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A Time Delay Model for Load Balancing with
Processor Resource Constraints

Zhong Tang1 , J. Douglas Birdwell1, John Chiasson1, Chaouki T. Abdallah2 and Majeed M. Hayat2

Abstract–A deterministic dynamic nonlinear time-delay
systems is developed to model load balancing in a cluster
of computer nodes used for parallel computations. This
model refines a model previously proposed by the authors
to account for the fact that the load balancing operation in-
volves processor time which cannot be used to process tasks.
Consequently, there is a trade-off between using processor
time/network bandwidth and the advantage of distributing
the load evenly between the nodes to reduce overall process-
ing time.
The new model is shown to be self consistent in that the

queue lengths cannot go negative and the total number of
tasks in all the queues are conserved (i.e., load balancing
can neither create nor lose tasks). It is shown that the
proposed model is (Lyapunov) stable for any input, but not
necessarily asymptotically stable. Experimental results are
presented and compared with the predicted results from the
analytical model. In particular, simulations of the models
are compared with an experimental implementation of the
load balancing algorithm on a parallel computer network.
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I. Introduction

Parallel computer architectures utilize a set of compu-
tational elements (CE) to achieve performance that is not
attainable on a single processor, or CE, computer. A com-
mon architecture is the cluster of otherwise independent
computers communicating through a shared network. To
make use of parallel computing resources, problems must
be broken down into smaller units that can be solved in-
dividually by each CE while exchanging information with
CEs solving other problems. For example, the Federal Bu-
reau of Investigation (FBI) National DNA Index System
(NDIS) and Combined DNA Index System (CODIS) soft-
ware are candidates for parallelization. New methods de-
veloped by Wang et al. [1][2][3][4] lead naturally to a par-
allel decomposition of the DNA database search problem
while providing orders of magnitude improvements in per-
formance over the current release of the CODIS software.

Effective utilization of a parallel computer architecture
requires the computational load to be distributed more or
less evenly over the available CEs. The qualifier “more
or less” is used because the communications required to
distribute the load consume both computational resources
and network bandwidth. A point of diminishing returns
exists.

Distribution of computational load across available re-
sources is referred to as the load balancing problem in
the literature. Various taxonomies of load balancing al-
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gorithms exist. Direct methods examine the global distri-
bution of computational load and assign portions of the
workload to resources before processing begins. Iterative
methods examine the progress of the computation and the
expected utilization of resources, and adjust the workload
assignments periodically as computation progresses. As-
signment may be either deterministic, as with the dimen-
sion exchange/diffusion [5] and gradient methods, stochas-
tic, or optimization based. A comparison of several de-
terministic methods is provided by Willeback-LeMain and
Reeves [6]. Approaches to modeling and static load bal-
ancing are given in [7][8][9].
To adequately model load balancing problems, several

features of the parallel computation environment should
be captured: (1) The workload awaiting processing at each
CE; (2) the relative performances of the CEs; (3) the com-
putational requirements of each workload component; (4)
the delays and bandwidth constraints of CEs and network
components involved in the exchange of workloads and,
(5) the delays imposed by CEs and the network on the ex-
change of measurements. A queuing theory [10] approach
is well-suited to the modeling requirements and has been
used in the literature by Spies [11] and others. However,
whereas Spies assumes a homogeneous network of CEs and
models the queues in detail, the present work generalizes
queue length to an expected waiting time, normalizing to
account for differences among CEs, and aggregates the be-
havior of each queue using a continuous state model.
The present work focuses upon the effects of delays in

the exchange of information among CEs, and the con-
straints these effects impose on the design of a load bal-
ancing strategy. Preliminary results by the authors ap-
pear in [12][13][14][15][16][17][18]. An issue that was not
considered in this previous work is the fact that the load
balancing operation involves processor time which is not
being used to process tasks. Consequently, there is a trade-
off between using processor time/network bandwidth and
the advantage of distributing the load evenly between the
nodes to reduce overall processing time. The fact that the
simulations of the model in [18] showed the load balanc-
ing to be carried out faster than the corresponding exper-
imental results motivated the authors to refine the model
to account for processor constraints. A new deterministic
dynamic time-delay system model is developed here to cap-
ture these constraints. The model is shown to be self con-
sistent in that the queue lengths cannot go negative and
the total number of tasks in all the queues and the net-
work are conserved (i.e., load balancing can neither create
nor lose tasks). In contrast to the results in [18] where it
was analytically shown the systems was always asymptoti-
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cally stable, the new model is only (Lyapunov) stable and
asymptotic stability must be insured by judicious choice of
the feedback. Simulations of the nonlinear model are com-
pared with data from an experimental implementation of
the load balancing algorithm on a parallel computer net-
work.
Section II presents our approach to modeling the com-

puter network and load balancing algorithms to incorpo-
rate the presence of delay in communicating between nodes
and transferring tasks. Section III shows that the pro-
posed model correctly predicts that the queue lengths can-
not go negative and that the total number of tasks in all
the queues are conserved by the load balancing algorithm.
This section ends with a proof of (Lyapunov) stability of
the model. Section IV presents how the model parame-
ters were obtained and our experimental setup. Section
V presents a comparison of simulations of the nonlinear
model with the actual experimental data. Finally, Section
VI is a summary and conclusion of the present work and a
discussion of future work.

II. Mathematical Model of Load Balancing

In this section, a nonlinear continuous time models is de-
veloped to model load balancing among a network of com-
puters. To introduce the basic approach to load balancing,
consider a computing network consisting of n computers
(nodes) all of which can communicate with each other. At
start up, the computers are assigned an equal number of
tasks. However, when a node executes a particular task
it can in turn generate more tasks so that very quickly
the loads on various nodes become unequal. To balance
the loads, each computer in the network sends its queue
size qj(t) to all other computers in the network. A node
i receives this information from node j delayed by a finite
amount of time τij ; that is, it receives qj(t − τij). Each
node i then uses this information to compute its local es-
timate1 of the average number of tasks in the queues of
the n computers in the network. In this work, the simple

estimator
³Pn

j=1 qj(t− τij)
´
/n (τii = 0) which is based

on the most recent observations is used. Node i then com-
pares its queue size qi(t) with its estimate of the network

average as
³
qi(t)−

³Pn
j=1 qj(t− τij)

´
/n
´
and, if this is

greater than zero, the node sends some of its tasks to the
other nodes. If it is less than zero, no tasks are sent (see
Figure 1). Further, the tasks sent by node i are received
by node j with a delay hij . The controller (load balancing
algorithm) decides how often and fast to do load balancing
(transfer tasks among the nodes) and how many tasks are
to be sent to each node.
As just explained, each node controller (load balancing

algorithm) has only delayed values of the queue lengths of
the other nodes, and each transfer of data from one node
to another is received only after a finite time delay. An
important issue considered here is the effect of these delays
on system performance. Specifically, the model developed

1It is an estimate because at any time, each node only has the
delayed value of the number of tasks in the other nodes.
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Fig. 1. Graphical description of load balancing. This bar graph shows
the load for each computer vs. node of the network. The thin
horizontal line is the average load as estimated by node 1. Node
1 will transfer (part of) its load only if it is above its estimate of
the average. Also, it will only transfer to nodes that it estimates
are below the node average.

here represents our effort to capture the effect of the delays
in load balancing techniques as well as the processor con-
straints so that system theoretic methods could be used to
analyze them.

A. Basic Model

The basic mathematical model of a given computing
node for load balancing is given by

dxi(t)

dt
= λi − µi (1− ηi(t))− Um(xi)ηi(t)

+
nX
j=1

pij
tpi
tpj

Um(xj(t− hij))ηj(t− hij) (1)

pij > 0, pjj = 0,
nX
i=1

pij = 1

where

Um(xi) = Um0 > 0 if xi > 0

= 0 if xi ≤ 0
In this model we have
• n is the number of nodes.
• xi(t) is the expected waiting time experienced by a task
inserted into the queue of the ith node. With qi(t) the
number of tasks in the ith node and tpi the average time
needed to process a task on the ith node, the expected
(average) waiting time is then given by xi(t) = qi(t)tpi .
Note that xj/tpj = qj is the number of tasks in the node j
queue. If these tasks were transferred to node i, then the
waiting time transferred is qjtpi = xjtpi/tpj , so that the
fraction tpi/tpj converts waiting time on node j to waiting
time on node i.
• λi ≥ 0 is the rate of generation of waiting time on the
ith node caused by the addition of tasks (rate of increase
in xi)
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• µi ≥ 0 is the rate of reduction in waiting time caused
by the service of tasks at the ith node and is given by
µi ≡ (1× tpi) /tpi = 1 for all i if xi(t) > 0, while if xi(t) = 0

then µi , 0, that is, if there are no tasks in the queue, then
the queue cannot possibly decrease.
• ηi = 1 or 0 is the control input which specifies whether
tasks (waiting time) are processed on a node or tasks (wait-
ing time) are transferred to other nodes.
• Um0 is the limit on the rate at which data can be trans-
mitted from one node to another and is basically a band-
width constraint.
• pijUm(xj)ηj(t) is the rate at which node j sends waiting
time (tasks) to node i at time t where pij > 0,

Pn
i=1 pij = 1

and pjj = 0. That is, the transfer from node j of ex-

pected waiting time (tasks)
R t2
t1

Um(xj)ηj(t)dt in the inter-

val of time [t1, t2] to the other nodes is carried out with

the ith node being sent the fraction pij
R t2
t1

Um(xj)ηj(t)dt

of this waiting time. As
Pn

i=1

³
pij
R t2
t1

Um(xj)ηj(t)dt
´

=
R t2
t1

Um(xj)ηj(t)dt, this results in removing all of the

waiting time
R t2
t1

Um(xj)ηj(t)dt from node j.

• The quantity −pijUm(xj(t − hij))ηj(t − hij) is the rate
of transfer of the expected waiting time (tasks) at time t
from node j by (to) node i where hij (hii = 0) is the time
delay for the task transfer from node j to node i.
• The factor tpi/tpj converts the waiting time from node j
to waiting time on node i

In this model, all rates are in units of the rate of change of
expected waiting time, or time/time which is dimensionless.
As ηi = 1 or 0, node i can only send tasks to other nodes
and cannot initiate transfers from another node to itself. A
delay is experienced by transmitted tasks before they are
received at the other node. Model (1) is the basic model,
but one important detail remains unspecified, namely the
exact form pji for each sending node i. One approach is to
choose them as constant and equal

pji = 1/(n− 1) for j 6= i and pii = 0 (2)

where it is clear that pji > 0,
Pn

j=1 pji = 1 . Another
approach is given in section IV below.

A.1 Control Law

The information available to use in a feedback law at
each node i is the value of xi(t) and the delayed values
xj(t−τij) (j 6= i) from the other nodes. Let τij (τii = 0) de-
note the time delay for communicating the expected wait-
ing time xj from node j to node i. These communication
are much smaller than the corresponding data transfer de-
lays hij . Define

xi avg ,

 nX
j=1

xj(t− τij)

 /n

to be the local average which is the ith node’s estimate of
the average of all the nodes. (This is an only an estimate

due to the delays). Further, define

yi(t) , xi(t)−
Pn

j=1 xj(t− τij)

n

to be the expected waiting time relative to the local average
estimate on the ith node.

A simple control law one might consider is

ηi(t) = h (yi(t)) (3)

where

yi(t) = xi(t)−
Pn

j=1 xj(t− τij)

n

and h(·) is a hysteresis function given by

h(y) = 1 if y > y0

= 1 if 0 < y < y0 and ẏ > 0

= 0 if 0 < y < y0 and ẏ < 0

= 0 if y < 0.

The control law basically states that if the ith node output

xi(t) is above the local average
³Pn

j=1 xj(t− τij)
´
/n by

the threshold amount y0, then it sends data to the other
nodes, while if it is less than the local average nothing
is sent. The hysteresis loop is put in to prevent chatter-
ing. (In the time interval [t1, t2], the j

th node receives the

fraction
R t2
t1

pji
¡
tpi/tpj

¢
Um(xi)ηi(t)dt of transferred wait-

ing time
R t2
t1

Um(xi)ηi(t)dt delayed by the time hij .)
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Fig. 2. Hysteresis/Saturation Function

III. Model Consistency and Stability

It is now shown that the open loop model is consistent
with actual working systems in that the queue lengths can-
not go negative and the load balancing algorithm cannot
create or lose tasks, it can only move then between nodes.

A. Non Negativity of the Queue Lengths

To show the non negativity of the queue lengths, recall
that the queue length of each node is given by qi(t) =
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xi(t)/tpi . The model is rewritten in terms of these quanti-
ties as

d

dt

³
xi(t)/tpi

´
=

λi − µi (1− ηi(t))

tpi
− 1

tpi
Um(xi)ηi(t)

+
nX
j=1

pij
tpj

Um(xj(t− hij))ηj(t− hij). (4)

Given that xi(0) > 0 for all i, it follows from the right-
hand side of (4) that qi(t) = xi(t)/tpi ≥ 0 for all t ≥ 0
and all i. To see this, suppose without loss of generality
that qi(t) = xi(t)/tpi is the first queue to go to zero, and
let t1 be the time when xi(t1) = 0. At the time t1, λi −
µi (1− ηi(t)) = λi ≥ 0 as µi(xi) = 0 if xi = 0. Also,Pn

j=1
pij
tpj

Um(xj(t−hij))ηj(t−hij) ≥ 0 as ηj ≥ 0. Further,
the term Um(xi) = 0 for xi ≤ 0. Consequently

d

dt

³
xi(t)/tpi

´
≥ 0 for xi = 0

and thus the queues cannot go negative.

B. Conservation of Queue Lengths

It is now shown that the total number of tasks in all the
queues and the network are conserved. To do so, sum up
equations (4) from i = 1, ..., n to get

d

dt

Ã
nX
i=1

qi(t)

!
=

nX
i=1

µ
λi − µi(xi) (1− ηi)

tpi

¶
(5)

−
nX
i=1

Um(xi(t))

tpi
ηi +

nX
i=1

nX
j=1

pij
tpj

Um(xj(t− hij))ηj(t− hij)

which is the rate of change of the total queue lengths on all
the nodes. However, the network itself also contains tasks.
The dynamic model of the queue lengths in the network is
given by

d

dt
qneti(t) = −

nX
j=1

pij
tpj

Um(xj(t− hij))ηj(t− hij)

+
nX
j=1

pij
tpj

Um(xj(t))ηj(t). (6)

Here qneti is the number of tasks put on the network that
are being sent to node i. This equation simply says that
the jth node is putting tasks on the network to be sent to
node i at the rate

pij
tpj

Um(xj(t))ηj(t) while the i
th node is

taking these tasks from node j off the network at the rate
− pij

tpj
Um(xj(t− hij))ηj(t− hij). Summing (6) over all the

nodes, one obtains

d

dt

Ã
nX
i=1

qneti(t)

!
= −

nX
i=1

nX
j=1

pij
tpj

Um(xj(t− hij))ηj(t− hij)

+
nX
i=1

nX
j=1

pij
tpj

Um(xj(t))ηj(t)

= −
nX
i=1

nX
j=1

pij
tpj

Um(xj(t− hij))ηj(t− hij)

+
nX
j=1

Um(xj(t))ηj(t)

tpj
. (7)

Adding (5) and (7), one obtains the conservation of queue
lengths given by

d

dt

nX
i=1

³
qi(t) + qneti(t)

´
=

nX
i=1

µ
λi − µi (1− ηi)

tpi

¶
. (8)

In words, the total number of tasks which are in the sys-
tem (i.e., in the nodes and/or in the network) can increase
only by the rate of arrival of tasks

Pn
i=1 λi/tpi at all the

nodes, or similarly, decrease by the rate of processing of
tasks

Pn
i=1 µi (1− ηi) /tpi at all the nodes. The load bal-

ancing itself cannot increase or decrease the total number
of tasks in all the queues.

C. Stability of the Model

Combining the results of the previous two subsections,
one can show Lyapunov stability of the model. Specifically,
we have
Theorem: Given the system described by (1) and (6)

with λi = 0 for i = 1, ..., n and initial conditions xi(0) ≥ 0,
then the system is Lyapunov stable for any choice of the
switching times of the control input functions ηi(t).
Proof: First note that the qneti are non negative as

qneti(t) =
nX
j=1

pij
tpj

ÃZ t

t−hij
Um(xj(τ))ηj(τ)dτ

!
≥ 0. (9)

By the non-negativity property of the qi, the linear function

V
³
qi(t), qneti(t)

´
,

nX
i=1

³
qi(t) + qneti(t)

´
is a positive definite function. Under the conditions of the
theorem, equation (8) becomes

d

dt

nX
i=1

³
qi(t) + qneti(t)

´
= −

nX
i=1

µi(qi/tpi)

tpi
(1− ηi) (10)

which is negative semi-definite. By standard Lyapunov the-
ory (e.g., see [19]), the system is stable.

D. Nonlinear Model with Non Constant pij

The model (1) did not have the pij specified explic-
itly. For example, they can be considered constant as
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specified by (2). However, it could be useful to use the
local information of the waiting times xi(t), i = 1, .., n
to set their values. Recall that pij is the fraction ofR t2
t1

Um(xj)ηj(t)dt in the interval of time [t1, t2] that node j

allocates (transfers) to node i and conservation of the tasks
requires pij > 0,

Pn
i=1 pij = 1 and pjj = 0. The quantity

xi(t−τji)−xavgj represents what node j estimates the wait-
ing time in the queue of node i is with respect to the local
average of node j. If queue of node i is above the local
average, then node j does not send tasks to it. Therefore
sat
¡
xavgj − xi(t− τji)

¢
is an appropriate measure by node

j as to how much node i is below the local average. Node j
then repeats this computation for all the other nodes and
then portions out its tasks among the other nodes accord-
ing to the amounts they are below the local average, that
is,

pij =
sat
¡
xavgj − xi(t− τji)

¢X
i Ä i6=j

sat
¡
xavgj − xi(t− τji)

¢ . (11)

All pij are defined to be zero, and no load is transferred, if

the denominator
X

i Ä i6=j
sat
¡
xavgj − xi(t− τji)

¢
= 0. This is

illustrated in Figure 3.
Remark If the denominatorX

i Ä i6=j
sat

³
xavgj − xi(t− τji)

´
is zero, then xavgj − xi(t− τji) ≤ 0 for all i 6= j. However,
by definition of the average,X

i Ä i6=j

³
xavgj − xi(t− τji)

´
+ xavgj − xj(t)

=
X
i

³
xavgj − xi(t− τji)

´
= 0

which implies

xavgj − xj(t) = −
X

i Ä i6=j

³
xavgj − xi(t− τji)

´
> 0.

That is, if the denominator is zero, the node j is not greater
than the local average and so it is therefore not sending out
any tasks.

IV. Model Parameters and Experimental Setup

A. Model Parameters

In this section, the determination of the model param-
eters is discussed. Experiments were performed to deter-
mine the value of Um0 and the threshold y0. The top plot in
Figure 4 is the experimentally determined time to transfer
data from one node to another in microseconds as function
of message size in bytes. Each host measures the aver-
age, minimum and maximum times required to exchange
data between itself and every other node in the parallel
virtual machine (PVM) environment. The node starts the
timer when initiating a transfer and stops the timer when
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it receives the data back, so the round-trip transfer time is
measured. This also avoids the problem of synchronizing
clocks on two different machines. The data sizes vary from
4 bytes to 4 Mbytes. In order to ensure that anomalies in
message timings are minimized the tests are repeated 20
times for each message size.
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Fig. 4. Top: Round trip time vs. amount of data transfered in bytes.
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The bottom plot in Figure 4 is the experimentally deter-
mined bandwidth in Mbps versus the message size in bytes.
Based on this data, the threshold for the size of the data
transfer could be chosen to be less than 4 × 104 bytes so
that this data is transferred at a bandwidth of about 400
Mbps. Messages of larger sizes won’t improve the band-
width. Meanwhile, very high bandwidth means the system
must yield computing time for communication time. Here
the threshold is chosen to be 4×103 bytes since, as the top
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of Figure 4 shows, this is a trade-off between bandwidth
and transfer time. With a typical task to be transferred of
size 400 bytes/task (3200 bits/task), this means that the
threshold is 10 tasks. Further, the hysteresis threshold y0
is given by

y0 = 10× tpi,

while the bandwidth constraint Um0 is given by

Um0
tpi

=
400× 106 bps
3200 bits/task

= 12.5× 104 tasks/second

Um0 = 12.5× 104 × tpi
(waiting-time) seconds

second

B. Experimental Setup of the Parallel Machine

A parallel machine has been built as an experimental
facility for evaluation of load balancing strategies. A root
node communicates with k groups of computer networks.
Each of these groups is composed of n nodes (hosts) holding
identical copies of a portion of the database. (Any pair of
groups correspond to different databases, which are not
necessarily disjoint. A specific record is in general stored
in two groups for redundancy to protect against failure of
a node.) Within each node, there are either one or two
processors. In the experimental facility, the dual processor
machines use 1.6 GHz Athlon MP processors, and the single
processor machines use 1.33 GHz Athlon processors. All
run the Linux operating system. Our interest here is in the
load balancing in any one group of n nodes/hosts.
The database is implemented as a set of queues with

associated search engine threads, typically assigned one
per node of the parallel machine. Due to the structure
of the search process, search requests can be formulated
for any target profile and associated with any node of the
index tree. These search requests are created not only
by the database clients; the search process itself also cre-
ates search requests as the index tree is descended by any
search thread. This creates the opportunity for parallelism;
search requests that await processing may be placed in any
queue associated with a search engine, and the contents
of these queues may be moved arbitrarily among the pro-
cessing nodes of a group to achieve a balance of the load.
This structure is shown in Figure 5. An important point
is that the actual delays experienced by the network traf-
fic in the parallel machine are random. Experiments were
preformed, the resulting time delays measured and these
values were used in the simulation for comparison with the
experiments.

V. Simulations and Experiments

Here a representative experiment is performed to indi-
cate the effects of time delays in load balancing. The ex-
periment consists of carrying out the load balancing once
at a fixed time (open loop) in order to facilitate a compari-
son with the responses obtained from a simulation based on
the model (1)(11). Note that by doing the experiment open
loop with a single load balance time, the (random) delays
can then be measured after the data is collected and then
used in the simulations.

Fig. 5. A depiction of multiple search threads in the database in-
dex tree. To even out the search queues, load balancing is done
between the nodes (hosts) of a group. If a node has a dual pro-
cessor, then it can be considered to have two search engines for
its queue.

A. Experiment 1

Figure 6 is the experimental response of the queues ver-
sus time with an initial queue distribution of q1(0) = 600
tasks, q2(0) = 200 tasks and q3(0) = 100 tasks. The aver-
age time to do a search task is 400 µ sec. In this experiment,
the software was written to execute the load balancing al-
gorithm t0 = 1 millisec using the pij as specified by (11).
The plot shows that the data transfer delay from node 1
to node 2 is h21 = 1.8 millisec while the data transfer de-
lay from node 1 to node 3 is h31 = 4.0 millisec. In this
experiment the inputs were set as λ1 = 0, λ2 = 0, λ3 = 0.
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Fig. 6. Experimental results of the load balancing algorithm executed
at t0 = 1 millisecond.

Figure 7 is a simulation performed using the model (1)
with the pij as specified by (11). In the model (1) the
waiting time was converted to tasks by qi(t) = xi(t)tpi
where the tpi ’s were taken to be the average processing
time for a search task which is 400 µsec. In Figure 7,
q1(0) = 600 tasks (x1(0) = 600 × 400 × 10−6 = 0.24 sec),
q2(0) = 200 tasks (x2(0) = 200 × 400 × 10−6 = 0.08 sec)
and q3(0) = 100 tasks (x3(0) = 100×400×10−6 = 0.04 sec)
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with the delay values set at h21 = 1.8 millisec, h31 = 4.0
millisec and the load balancing algorithm was started (open
loop) at t0 = 1 millisec. In this simulation, the inputs were
set as λ1 = 0, λ2 = 0, λ3 = 0, µ1 = µ2 = µ3 = 1. Note
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Fig. 7. Simulation of the load balancing algorithm executed at t0 = 1
millisecond.

the close similarity of the two figures indicating the model
proposed in (1) with the pij given by (11) is capturing the
dynamics of the load balancing algorithm. Figure 8 is a
plot of the queue size relative to the local average, i.e.,

qi diff (t) , qi(t)−
 nX

j=1

qj(t− τij)

 /n

for each of the nodes. Note the effect of the delay in terms
of what each local node estimates as the queue average and
therefore whether it computes itself to be above or below
it. This is now discussed in detail as follows:
At the time of load balancing t0 = 1 millisec, node 1

computes its queue size relative to its local average (q1 diff )
to be 300, node 2 computes its queue size relative to its
local average (q2 diff ) to be −100 and node 3 computes its
queue size relative to its local average (q3 diff ) to be −200.
At time t1 node 2 receives 100 tasks from node 1 so

that node 2’s computation of its queue size relative to the
local average is now q2 diff = 0. Right after this data
transfer, node 2 updates its own queue size to be 300 so
its local average is now (600 + 300 + 100)/3 ≈ 333 making
q2 diff ≈ 300− 333 = −33.
At time t2, node 3 receives the queue size of node 2

(which just increased to about 300 as shown in Figure 6).
Node 3 now computes q3 diff to be about (100 − (600 +
300 + 100)/3) = −233.
At time t3, node 1 receives the queue size of node 2

(which is now about 300 - see Figure 6). As node 3 is still
broadcasting its node size to be 100, node 1 now computes
q1 diff ≈ (300− (300 + 300 + 100)/3) = 67.
At time t4, node 2 receives the queue size of node 1

(= 300) and updates its local average to be (300 + 300 +
100)/3 = 233 so that q2 diff ≈ 300− 233 = 67.

1t

2t

3t

4t
0t

5t
6t

node 1

node 2

node 3

Fig. 8. Experimental plot of qi diff (t) = qi(t) −³Pn
j=1 qj(t− τij)

´
/n for i = 1, 2, 3.

At time t5, node 3 receives the 200 tasks from node 1 and
updates its queue size which is now about 300. The local
average computed by node 3 is then (600+200+300)/3 =
367 so that q3 diff ≈ (300− 367) = −67.
Finally, just after t5 at time t6, node 1 receives the queue

size of node 3 (which is now about 300 - see Figure 6). Node
1 now computes its q1 diff ≈ (300− (300+300+300)/3) =
0.
Node 2 receives the queue size of node 3 (which is now

about 300 - see Figure 6). Node 2 now computes its
q2 diff ≈ (300− (300 + 300 + 300)/3) = 0.
Node 3 is now updated with the queue size of node 2

(which is now about 300 - see Figure 6) and now computes
q3 diff ≈ (300− (300 + 300 + 300)/3) = 0.

VI. Summary and Conclusions

In this work, a load balancing algorithm was modeled
as a nonlinear time-delay system. It was shown that the
model was consistent in that the total number of tasks was
conserved and the queues were always non negative. It was
also shown the system was always stable, but not neces-
sarily asymptotically stable. Experiments were preformed
that indicate a correlation of the continuous time model
with the actual implementation. Future work will entail
considering feedback controllers to speed up the response
and it is expected that by the time of the conference, ex-
perimental results using them will be presented.
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