, μ) is bounded (indeed, because J(τN ) is empty, s∗(τ, μ) lies within

polytope Ω = {AT s <
−→
1 }, which was assumed to be bounded). Therefore, by

assumption 5 about function h, the LHS of the above equation is bounded for τ ∈
(0, tc]. However, as τ → 0, the RHS goes to infinity, which yields a contradiction.

Next suppose J(τN ) is nonempty. From equation (2.9), we know that for τ ∈
(0, tc],

s∗(τ, μ) =
|s∗|

τh(|s∗|) (
m−k∑

i

wiw
T
i )b+

k∑
i

1

1 + τ
μσ2

i
h(|s∗|)/|s∗|

viv
T
i

σ2
i

(b/μ+AJ
−→
1 ),

where AJ , wi’s, vi’s and σi’s are fixed. Because the origin lies within the region cor-
responding to the empty violation set, J(τN ) being nonempty implies that s∗(τ, μ)
is bounded away from the origin for τ ∈ (0, tc]. Furthermore, we know that s∗(τ, μ)
is bounded as τ → 0. Therefore, from assumption 5 about function h, h(|s∗|) is
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bounded as τ → 0. Hence, unless (
∑m−k

i wiw
T
i )b = 0, the first summand in the

above equation would blow up as τ approaches 0; which yields a contradiction.
Thus we must have k = m; that is, AT

J has m nonzero singular values, which
implies that AJ has rank m. The result follows. �

Remark 2.5. The values of tc and matrix AJ in Theorem 2.4 are μ dependent.

Theorem 2.6. For μ sufficiently large, μS(AT s∗(0, μ), 1) is independent of μ.

Proof. From the result of Theorem 2.4 we know that as τ approaches 0, the optimal
argument s∗(τ, μ) eventually satisfies equation (2.15). Although at τ = 0 there
might not be a unique optimal argument s∗; however, from equation (2.15), one of
them is given by

(2.16) s∗(0, μ) =
∑
i

viv
T
i

σ2
i

(b/μ+AJ
−→
1 ),

where J = J(s∗(0, μ)) denote the set of violations of s∗(0, μ). Recall that AJ , vi’s
and σi’s depend on the value of μ. Next think of μ as variable. As μ increases,
s∗(0, μ) follows a trajectory given by (2.16). We can use a similar argument to the
one used for decreasing τ to conclude that there exist μc such that for μ ≥ μc,
s∗(0, μ) stays in the same region (i.e. see footnote 2).

Let μ ≥ μc. Observe that s∗(0, μ) still satisfies equation (2.16); however, AJ , vi’s
and σi’s no longer depend on μ and are fixed. From the definition of the violation

set J , we can conclude that the only rows of S(AT s∗(t, μ),
−→
1 ) that are nonzero are

exactly the elements of J . Thus, it suffices to show the result for μS(AT
J s

∗(0, μ), 1).
Now recall that AT

J =
∑

j ujσjv
T
j . Thus,

(2.17) AT
J s

∗(0, μ) = (
∑
j

ujσjv
T
j )(

∑
i

viv
T
i

σ2
i

(b/μ+AJ
−→
1 )) =

∑
i

uiv
T
i

σi
(
b

μ
+AJ

−→
1 ).

In the limiting case when μ approaches∞, s∗(0, μ) approaches to the boundary of
Ω. Indeed, when μ = ∞, s∗(0,∞) is the optimal solution of the linear programming
problem

(2.18) argmax
s

〈b, s〉 subject to AT s ≤ −→
1 .

Therefore, AT
J s

∗(0,∞) =
−→
1 . By formally substituting ∞ in equation (2.17), we

conclude that
−→
1 =

∑
i
uiv

T
i

σi
AJ

−→
1 . Substituting this back into the above equation,

we have

AT
J s

∗(0, μ) = (
∑
i

uiv
T
i

σi
)
b

μ
+
−→
1 .

Recall that by the definition of violation set J , entries of AT
J s

∗(0, μ) are greater

than or equal to one. We conclude that entries of (
∑

i
uiv

T
i

σi
)bμ are greater than or

equal to zero. Hence,

μS(AT
J s

∗(0, μ), 1) = (
∑
i

uiv
T
i

σi
)b.

Since the right-hand side is the same for all μ ≥ μc, the result follows. Indeed, one

can easily show that
∑

i
uiv

T
i

σi
is the pseudo-inverse of AJ , A

†
J .
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As a bonus, we also have that for sufficiently large μ, the nonzero elements of

μS(AT s∗(0, μ), 1)

are equal to A†
Jb, where J is the set of active constraints for the optimal solution

of the linear programming problem (2.18). �

Using the result of the above theorem, we may conclude that we have the exact
regularization property described in [24] and [11].

Corollary 2.7. There exist fixed large μc such that for μ ≥ μc, the solution to
problem (1.4) is independent of μ. Indeed, let J denote the set of active constraints
of the maximizer of the linear programming problem

argmax
s

〈b, s〉 subject to ÃT s ≤ −→
1 ,

where Ã is given by (2.3). Let ỹ be a column vector with 2n entries where n is the
number of columns of A. Moreover, those entries of ỹ whose index belong to J are

given by ỹ(J) = Ã†
Jb, and the other entries of ỹ are zero. Then the minimizer of

problem (1.4) is given by [
I | −I

]
ỹ.

Proof. From the Lagrangian dual correspondence in section 1, we know that the

solution of (1.4) is equal to μ · shrink(AT s∗,
−→
1 ) where s∗ is the solution of (1.9)

with t = 0. Now use the result of Theorem 2.6 and the relation (2.4). �

2.2. Constrained dual problem. In this section we analyze the solution to the
constrained problem (2.1). This problem can be viewed as the limiting case of
problem (2.2) as μ approaches ∞. Many of the ideas used in this section are similar
to the previous section. However, the formulas in this case become simpler and the
results enables us to devise a fast algorithm for finding the optimal argument.

Let

gτ (s) = 〈b, s〉 − τH(|s|),
and set

sopt(τ ) = argmax
s

gτ (s) subject to AT s ≤ −→
1 .

As in the previous section, for any subset J of {1, . . . , n}, let AT
J denote the

matrix formed from rows of AT whose index belongs to J . The following lemma is
essential in the analysis done in this subsection:

Lemma 2.8. Suppose τ > 0 and J is a fixed subset of {1, . . . , n}. If function gτ (s)

has unique global max on the set {s : AT
J s =

−→
1 }, then this global maximum is given

by

(2.19) sJ (τ ) := argmax
s:AT

J s=
−→
1

gτ (s) = F (τ, J)−→α (J) +
−→
β (J)

where −→α (J) := b −AJ (A
T
JAJ )

†AT
Jb is the projection of b on the set {s : AT

J s =
−→
1 }, and −→

β (J) := AJ (A
T
JAJ )

†−→1 . Here, F is some function that is determined by
values of τ , the set J and the function h (see the remark below).
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Remark 2.9. For some specific functions H(|s|), closed expressions for F (τ, J) is
available. For example in the case of H(|s|) = |s|2/2, it is easy to show that

F (τ, J) =
1

τ
;

therefore, equation (2.19) becomes

sJ (τ ) =
1

τ
−→α (J) +

−→
β (J).

As another example, in the case of H(|s|) =
√
1 + |s|2, it is shown in the proof

below that

F (τ, J) =

√
1 + |−→β (J)|2
τ2 − |−→α (J)|2 ;

therefore, equation (2.19) becomes

sJ (τ ) =

√
1 + |−→β (J)|2
τ2 − |−→α (J)|2

−→α (J) +
−→
β (J).

Proof. Since the set {s : AT
J s =

−→
1 } is convex and gτ is a concave function that has

a global maximum on this set, it suffices to solve the first-order conditions for the
Lagrangian

L(s,−→λ ) = 〈b, s〉 − τH(|s|) +−→
λ T (AT

J s−
−→
1 )

to find the global maximum.
First-order conditions with respect to s imply that

(2.20) b− τ
h(|sJ |)
|sJ |

sJ +AJ
−→
λ ∗ = 0,

and first-order conditions with respect to
−→
λ imply that

(2.21) AT
J sJ =

−→
1 .

Multiplying both sides of (2.20) by AT
J , using (2.21), and rearranging yields that

−→
λ ∗ = (AT

JAJ )
†(τ

h(|sJ |)
|sJ |

−→
1 −AT

Jb).

Substituting the above into (2.20) and simplifying, yields that

(2.22) sJ =
|sJ |

τh(|sJ |)
−→α +

−→
β ,

where −→α = b −AJ (A
T
JAJ )

†AT
Jb and

−→
β = AJ (A

T
JAJ )

†−→1 . It is straightforward
to verify that −→α is the projection of vector b onto the set {s : AT

J s = 1}, and −→α
and

−→
β are perpendicular to each other.

Now taking the Euclidean norm square of (2.22), we have

(2.23) |sJ |2 =
|sJ |2

τ2h(|sJ |)2
|−→α |2 + |−→β |2.

From the above equation and properties of function h, we conclude that |sJ | is the
root of some polynomial that depends on τ and J (indeed, the coefficients of the

polynomial are determined by τ , function h, |−→α | and |−→β |). Substituting these roots
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in the RHS of equation (2.22) yields an explicit formula for sJ . For example, in the

case H(|s|) =
√
1 + |s|2, (2.23) becomes

|sJ |2 =
1 + |sJ |2

τ2
|−→α |2 + |−→β |2.

Solving for |sJ | implies that

|sJ | =

√
|−→α |2 + τ2|−→β |2
τ2 − |−→α |2 ,

which upon subtitution in the RHS of equation (2.22) yields that for H(|s|) =√
1 + |s|2,

sJ =

√
1 + |−→β |2
τ2 − |−→α |2

−→α +
−→
β .

As noted above, for other functions H, |sJ | is the root of some polynomial.
In general, the polynomial might have several positive roots. However, because
we are given that gτ (s) has global maximum on the set (and global maximum is
unique for τ > 0 due to strict concavity), only one of the roots corresponds to |sJ |.
For general functions H, finding closed formulas for |sJ | and |sJ |

τh(|sJ |) might not be

possible; however, the value of |sJ |
τh(|sJ |) is uniquely determined by τ and J . If we

set F (τ, J) = |sJ |
τh(|sJ |) , then

sJ (τ ) = F (τ, J)−→α (J) +
−→
β (J). �

We now analyze the path that the optimal argument sopt(τ ) takes as τ decreases.
When τ is sufficiently large, sopt(τ ) lies in the interior of Ω. We can find sopt(τ )

by taking the gradient of gτ (s) and setting it equal to zero. We conclude that

b− τ
h(|sopt|)
|sopt|

sopt = 0.

Taking the norm from both sides and simplifying yields that

(2.24) sopt(τ ) =
1

|b|h
−1(

|b|
τ
)b = F (τ, ∅)α(∅).

The second equality in the above equation comes from b = −→α (∅). We have written
this to highlight that the above equation is a special case of equation (2.19) when
J is the empty set.

Now we decrease τ slowly. We know that sopt(τ ) follows the path given by
equation (2.24) until it hits a boundary of polytope Ω. Let τ1 denote the first time
that this happens. As a consequence, for t ≤ τ ≤ τ1, the global maximum of gτ (s)
occurs outside of Ω if there was no constraints. Hence, because gτ is a concave
function and Ω is a convex set, sopt(τ ) must be on a boundary of Ω for τ ≤ τ1.

We use J1 to denote the set of indices i for which aTi sopt(τ1) = 1. In the language
of linear programming, J1 is called the set of active constraints for point sopt(τ1).
From the discussion above, as τ decreases from τ1, sopt(τ ) moves along faces of Ω.
Suppose the set of constraints K1 determines the first face of Ω along which sopt(τ )
moves for τ ≤ τ1. Clearly, K1 ⊂ J1. From Lemma 2.8, for τ ≤ τ1, sopt(τ ) moves
along the path given by

F (τ,K1)
−→α (K1) +

−→
β (K1),
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until it hits another face of Ω. Let τ2 denote the first time that this happens;
that is, τ2 is the largest τ < τ1 for which the set of active constraints of sopt(τ ) is
different than K1. Let J2 denote the set of active constraints of sopt(τ2). Again,
as τ decreases from τ2, sopt(τ ) moves along a face of Ω. Let K2 denote the set of
constraints that determines this face. Again, K2 ⊂ J2, and we repeat as before.

We continue the above process until τ reaches t. From the arguments in section
2.1, we may conclude there is a sequence

(2.25) τ0 > τ1 > · · · > τN > τN+1 = 0,

where for τ ∈ (τi+1, τi], sopt(τ ) lies on the same face of the polytope. Therefore,
we reach t by going through a finite number of faces. As mentioned earlier, the
constrained problem can be viewed as the limiting case of an unconstrained problem
as μ approaches ∞. Using this insight and Theorem 2.4, we have the following
corollary:

Corollary 2.10. There exist tc > 0, such that for 0 < τ ≤ tc the optimal argument
sopt(τ ) for constrained problem

argmax{〈b, s〉 − τH(|s|)} subject to AT s ≤ −→
1 ,

are all the same and lie on an extreme point of the polytope Ω.

Proof. Formally substituting μ = ∞ in equation (2.15) of Theorem 2.4, we observe
that for 0 < τ ≤ tc, sopt(τ ) is independent of τ . Furthermore, since AJ(tc) has rank
m, we conclude that sopt(tc) is an extreme point of polytope Ω.

2.3. Approximate solution of the augmented problem. In this subsection we
use first-order approximation in terms of 1/μ, to describe how sopt(t) can be used

to find an approximation for y∗(t, μ) = μS(AT s∗(t, μ),
−→
1 ) when μ is sufficiently

large.
Note that formally, sopt(t) = s∗(t,∞). For ease of notation, we occasionally use

s∗ and sopt in place of s∗(t, μ) and sopt(t), respectively, in the remainder of this
subsection. Using arguments similar to the one used in the proof of Theorem 2.6,
we know that there exist μc such that for μ ≥ μc, s

∗(t, μ) and sopt have the same
set of violations2. Suppose μ > μc. We may assume that sopt does not lie in the

interior of Ω as in that case y∗(t, μ) = �0 and there is nothing to show.
Using first-order approximation,

(2.26) s∗(t, μ) = sopt +
1

μ
Ψ+O(1/μ2)

and

(2.27)
|s∗(t, μ)|

h(|s∗(t, μ)|) =
|sopt|

h(|sopt|)
+

1

μ
Γ +O(1/μ2),

2Even though for μ ≥ μc the set of violations of s∗(t, μ) are the same, sopt is a limit point
of the sequence s∗(t, μ) as μ → ∞, and might have a larger set of violations. However, in our
case, as we increase μ, the problem becomes more constrained and therefore we expect the set
of violations to decrease. So we assume that sopt and s∗(t, μ), for μ ≥ μc, have the same set of

violations.
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where Ψ and Γ are placeholders for the corresponding first-order derivatives. Recall
from equation (2.9) that

s∗ =
|s∗|

th(|s∗|) (
m−k∑
i=1

wiw
T
i )b+

k∑
i=1

1

1 + t
μσ2

i
h(|s∗|)/|s∗|

viv
T
i

σ2
i

(b/μ+AJ
−→
1 ).

Substituting expansion

1

1 + t
μσ2

i
h(|s∗|)/|s∗| = 1− t

μσ2
i

h(|s∗|)/|s∗|+O(1/μ2)

in the second summand of the above expression yields that

s∗ =
|s∗|

th(|s∗|) (
m−k∑
i=1

wiw
T
i )b+

k∑
i=1

viv
T
i

σ2
i

AJ
−→
1 +

1

μ

k∑
i=1

viv
T
i

σ2
i

b

− t

μ

h(|s∗|)
|s∗|

k∑
i=1

viv
T
i

σ4
i

AJ
−→
1 +O(1/μ2).(2.28)

Substituting (2.26) and (2.27) into the equation (2.28), and equating coefficients
of 1/μ on both sides of the equality, we conclude that

Ψ =
1

t
Γ

m−k∑
i=1

wiw
T
i b+

k∑
i=1

viv
T
i

σ2
i

b− t
h(|sopt|)
|sopt|

k∑
i=1

viv
T
i

σ4
i

AJ
−→
1 .

Multiplying both sides of the above expression with AT
J =

∑
i uiσiv

T
i and using

orthogonality of vi’s to wi’s, we have

(2.29) AT
JΨ = AT

J

k∑
i=1

viv
T
i

σ2
i

b− t
h(|sopt|)
|sopt|

AT
J

k∑
i=1

viv
T
i

σ4
i

AJ
−→
1 .

From the definition of violation set J , we can conclude that the only rows of

S(AT s∗,
−→
1 ) that are nonzero are exactly the elements of J . Therefore, it suf-

fices to evaluate S(AT
J s

∗,
−→
1 ). Furthermore, because sopt is on the boundary of Ω

and J is the set of violations of both sopt and s∗,

(2.30) AT
J sopt =

−→
1 , and AT

J s
∗ ≥ −→

1 .

Therefore,

�0 ≤ AT
J s

∗ −−→
1 = AT

J (sopt +
1

μ
Ψ+O(1/μ2))−−→

1

= (AT
J sopt −

−→
1 ) +

1

μ
AT

JΨ+O(1/μ2)

=
1

μ
AT

J

k∑
i=1

viv
T
i

σ2
i

b− t

μ

h(|sopt|)
|sopt|

AT
J

k∑
i=1

viv
T
i

σ4
i

AJ
−→
1 +O(1/μ2),(2.31)

where (2.30) and (2.29) was used to conclude the third line.

Because y∗(t, μ) = μS(AT s∗(t, μ),
−→
1 ) and the nonzero elements of S(AT s∗(t, μ),−→

1 ) are given by S(AT
J s

∗(t, μ),
−→
1 ), we conclude that the nonzero elements of y∗(t, μ),
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for μ ≥ μc, are given by

μS(AT
J s

∗(t, μ),
−→
1 ) = AT

J s
∗(t, μ)−−→

1

= AT
J

k∑
i=1

viv
T
i

σ2
i

b− t
h(|sopt|)
|sopt|

AT
J

k∑
i=1

viv
T
i

σ4
i

AJ
−→
1 +O(1/μ)

= AT
J (AJA

T
J )

†b− t
h(|sopt|)
|sopt|

AT
J ((AJA

T
J )

†)2AJ
−→
1 +O(1/μ)

= A†
Jb− t

h(|sopt|)
|sopt|

A†
J (A

T
J )

†−→1 +O(1/μ),

where we used (2.31) for the second equality and the properties of the pseudo-inverse
for the last equality.

Corollary 2.11. In problem (1.8), for each t, there exist fixed large μc such that
for μ ≥ μc, the solution to the corresponding problem is given as follows:

Let J denote the set of violations of the maximizer of

sopt = argmax
s

{〈b, s〉 − tH(|s|)} subject to ÃT s ≤ −→
1 ,

where Ã is given by (2.3). Let ỹ be a column vector with 2n entries where n is the
number of columns of A. Moreover, those entries of ỹ whose index belong to J are
given by

ỹ(J) = Ã†
Jb− t

h(|sopt|)
|sopt|

Ã†
J (Ã

T
J )

†−→1 +O(1/μ),

and the other entries of ỹ are zero. Then the minimizer of problem (1.8) is given
by

y∗(t, μ) =
[
I | −I

]
ỹ.

Proof. From the Lagrangian dual correspondence in section 1, we know that the

solution of problem (1.8) is equal to μ · shrink(AT s∗,
−→
1 ) where s∗ is the solution of

(1.9). Now use the result of this section and the relation (2.4). �

3. The TCCS algorithm

In this section we introduce the TCCS algorithm. The TCCS algorithm consists
of two parts. The first part of the algorithm finds an approximate solution to the
constrained problem (2.1). This part is described in subsection 3.1. The second
part of the algorithm takes the result of the first part of the algorithm and then uses
the result developed in subsection 2.3 to yield an approximate solution to problem
(1.11). This part of the algorithm is described in subsection 3.2. Pseudo-codes for
the TCCS algorithm are provided in the appendix. Although we emphasize that
the TCCS algorithm finds an approximate solution to problem (1.11), numerical
experiments in section 4 show that the algorithm perfectly recovers the solution
when the solution is relatively sparse with respect to the number of measurements.

3.1. First part. For the first part of the TCCS algorithm we devise a fast algorithm
that gives an approximate solution for constrained problem (2.1). Other methods
could be used for this part of the TCCS algorithm. Nevertheless, we found the
algorithm described here to be very effective and fast for optimizing constrained
problems of form (2.1).
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The idea of the algorithm is to trace out an approximation to the path of sopt(τ ),
as τ decreases, which was described in section 2.2. We denote the approximate
path by s̃(τ ). Indeed to construct s̃(τ ), we proceed very similarly to the way the
trajectory sopt(τ ) was determined at the end of section 2.2. The only difference is
that whenever we hit a new face of polytope Ω, say at τi, we use Ji as proxy for Ki

and proceed. As a result, the trajectory of s̃(τ ) might be different than sopt(τ ). We
make this approximation to avoid cumbersome computations. This approximation
is somehow similar to the approximation that was made in [10]. The details of the
algorithm are provided below.

We initialize the algorithm by finding τ̃0 large enough so that

1

|b|h
−1(

|b|
τ̃0

)b

lies in the interior of Ω. Set s̃(τ̃0) to be equal to the above expression. Set J̃ = ∅
and τ = τ̃0. This completes the initialization of the algorithm. Next we go through
a loop described as follows.

Suppose τ = τ̃r, and J̃ = J̃r denotes the set of active constraints for s̃(τ̃r). Since

α(J̃r) is the projection of b on the set {s : AT
J̃r
s = 1}, we have that aTi

−→α (J̃r) = 0

for i ∈ J̃r. Therefore, when τ is decreasing from τ̃r and s̃(τ ) is moving along −→α (J̃r),

we have aTi s̃(τ ) = 1 for i ∈ J̃r. Thus, constraints given by J̃r continue to be active
for s̃(τ ).

Let L be the complement of set J̃r; that is, L = {1, . . . , n} \ J̃r. Let τ̃r+1 denote
the largest τ smaller than τ̃r such that the set of active constraints of

(3.1) s̃(τ ) = F (τ, J̃r)
−→α (J̃r) +

−→
β (J̃r) = s̃(τ̃r) +

(
F (τ, J̃r)− F (τ̃r, J̃r)

)−→α (J̃r)

is different than J̃r. From the discussion above, τ̃r+1 is the largest τ smaller than τ̃r
so that for some i ∈ L, aTi s̃(τ ) = 1, where s̃(τ ) is given by equation (3.1). Finding
τ̃r+1 is problem specific and depends on the function F (τ, J).

To find τ̃r+1, we first evaluate the smallest positive number, denoted by k, such
that

aTi

(
s̃(τ̃r) + k−→α (J̃r)

)
= 1

for some i ∈ L. Thus, k is the smallest positive number in the set{
1− aTi s̃(τ̃r)

aTi
−→α (J̃r)

}
i∈L

(such k always exist because we assumed that polytope Ω is bounded). Once k is
evaluated, τ̃r+1 is determined such that

(3.2) F (τ̃r+1, J̃r)− F (τ̃r, J̃r) = k.

For example, in the case of H(|s|) = |s|2/2 (see remark 2.9), equation (3.2) becomes

1

τ̃r+1
− 1

τ̃r
= k,

and in the case of H(|s|) =
√
1 + |s|2 (see remark 2.9), equation (3.2) becomes√√√√ 1 + |−→β (J̃r)|2

τ̃2r+1 − |−→α (J̃r)|2
−

√
1 + |−→β (J̃r)|2
τ̃2r − |−→α (J̃r)|2

= k.
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If τ̃r+1 < t, then

s̃(t) = s̃(τ̃r) +
(
F (t, J̃r)− F (τ̃r, J̃r)

)−→α (J̃r);

otherwise, we set τ = τ̃r+1 and J = J̃r+1 and repeat the above process.
In this way we get a sequence τ̃0 > τ̃1 > · · · . In general, this sequence is different

than the sequence (2.25), except at τ̃0 = τ0 and τ̃1 = τ1. Also note that, at each
step of the loop the rank of AT

J̃
strictly increases. Because of this, at τ = τ̃j , for

some j ≤ m, s̃(τ ) reaches an extreme point of Ω. For τ < τ̃j , s̃(τ ) stays at the same
extreme point, and the algorithm outputs the same result. Thus, the algorithm
goes through at most m loops. This feature makes this algorithm very efficient (in
particular when m � n) in comparison to other available algorithms for optimizing
problems of the form (2.1).

We also note that even though the first part of the algorithm outputs an approx-
imate solution s̃(t) to constrained problem (2.1), using KKT conditions it is easy
to verify whether s̃(t) is indeed the optimal solution sopt(t) or not.

3.2. Second part. In this subsection we explain how sopt(t) obtained in the first
part of the TCCS algorithm is used to obtain an approximate solution to problem
(1.11). Let yopt(t) denote the solution to problem (1.11). As μ → ∞, the solution
to problem (1.8), y∗(t, μ), provides a good approximate for yopt(t). Hence, in view
of Corollary 2.11, we find an approximation for yopt(t) using sopt(t) in the following
way:

Let J denote the set of violations of sopt(t). Suppose ỹopt is a column vector
with 2n entries where n is the number of columns of A. Set those entries of ỹopt
whose index belongs to J by

ỹopt(J) = Ã†
Jb− t

h(|sopt|)
|sopt|

Ã†
J (Ã

T
J )

†−→1 ,

and the other entries of ỹopt are set to zero. Now[
I | −I

]
ỹopt

provides a good approximation for yopt(t)

3.3. Application to compressed sensing. Observe that problem (1.11) reduces
to Basis Pursuit problem (1.2) when t = 0. Therefore, when t = 0, we expect the
TCCS algorithm to output a sparse solution for compressed sensing problem (1.1).
In section 4 we provide numerical evidence in support of this.

To summarize, the TCCS algorithm approaches the compressed sensing problem
(1.1) in the following way. We try to find an approximate optimizer for problem
(1.2). To that end, we generate the sequence τ0 > τ1 > · · · > τ� = 0 and iteratively
find approximate optimizers s̃(τi) to problem (1.11) with τi in place of t. Finally, we
use the result of Corollary 2.11 to find an approximate solution to problem (1.11).

One might question the necessity of introducing parameter μ in our methodology
to find a solution to Basis Pursuit problem (1.2). Indeed, the value of μ does not
appear in the TCCS algorithm (i.e. in the second part of the TCCS algorithm we
only make the assumption that μ is sufficiently large). Nevertheless, parameter μ
was important in establishing Corollary 2.11 and identifying a good approximate
for yopt(t) in subsection 3.2.
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On the other hand, introducing the parameter t (and eventually setting it equal
to 0), enables us to use a homotopy technique to find an approximate solution to
linear programming problem

(3.3) argmax
s

〈b, s〉 subject to −−→
1 ≤ AT s ≤ −→

1 .

4. Numerical results

In this section we compare the performance of the TCCS algorithm with the
LBSB algorithm [23], OMP algorithm [14,16,19] and FISTA [2]. It is important to
note that the TCCS and FISTA algorithm can solve the more general problem of
(1.11) (i.e. not only the Basis Pursuit problem (1.2), which corresponds to t = 0 in
(1.11)); whereas, LBSB and OMP algorithm can be applied only to problems (1.2)
and (1.1), respectively.

For the numerical experiments, we generate entries of the matrix A from i.i.d.
normal distributions with mean 0 and standard deviation 1. We also generate the
“true signal” ys with a given sparsity level. Define the sparsity level of vector ys to
be the percentage ratio of the number of nonzero components of ys with respect to
the number of measurements (i.e. m). That is,

sparsity level of ys =
# nonzero components of ys

m
× 100%.

In each setting we run 10 independent trials and report the average processing time
and the average relative error of each method for the 10 trials.

4.1. TCCS versus LBSB. Here we compare the performance of the TCCS algo-
rithm applied to the compressed sensing problem (i.e. t = 0) with the LBSB algo-
rithm to solve problem (1.2). The LBSB algorithm is one of the fastest methods
used for compressed sensing problems and in [23], extensive numerical experiments
comparing this method with respect to other methods were done.

In each test, we generate the true signal ys by first determining its support
(i.e. the nonzero entries) at random and then generate each entry of the support
using i.i.d. normal distributions with mean 0 and standard deviation 1. Vector b
is obtained via

b = Ays.

For the LBSB method, we set α = 10, λ = 0.4 and the maximum number of itera-
tions equal to 2000. The TCCS algorithm applied to compressed sensing problem
does not require any parameter to be set. In this subsection, relative error is defined
by

‖y − ys‖2
‖ys‖2

.

In Tables 1 and 2 we compare performance of LBSB algorithm and TCCS algo-
rithm when sparsity level is 2% and 10%, respectively.

For the numerical experiments that are presented in Tables 1 and 2, we chose
matrix A to be very narrow and wide, to highlight the advantage of the TCCS
algorithm over the LBSB algorithm in this regime, both in processing time and
relative error of the solution. Remarkably, as shown in Table 1, when sparsity
level is low, the TCCS algorithm perfectly recovers the sparse solution in all 10
independent trials.
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Table 1. The comparison of the performance of the TCCS algo-
rithm and the LBSB algorithm. “Time” and “error”, respectively,
refer to processing time (in seconds) and relative error for each
method. Here, sparsity level is 2% and each row is the result of 10
independent trials.

m n LBSB time LBSB error TCCS time TCCS error
200 10000 5.65 7.04e-03 0.13 1.07e-15
200 50000 56.71 1.21e-01 0.68 1.22e-15
200 100000 114.34 4.16e-01 1.55 9.03e-16

400 10000 11.22 1.66e-03 0.51 2.00e-15
400 50000 104.82 2.83e-02 2.65 1.53e-15
400 100000 229.97 1.11e-01 6.04 1.23e-15

Table 2. The comparison of the performance of the TCCS algo-
rithm and the LBSB algorithm. “Time” and “error”, respectively,
refer to processing time (in seconds) and relative error for each
method. Here, sparsity level is 10% and each row is the result of
10 independent trials.

m n LBSB time LBSB error TCCS time TCCS error
200 10000 11.36 5.81e-02 2.22 2.62e-03
200 50000 56.72 3.59e-01 32.10 7.54e-01
200 100000 115.50 4.27e-01 71.05 3.49e-01

400 10000 22.23 3.80e-03 4.60 2.03e-15
400 50000 113.28 1.57e-01 83.21 4.77e-01
400 100000 230.65 3.62e-01 286.82 6.62e-01

In the next set of experiments, for different values of m and n, we compare the
performance of the LBSB algorithm and the TCCS algorithm over a different range
of sparsity levels. The results are shown in Figures 1, 2 and 3.

As can be seen from the figures, for low sparsity levels, the TCCS algorithm
is again both much faster and more accurate in recovering the solution than the
LBSB algorithm. Indeed, as observed earlier, for low sparsity levels, the TCCS
algorithm perfectly recovers the sparse solution in all independent trials. For higher
sparsity levels, the relative error of the TCCS algorithm and the LBSB algorithm
is comparable. At these sparsity levels, the TCCS algorithm performs faster than
the LBSB algorithm for very small ratios m/n, whereas, the converse becomes true
for higher ratios of m/n (i.e., compare the right panels in Figure 2). It is also
noteworthy that as the sparsity level increases, the TCCS algorithm exhibits a
sharp phase transition in the success rate of recovery of the sparse solution.

4.2. TCCS versus OMP. Here we numerically investigate the difference between
the TCCS algorithm applied to the compressed sensing problem (i.e. t = 0) and
the OMP algorithm to solve problem (1.1). The OMP algorithm has been noted for
its speed and ease of implementation. Furthermore, [19] provides some theoretical
and numerical evidence for the reliability of the OMP algorithm.
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Figure 1. Comparison of the performance of the LBSB algo-
rithm and the TCCS algorithm in terms of processing time and
relative error for different sparsity levels. Here m = 100 and
n = 2000, 4000, 8000. The left panels show semilog plot of the
relative error, while the right panels show plot of processing time
(in seconds). Each data point is the average of 10 independent
trials.

It is important to note that the methodologies of these two algorithms are quite
different despite some superficial similarities in their pseudo-codes. The OMP al-
gorithm is a greedy based method that solves the compressed sensing problem by
iteratively increasing the support of y with components whose correlation to the
current residual is maximum. On the other hand, the TCCS algorithm uses a
homotopy approach to trace the optimal solution of the dual problem.

In this subsection vector b is obtained via

b = Ays,
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Figure 2. Comparison of the performance of the LBSB algo-
rithm and the TCCS algorithm in terms of processing time and
relative error for different sparsity levels. Here m = 200 and
n = 2000, 4000, 8000. The left panels show semilog plot of the
relative error, while the right panels show plot of processing time
(in seconds). Each data point is the average of 10 independent
trials.

and relative error is defined by
‖y − ys‖2
‖ys‖2

.

We run two sets of experiments similar to the numerical experiments done in [4].
Because both the TCCS and the OMP algorithm run very fast, we only present the
relative error of the two algorithms. In the first experiment, we generate the true
signal ys in the same fashion as in subsection 4.1. The results are shown in Figure
4.

Although the OMP algorithm outperforms the TCCS algorithm in Figure 4, we
will see that this is not the case in general. For the second set of experiments, we
generate the true signal ys by first determining its support (i.e. the nonzero entries)
at random and then set each entry of the support to be +1 or −1 at random with
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Figure 3. Comparison of the performance of the LBSB algo-
rithm and the TCCS algorithm in terms of processing time and
relative error for different sparsity levels. Here m = 400 and
n = 2000, 4000, 8000. The left panels show semilog plot of the
relative error, while the right panels show plot of processing time
(in seconds). Each data point is the average of 10 independent
trials.

the same probability. The results are shown in Figure 5. As can be seen, the TCCS
algorithm outperforms the OMP algorithm in this example.

4.3. TCCS versus FISTA. Here we compare the performance of the TCCS al-
gorithm with FISTA algorithm (with constant stepsize) to solve problem (1.5) with
t = 0.1 and t = 0.01. FISTA is a very efficient algorithm that uses the forward-
backward splitting method to solve a general class of optimization problems includ-
ing (1.5). FISTA can be thought as an extension of FPC [12] (also called proximal
gradient method (PGM)), as it applies the prox-operator at a specific linear combi-
nation of the previous two iterates. For the ease of reference, the outline of FISTA
algorithm with constant stepsize applied to problem (1.5) is presented in Algorithm
1.
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Figure 4. Comparison of the relative error of the OMP algorithm
and the TCCS algorithm for different sparsity levels. Here the en-
tries of the support of the true signal are chosen from i.i.d. normal
distributions. Each data point is the average of 10 independent
trials.

Algorithm 1: The FISTA algorithm with constant stepsize applied to LASSO
problem (1.5).

Input: A, b and N .
Set L = λmax(A

TA)/t

Set y1 = z0 = �0, t1 = 1

for k = 1, . . . , N do
zk = shrink(yk − 1

tLA
T (Ayk − b), 1

L )

tk+1 =
1+

√
1+4t2k
2

yk+1 = zk +
(

tk−1
tk+1

)
(zk − zk−1)

end
return yN
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Figure 5. Comparison of the relative error of the OMP algorithm
and the TCCS algorithm for different sparsity levels. Here the
entries of the support of the true signal are chosen from +1 or −1
at random. Each data point is the average of 10 independent trials.

In each test, ys is generated in the same way as in subsection 4.1. However,
vector b is obtained via

b = A(ys + ε1) + ε2,

where ε1 and ε2 are vectors whose entries are generated using i.i.d. normal distri-
butions with means 0 and standard deviations, respectively, σ1 and σ2 (i.e. both
the signal and the measurements are corrupted with Gaussian white noise). In
the experiments of this subsection, we set σ1 = 5 × 10−5 and σ2 = 10−5. In this
subsection, the relative error is defined by

‖y − y∗‖2
‖y∗‖2

,

where y∗ is the proxy for the solution of (1.5) obtained by allowing FISTA algorithm
to run for many iterations (e.g. N = 5000).
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Figures 6 and 7 compare the performance of the FISTA algorithm (with the
number of iterations N = 200) and the TCCS algorithm for different values of m
and n and over different range of sparsity levels.
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Figure 6. Comparison of the performance of the FISTA algo-
rithm and the TCCS algorithm in terms of processing time and
relative error for different sparsity levels to solve problem (1.5)
with t = 0.1. The left panels show the semilog plot of the relative
error, while the right panels show the plot of processing time (in
seconds). Each data point is the average of 10 independent trials.

As it can be seen from the figures the performance of the TCCS algorithm
compares well with the FISTA algorithm, specially for low sparsity levels. Clearly
the relative error of FISTA algorithm would decrease if the number of iterations is
increased; however, that would increase the processing time. In these experiments,
the number of iterations N = 200 was chosen for FISTA algorithm, so that we can
get a good comparison to the TCCS algorithm for both the relative error and the
processing time.
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Figure 7. Comparison of the performance of the FISTA algo-
rithm and the TCCS algorithm in terms of processing time and
relative error for different sparsity levels to solve problem (1.5)
with t = 0.01. The left panels show semilog plot of the relative
error, while the right panels show plot of processing time (in sec-
onds). Each data point is the average of 10 independent trials.

5. Conclusion

In this paper we developed an algorithm for finding the approximate solution
to problems of the form (1.11). In particular, by setting t = 0, our algorithm
outputs a good approximate for the solution to the compressed sensing problem
(1.1). Numerical results show that the algorithm perfectly recovers the solution
to the compressed sensing problem when it is relatively sparse with respect to the
number of measurements. For this regime of sparsity, the algorithm recovers the
solution extremely fast. Numerical results are also presented to show the advantages
of the algorithm to solve problems such as the LASSO problem.

Another advantage of our algorithm is that it is parameter free except a tolerance
parameter that is due to numerical machine precision. In many other optimization
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methods, one needs to introduce extra parameters whose value greatly affect the
performance of the algorithm.

We also observed a sharp phase transition in the success rate of recovery of the
solution of the compressed sensing problem by our algorithm as the sparsity of
the solution varies. This suggests that a theoretical analysis should be conducted
relating to this phenomena.

Appendix A. Pseudo-code

In this section we provide a pseudo-code for the TCCS algorithm when H(|s|) =
|s|2/2 and t ≥ 0, Algorithm 2, and for t = 0, Algorithm 3. Indeed, Algorithm
3 is an easy adaptation of Algorithm 2. The output of Algorithms 2 and 3 yiels
an approximate solution to the LASSO problem (1.5) and the compressed sensing
problem (1.1), respectively.

Some remarks regarding the implementation of the pseudo-codes are in order.
In each iteration of the algorithms we need to compute α, which is the projection

of b on the space {u : AT
J u =

−→
1 }. There are several ways to do this. One way

is to use the formula b− ÃJ(Ã
T
J ÃJ)

†ÃT
J b and find the pseudo-inverse via the SVD

decomposition. Another way is to use a QR decomposition to compute the least
square solution. For example, we can use the expression α = b−AJ ((A

T
JAJ)\(AT

J b))
in Matlab for this purpose (i.e., note that AT

JAJ is a square matrix, and therefore,
backslash operator in Matlab yields the least square solution).

Also observe that in the pseudo-codes, we introduced a tolerance parameter ε.
Due to numerical machine precision, we need to use lines

‖α‖∞ < ε and J = {i : |aTi s− 1| < ε},
in place of lines

α == 0 and J = {i : aTi s == 1}.
The pseudo-codes provided here are meant to clarify the ideas and they do not

necessarily implement the TCCS algorithm in the most efficient way. In particular,
one could avoid introducing the matrix Ã and work with the matrix A throughout
the algorithm.
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Algorithm 2: The TCCS algorithm when H(|s|) = |s|2/2 and t ≥ 0. The
output yopt of this pseudo-code yields approximate solution to problem (1.5).
Also, sopt is the approximate solution to (1.10). Note that ε is not a real
parameter of the algorithm, it is rather a tolerance parameter that is due to
numerical machine precision.

Input: A, t, b, and ε.
First part: Ã = [A | −A]

Choose τ0 large enough so that ÃT (b/τ0) ≤ 1.

J = ∅
s = b/τ0
while r = 0, . . . do

α = projection of b on the space {u : AT
J u =

−→
1 }.

if ‖α‖∞ < ε then
// s has reached an extreme point of polytope at τr and

will not move thereafter.

sopt = s

break

end

L = {1, . . . , n} \ Jr
v = (

−→
1 − ÃT

Ls)./Ã
T
Lα // entrywise division.

k = minimum positive entry of v.
// k is the smallest positive number such that aTi (s+ kα) = 1

for some i ∈ L.

Find τr+1 such that 1
τr+1

− 1
τr

= k.

if τr+1 < t then

k̃ = 1
t −

1
τr

sopt = s+ k̃α

break

end

s = s+ kα

J = {i : |aTi s− 1| < ε}
end

Second part: ỹopt = �0

ỹopt(J) = Ã†
Jb− tÃ†

J(Ã
T
J )

†−→1 // set entries of ỹopt that belong to J.

yopt = [I | − I]ỹopt
return yopt
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Algorithm 3: The TCCS Algorithm for compressed sensing problems. This
algorithm is an adaptation of Algorithm 2 when t = 0. The output of this
pseudo-code yields an approximate solution to problem (1.1). Also, sopt is
the approximate solution to (3.3). Note that ε is not a real parameter of the
algorithm, it is rather a tolerance parameter that is due numerical machine
precision.

Input: A, b, and ε.
First part: Ã = [A | −A]

Choose τ0 large enough so that ÃT (b/τ0) ≤ 1.

J = ∅
s = b/τ0
while r = 0, . . . do

α = projection of b on the space {u : AT
J u =

−→
1 }.

if ‖α‖∞ < ε then
// s has reached an extreme point of polytope at τr and

will not move thereafter.

sopt = s

break

end

L = {1, . . . , n} \ Jr
v = (

−→
1 − ÃT

Ls)./Ã
T
Lα // entrywise division.

k = minimum positive entry of v.
// k is the smallest positive number such that aTi (s+ kα) = 1

for some i ∈ L.

Find τr+1 such that 1
τr+1

− 1
τr

= k.

s = s+ kα

J = {i : |aTi s− 1| < ε}
end

Second part: ỹopt = �0

ỹopt(J) = Ã†
Jb // set entries of ỹopt that belong to J.

yopt = [I | − I]ỹopt
return yopt
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