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A time-dependent diffusion MRI signature of axon
caliber variations and beading
Hong-Hsi Lee 1✉, Antonios Papaioannou1, Sung-Lyoung Kim1, Dmitry S. Novikov 1 & Els Fieremans1

MRI provides a unique non-invasive window into the brain, yet is limited to millimeter

resolution, orders of magnitude coarser than cell dimensions. Here, we show that diffusion

MRI is sensitive to the micrometer-scale variations in axon caliber or pathological beading, by

identifying a signature power-law diffusion time-dependence of the along-fiber diffusion

coefficient. We observe this signature in human brain white matter and identify its origins by

Monte Carlo simulations in realistic substrates from 3-dimensional electron microscopy of

mouse corpus callosum. Simulations reveal that the time-dependence originates from axon

caliber variation, rather than from mitochondria or axonal undulations. We report a decreased

amplitude of time-dependence in multiple sclerosis lesions, illustrating the potential sensi-

tivity of our method to axonal beading in a plethora of neurodegenerative disorders. This

specificity to microstructure offers an exciting possibility of bridging across scales to image

cellular-level pathology with a clinically feasible MRI technique.
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D
iffusion magnetic resonance imaging (dMRI) is sensitive
to the micrometer length scale via the commensurate
diffusion length and, as such, is a promising in vivo

technique for evaluating micrometer-scale structural features (the
so-called tissue microstructure) of biological tissues in health and
disease. The sensitivity to tissue microstructure, however, is
indirect, due to averaging of the local diffusion propagator over
the millimeter-sized MRI imaging voxel. Biophysical modeling of
the diffusion signal in biological tissue1–4 is therefore essential for
quantification of cellular parameters and to gain specificity to
cellular changes in development, aging, and pathology. This raises
the critical question of which salient features of cells or tissues can
be robustly retrieved across the gap of three orders of magnitude
in spatial scales and what the essential assumptions are to con-
struct the most parsimonious biophysical models, thereby
attaining the highest precision without losing accuracy.

Axonal microgeometry in brain white matter (WM) is special,
as axonal diameters are much thinner than the clinically attain-
able diffusion length Ld(t) ~ 10 μm. Hence, intra-axonal diffusion
has been described5 as occurring within infinitely narrow fea-
tureless impermeable tubes—dubbed “sticks”—inside which dif-
fusion is effectively one-dimensional and Gaussian, completely
determined by a constant diffusion coefficient. This simplified
viewpoint—a cornerstone ingredient of the so-called WM Stan-
dard Model4—has been the basis for WM dMRI modeling over
more than a decade, approximating the net intra-axonal space
(IAS) within an MRI voxel as a collection of these sticks. In this
picture, sticks are deemed non-exchanging with extra-axonal
water and their overall orientation is modeled either by a specific
distribution function, such as the Watson distribution6, or by
using spherical harmonics7–11. The stick model parameters, such
as the the intra-stick diffusion coefficient and the orientation
dispersion, provide biophysical significance, as they make dMRI
specific to axonal pathology.

Although suggested by N-acetyl-L-aspartate (NAA) experi-
ments 16 years ago5, for water dMRI the stick picture has been
validated only recently. Such validation is challenging, as fit
quality alone is insufficient to validate a model. Selecting models
becomes feasible by testing their unique functional forms in the
domain where the dependence on experimental parameters
clearly reveals their assumptions12. Borrowing this methodology
from the physical sciences, the assumptions of the existence of
sticks (i.e., of the locally one-dimensional (1d) water diffusion)
and of negligible exchange between sticks and extra-axonal water
on the time scale of clinical dMRI have been validated in vivo in
human brain WM by observing the 1=

ffiffiffi

b
p

dMRI signal scaling
(ideal stick response) at very strong diffusion weighting b ~ 10
ms/μm2 11,13.

How adequate is the picture of featureless sticks? In this work,
we show that the diffusion inside the IAS along axons is non-
Gaussian at clinically employed diffusion times t ~ 10–100ms and
identify the dominant geometric features for this non-Gaussian-
ity, which can thus be quantified with a dMRI measurement. For
that, we focus on varying the diffusion time t rather than on
increasing the dMRI wave vector q.

The absence of time dependence in the overall diffusivity D
would signify Gaussian diffusion in every tissue compartment,
whereas the presence of t-dependence would reveal microscopic
heterogeneity being coarse-grained by diffusion in at least one of
the compartments3,4,14,15. So far, many WM studies focused on
the diffusion time dependence perpendicular to axons, to probe
the inner axon diameter16–19 and the packing correlation length
of the extra-axonal space19–22. Recently, however, the diffusion
tensor eigenvalue parallel to major human WM tracts was found
to decrease by 10–15% over the range t= 50–600 ms using

stimulated-echo (STE) dMRI21. This nontrivial time dependence
along the tract could not be explained solely by the fiber dis-
persion, i.e., by the locally transverse t-dependent contributions
projected onto the tract direction. Rather, the observed non-
Gaussian diffusion along axons suggests that either the extra-
axonal space or the IAS (the sticks) should be augmented to
incorporate micrometer-scale restrictions along the axon bundle
direction.

What are these restrictions? According to the effective medium
theory of ref. 15, observing a specific power-law time dependence
of the 1d diffusivity (along fiber),

DðtÞ ’ D1 þ c � t�ϑ; ϑ ¼ 1

2
ð1Þ

approaching its long time limit D
∞

with the strength c of
restrictions, is a signature of a short-range disorder of the pla-
cement of the restrictions. However, this general theory does not
reveal the exact source of these restrictions, be it the micto-
chondria or beads, or axonal undulations, or the disordered extra-
axonal space geometry.

Here we show that the IAS diffusion t-dependence has the
form (1) and is most sensitive to axon caliber variations, a vital
signature of normal axonal microgeometry, which may be altered
in pathology, turning into axonal beading. The strength c of
restrictions to axial diffusion emerges from randomly placed local
axon caliber maxima and depends on caliber variation. To verify
the power law (1) and attribute it to axon caliber variation, we
evaluate the effect of axon shape on diffusion by developing, for
the first time to our knowledge, a full three-dimensional (3d)
Monte Carlo (MC) simulations of dMRI in a realistic micro-
geometry based on 3d electron microscopy (EM) segmentation23

of mouse brain corpus callosum (CC).
This study is organized as follows. First, we link the power-law

dynamics of the time-dependent diffusivity along axons, D(t),
with the power spectrum of restrictions to 1d diffusion, allowing
us to predict the time dependence from the EM-derived axonal
structure. Further, we perform MC simulations in realistic 3d IAS
to calculate dMRI-related metrics, such as D(t) and time-
dependent kurtosis, K(t), and study their unique functional
forms. To better understand the origin of the diffusion time
dependence along axons, we separately evaluate the effect of
mitochondria, caliber variation, undulation, and axonal orienta-
tion dispersion. Our simulations reveal axon caliber variation as
the dominant source of time-dependent diffusion along axons.
Finally, we show that theory and simulations are consistent with
in vivo brain data in 15 healthy subjects acquired using pulsed-
gradient spin-echo (PGSE) dMRI at clinical diffusion times. The
change of diffusivity time dependence due to specific pathology is
also demonstrated in pilot data of five multiple sclerosis (MS)
patients. In conclusion, we combine our theory, MC simulations,
and clinical dMRI measurements into an overarching picture of a
fundamental biophysical phenomenon—axonal caliber variation
manifested by a signature power-law exponent ϑ= 1/2—provid-
ing a remarkable specificity of a macroscopic dMRI measurement
to a particular geometric feature of micrometer-scale axonal
microstructure.

Results
From axonal structure to the diffusive dynamics. The power-
law tail of the diffusion time dependence, Eq. (1), is determined
by the structural universality class of the medium15, with dyna-
mical exponent

ϑ ¼ pþ d

2
ð2Þ
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in d spatial dimensions. It was noted that randomly looking
media can be random in a few distinct ways and, thereby, can be
classified into a few so-called universality classes (analogously to
the universality classes in the theory of critical phenomena). A
structural universality class is defined by the structural exponent
p, describing the statistics of long-range structural fluctuations.
Technically, p is defined via the asymptotic behavior15

ΓðkÞ ¼
Z

ddx ΓðxÞ e�ikx � kp; k ! 0

of the power spectrum Γ(k) of the medium at low wave vector k—
equivalently, the asymptotic behavior of the density–density
correlation function

ΓðxÞ ¼ hρðx0 þ xÞρðxÞix0 ð3Þ
at large distances ∣x∣ (here, the average 〈. . . 〉 is performed over
the initial point x0). Molecular displacement over the diffusion
length Ld(t) probes the distances ∣x∣ ~ Ld(t) and thereby samples
the statistics of spatial density fluctuations. Thus, Eq. (2) provides
the fundamental connection between structure and dynamics.

To determine the structural universality class of the micro-
geometry along axons, we begin from the d= 3 density–density
correlation function, Eq. (3), where ρ(x) is the 3d binary mask of
an axially symmetric cylinder with radius variation r(z) con-
structed from realistic axons along axonal axis z. We would like to
construct the corresponding d= 1 power spectrum

Γ1dðkzÞ ¼
1

A

Z

Γ3dðxÞ e�ikzzd3x ¼ ρðk?; kzÞj j2

V � A

�

�

�

�

k?¼0

ð4Þ

relevant at long distances ~1/kz exceeding the transverse
dimensions of axons, when the diffusion becomes effectively
one-dimensional. Hence, in Eq. (4), k⊥= (kx, ky) is set to 0 as the
diffusive motion is fully coarse-grained within the axonal cross-
section on time scales much faster than the relevant diffusion
times. In this equation, we also used the Wiener–Khinchin
theorem Γ(k)= ∣ρ(k)∣2/V, where V is the (axonal) volume.
Finally, as our resulting object Γ1d(kz) is a 1d power spectrum,
it should have dimensions of length; hence, we normalize by the
mean cross-sectional area (CSA) A.

The restrictions in general can be provided by any kind of
microstructural inhomogeneity. Here, they are interpreted as
coming from focal swellings or beads (caliber maxima) and
constrictions (minima) along axons. Below we study the behavior

Γ1dðkzÞjkz!0 � kpz ; kz ! 0 ð5Þ
which will determine the structural exponent p determining the
universality class of the d= 1 microgeometry.

Axonal structure analysis reveals short-range disorder. To
estimate the structural exponent p in Eq. (5), we calculate the
power spectrum using the radius variation along 227 segmented
myelinated axons aligned with the z-axis (Fig. 1a, b)23. Practically,
each axon’s inner radius variation r(z) (Fig. 1c) is first scaled by a
factor based on the ratio of each axon’s volume to the mean
volume, ensuring that every axon has the same volume after
normalization (Fig. 1d). Next, the normalized radius variations
are randomly concatenated along the z-axis. Finally, the con-
catenated normalized radius variation is rotated around the z-axis
to generate an axially symmetric 3d binary mask ρ(r). The 1d
power spectrum Γ1d(kz) is calculated according to Eq. (4).

The power spectrum Γ1d(kz) (Eq. (5)) along the concatenated
axon with normalized radii approaches a plateau at low kz
(Fig. 1f) and indicates a structural exponent

p ¼ 0: ð6Þ

Equation (2) thus yields dynamical exponent ϑ= 1/2 in
dimension d= 1. Our prediction of ϑ= 1/2 and of the power-
law tail in Eq. (1) will be tested below using MC simulations and
dMRI measurements in human subjects.

The low-kz plateau demonstrates that restrictions along axons
are randomly distributed with a finite correlation length, which is
by definition a short-range disorder class of randomness. The
level of the plateau is determined by the mean �a and the variance
σ2a of the distance between restrictions (see Eq. [S13] and
following derivations in the Supplementary Information of

ref. 15), as well as by the average restriction width �l (see Eq.
(47) in Appendix B of ref. 20 with restriction “shape”

vðkÞjk!0 ! �l):

Γ1djkz!0;p¼0 ’
σ2a
�a2

�
�l
2

�a
: ð7Þ

The normalized power spectrum in Fig. 1f has a low-kz plateau at
Γ1dðkzÞ=�a ’ 0.25. We can further calculate the corresponding

average restriction width �l ’ 5.6 μm, given that �a ’ 5.70 μm and
σa≃ 2.88 μm (Fig. 1e) are estimated by locating the local maxima
of axon caliber variations. In addition, the power spec-
trum Γpos(kz) of positions of the local maxima in concatenated
caliber variations (normalized as in Fig. 1 and Eq.
[S11] of ref. 15) also shows a low-kz plateau at Γposjkz!0;p¼0�
�a ’ σ2a=�a

2, indicating a structural exponent p = 0 along axons.

Simulations validate time-dependent diffusion due to caliber
variation. Numerical simulations for validating dMRI in brain
microstructure (reviewed by ref. 24) have been performed either
in two-dimensional (2d) or 3d simple geometries, or in combi-
nations thereof. In particular, the axonal shape is typically
modeled by artificial geometries. Recently, benefiting from the
advances in microscopy, MC simulations were performed in 2d
realistic microgeometry of neural tissue reconstructed from light
microscopy25 or EM26, and also in 3d realistic microstructure of
astrocytes reconstructed from confocal microscopy27. However,
the crucial piece of the validation puzzle—simulations in 3d
realistic EM-based neuronal tissue microstructure (e.g., Fig. 1a, b)
—have been missing so far.

In the “Methods”, MC simulations in realistic microstructure,
we describe our IAS segmentation and the MC simulations
algorithm.

To explore the possible cause of diffusion time dependence
along axons, we compare simulation results of four different
microgeometries (Fig. 2a):

I. Original IAS segmentation from EM, with transverse
relaxation time T2a= 80 ms and intrinsic diffusivity Da=

2 μm2/ms in the cytoplasm28, T2m= 20 ms and Dm= 0.13
μm2/ms in the mitochondria, and fully permeable mito-
chondrial membrane29. This segmentation is the closest to
reality and serves as the main result.

II. The same IAS, but with no T2 contrast and intrinsic
diffusivity difference between mitochondria and axoplasm
(T2a= T2m= 80 ms, Da=Dm= 2 μm2/ms).

III. Axially symmetric IAS with the same caliber variation (i.e.,
the same z-dependent CSA) as in the original IAS, but no
undulation.

IV. IAS includes undulation and preserves volume, but has no
caliber variation. The axonal skeleton describing the
undulation is constructed by connecting the center of mass
of each cross-section and smoothed along the axon by a
Gaussian filter of a standard deviation σ= 1 μm.

All fibers are aligned to the z-axis and the orientation
dispersion is not considered when comparing the above four
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cases. The effect of dispersion is considered separately in
Fig. 2e–h.

In the microstructure based on realistic IAS in Fig. 2a (I–IV),
the simulated overall D(t) (from all axons) exhibits a notable time

dependence, which scales as 1=
ffiffi

t
p

(Fig. 2b). This is in agreement
with our theoretical prediction of Eq. (1), corresponding to the
dynamical exponent ϑ= 1/2 and the structural exponent of Eq.
(6), and confirms our expectations that the restrictions to
diffusion along axons are due to short-range disorder. The
corresponding bulk diffusivity D

∞
and strength c of restrictions

(Eq. (1)) for all axons are listed in Table 1, based on Eq. (11),
individual axon’s volume fraction fi, and parameters (Di,∞, ci)
obtained by fitting Eq. (1) to individual axon’s Di(t).

The simulated D(t) with or without considering low T2 and low
intrinsic diffusivity in the mitochondria (I and II) shows similar
diffusivity values and time dependence (Fig. 2b and Table 1).
Similarly, compared with structure I, D(t) of axially symmetric
cylinders with only caliber variation (III) has slightly larger
diffusivity values and very similar time dependence. On the other
hand, D(t) of undulating fibers with no caliber variation (IV)
shows much larger diffusivity values and negligible time
dependence (~0.05% diffusivity change at t= 20–100 ms),
indicating that caliber variation is the main cause for the
observed time dependence. For the microgeometry I in Fig. 2a,
the radius variation along individual axon, i.e., coefficient of
variation of radii CV(r), highly correlates with the relative
diffusivity variation, i.e., ζ≡ (D0−Di,∞)/Di,∞ with the intrinsic
diffusivity D0, via a quadratic function (Pearson’s R= 0.8917 for ζ
and CV2(r) in Fig. 2d), a relation derived in Eq. (15) in
“Methods.” In the microgeometry I, D0 is approximated by the

volume-weighted sum of intrinsic diffusivities in IAS and
mitochondria: D0≃ (1− fm)Da+ fmDm≃ 1.89 ± 0.06 μm2/ms,
with the mitochondrial to IAS volume ratio fm≃ 6% reported
in Supplementary Fig. 1c.

It is essential to evaluate the effect of fiber orientation
dispersion, because the diffusion time dependence transverse to
individual axons could be projected to the main direction of the

whole fiber bundle, confounding the 1=
ffiffi

t
p

dependence in Eq. (1).
To evaluate this effect (Fig. 2e–h), segmented axons in Fig. 2a,
scenario I, were oriented based on a Watson distribution with
concentration parameters κ= [∞, 15.4, 4.7, 1.65] for cases of no
dispersion up to high dispersion, corresponding to the overall
polar dispersion angles θ= [0°, 15°, 30°, 45°], defined by

θ � cos�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hcos2θi
p

10,23. As a reference, the dispersion angle in
the mouse brain CC23 is ~24°, corresponding to κ ~ 6.9. This

preserves the D(t) scaling as 1=
ffiffi

t
p

, which overall decreases with
increasing dispersion angle (Fig. 2e), as manifested by the
corresponding fit parameters in Eq. (1) (Table 2), bulk diffusivity
in long time limit and strength of restrictions: D

∞
and c /

hcos2θi (Eq. (12) and Fig. 2g, h). In particular, the estimate of c
slightly deviates from this relation (Fig. 2h) due to an extra 1/t
term contributed by the diffusion transverse to individual axons,
especially for the high dispersion case (large θ, small hcos2θi).
Accounting for this small effect by using Eq. (13), the corrected
value of c restores the relation.

The finite value of the time dependence amplitude c in Eq. (1)
corresponds to about 4.4% D(t) change over t= 20–100 ms time

range. In particular, the axial diffusivity change / Δð1=
ffiffi

t
p

Þ �
Δt � t�3=2 is even larger at short diffusion times. Including time
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Fig. 1 Structural analysis of axons segmented from female mouse brain corpus callosum EM reveals that the 1d placement of caliber variations exhibits

short-range disorder, characterized by a finite correlation length. a 3d EM image with segmented axons passing through the central slice. b 3d

representation of the intra-axonal space (IAS) segmentation yielding 227 axons that are long enough to pass through all slices (>20 μm). c Radius variation

r(z) and d normalized radius variation ~rðzÞ along seven selected axons. e Histogram of distances a between local radius maxima along all 227 segmented

axons. f The power spectrum Γ1d(kz) along all axons (blue curve, truncated at kz ~ 1/L due to limited individual axon’s length L) shows a plateau at low

kz � 1=�a with �a the mean distance between restrictions (blue dashed line), indicating a structural exponent p= 0, which corresponds to the short-range

disorder and leads to the dynamical exponent ϑ= 1/2 in Eq. (1), cf. Eq. (2). Serving as a reference, the red curve shows the power spectrum Γpos(kz) of the

restriction positions15 with a plateau at low kz as well. Panels a and b are adapted from ref. 23 by permission from Springer Nature: Brain Structure and

Function, Copyright, 2019.
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dependence for the intra-axonal compartment is therefore
especially important for animal imaging30 and for human
dMRI31 at relatively short diffusion times, achievable on high-
gradient systems.

For the time dependence of higher-order cumulants of the
intra-axonal signal, similar observation are made for the
simulated overall kurtosis K(t) in Fig. 2c: in realistic IAS (Fig. 2a,
I and II), K(t) has almost the same values and overall t-
dependence with or without considering low T2 and low intrinsic
diffusivity in mitochondria (Fig. 2c). Similarly, compared with
microgeometry I, the scenario with no axonal undulation (III)

results in slightly smaller kurtosis values and similar K(t) form.
On the other hand, the scenario with no caliber variation (IV)
shows much smaller kurtosis values and a totally different K(t)
form. These results indicate that the kurtosis time dependence
along realistic axons largely depends on caliber variation rather
than on axonal undulation, with a small effect of low T2 and low
intrinsic diffusivity in mitochondria. For a fiber bundle with
orientation dispersion, the simulated overall K(t) increases with
the dispersion angle (Fig. 2f), especially for θ≳ 30°.
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Fig. 2 MC simulations inside 227 axons to study time-dependent diffusion along axons. Which microstructural feature of the axonal shape explains the

observed diffusion t-dependence? a Starting from the geometry of axons segmented from EM, four different types of microgeometries were created as follows

(see text): (I) with or (II) without considering shorter transverse relaxation time T2m and smaller intrinsic diffusivity Dm in mitochondria (red), and derived

synthetic axons with (III) only caliber variation or (IV) only axonal undulation. b The simulated D(t) along axons for scenarios (I–IV) plotted as 1=
ffiffi

t
p

. The

linear scaling at long t points to 1d short-range disorder along axons. Dashed lines are the asymptotes based on Eq. (1) and Eq. (11), with fit parameters D
∞

and c in Table 1. Remarkably, D(t) is mostly influenced by caliber variation, as it becomes much weaker in scenario IV when caliber variations are removed.

c The simulated K(t) along axons for scenarios (I–IV) plotted as 1=
ffiffi

t
p

, showing a non-monotonic change with t. Although removing undulations (III) slightly

lowers the kurtosis, its significant reduction and altering the t-dependence occurs when caliber variations are removed (IV). Both b and c indicate that axon

caliber variations are the dominant contributions to the IAS time dependence. d Illustration of the relation ζ ∝ CV2(r) in the original IAS (scenario I), see Eq.

(15) derived in “Methods” using coarse-graining arguments. What is the effect of orientation dispersion? e Axon bundles with axially symmetric orientation

dispersion were created with orientation distributions of polar angles θ = [0°, 15°, 30°, 45°]. The simulated D(t) along axons scales as 1=
ffiffi

t
p

and decreases

with the dispersion angle. The dashed lines are predictions based on Eq. (1) and Eq. (11), with parameters D
∞
and c shown in Table 2. f The simulated K(t)

along axons increases with the dispersion angle. g The bulk diffusivity for t → ∞, D1 / hcos2θi, Eq. (12). h The strength of restrictions, c, slightly deviates

from this proportionality relation in Eq. (12) (blue). Accounting for the higher-order 1/t term in Eq. (13), the corrected value of c restores Eq. (12) (red).

Table 2 Fit parameters of the time-dependent axial

diffusivity D(t) in our simulations in 3d (Fig. 2e).

Dispersion angle θ (°) D
∞

(μm2/ms) c (μm2 ⋅ ms−1/2)

0 1.25 0.426

15 1.16 0.407

30 0.94 0.343

45 0.62 0.253

Simulation results for dispersion angles θ= 15°–30° are consistent with the human brain PGSE

data in genu, cf. Table 3.

Table 1 Fit parameters of the time-dependent axial

diffusivity D(t) in our simulations in four axonal

microgeometries (I–IV) specified in Fig. 2a, b.

Microgeometry (Fig. 2a) D
∞

(μm2/ms) c (μm2 ⋅ ms−1/2)

I. T2a > T2m, Da > Dm 1.25 0.426

II. T2a= T2m, Da= Dm 1.30 0.502

III. Caliber variation only 1.45 0.450

IV. Undulation only 1.85 0.009
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Focusing on the realistic microgeometry I without considering
dispersion (dark blue data points in Fig. 2c, f), the simulated
overall K(t) (~0.4 at t= 20–100 ms) consists of two parts as
follows: (1) the inter-compartmental contribution originating
from the diffusivity differences between multiple axons (first
right-hand-side term in Eq. (10b)) and accounting for 24–37% of
K(t) at t= 20–100 ms and (2) the intra-compartmental contribu-
tion originating from individual axon’s axial kurtosis (second
right-hand-side term in Eq. (10b)) and accounting for 76–63% of
K(t) at t= 20–100ms.

In vivo MRI demonstrates diffusion time dependence along
axons. The time-dependent axial diffusivity D(t), measured by
monopolar PGSE in the human brain WM (Fig. 3a, b), were
averaged over five healthy subjects (n= 5) and plotted with respect

to 1=
ffiffi

t
p

. In all studied WM regions of interest (ROIs), the axial

diffusivity time dependence demonstrates a 1=
ffiffi

t
p

power-law rela-
tion in Eq. (1) (P-value < 0.05, Table 3), indicating that the uni-
versality class along human WM axons is short-range disorder
(randomly distributed tissue inhomogeneity) in 1d, corresponding
to a dynamical exponent ϑ= 1/2. The fit parameters in the different
WM ROIs (D

∞
, c) are shown in Table 3. Figure 3c, d also shows that

the axial kurtosis in WM ROIs from the same in vivo measurements
is ~0.8 and varies over diffusion time in some ROIs, demonstrating
non-Gaussian diffusion along axons. The data of ten additional
subjects scanned with higher resolution are in Supplementary Fig. 2.

To further demonstrate the regional variation, Fig. 4 shows the
variation across the nine sub-regions of CC (G1/G2/G3 for the
genu, B1/B2/B3 for the midbody, and S1/S2/S3 for the splenium)
in the time-dependent parameters for each subject. The bulk
diffusivity D

∞
in t→∞ limit has a high–low–high pattern in

genu–midbody–splenium in all subjects (Fig. 4b), whereas the
strength c of restrictions along axons has a low–high–low pattern
in most of the subjects (Fig. 4c).

Time-dependent diffusion parameters alter in multiple
sclerosis. To evaluate the sensitivity of the time-dependent
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Fig. 3 Time-dependent axial diffusivity D(t) and axial kurtosis K(t) measured in vivo in brain WM of five healthy subjects using monopolar PGSE.

a, b In all WM ROIs, the axial diffusivity scales as 1=
ffiffi

t
p

in Eq. (1) (P-value < 0.05, Table 3), confirming our prediction that the universality class along WM

axons is 1d short-range disorder, cf. Fig. 1. The fit parameters are summarized in Table 3. c, d In all WM ROIs, the axial kurtosis is ~0.8, demonstrating

the non-Gaussian diffusion along axons. Points are plotted representing ROI-values of each subject, along with corresponding mean values (symbol

and color in legend) and error bars indicating the SE over five subjects. (ACR/SCR/PCR, anterior/superior/posterior corona radiata; ALIC/PLIC, anterior/

posterior limb of the internal capsule; genu/midbody/splenium of CC).

Table 3 Fit parameters of the time-dependent axial

diffusivity D(t) in human brain data measured using

monopolar PGSE (Fig. 3a, b).

ROI P-value D
∞

(μm2/ms) c (μm2 ⋅ ms−1/2)

ACR 6.3e− 5 1.231 (0.005) 0.246 (0.034)

SCR 1.3e− 5 1.261 (0.006) 0.330 (0.038)

PCR 3.3e− 6 1.317 (0.005) 0.329 (0.033)

PLIC 1.2e− 4 1.538 (0.010) 0.390 (0.062)

Genu 4.2e− 4 1.516 (0.011) 0.391 (0.069)

Midbody 5.2e− 6 1.386 (0.016) 1.17 (0.10)

Splenium 1.9e− 6 1.649 (0.009) 0.725 (0.058)

ALIC 1.8e− 2 1.335 (0.020) 0.276 (0.129)

SEs are shown in the parenthesis.
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diffusion parameters to pathology, the time-dependent axial dif-
fusivity D(t) was measured by monopolar PGSE in MS lesions
and normal-appearing WM (NAWM) in five MS patients (n= 5).

D(t) averaged over subjects is plotted with respect to 1=
ffiffi

t
p

in
Fig. 5a, confirming that both in MS lesions and in NAWM, D(t)
obeys the power-law relation in Eq. (1), with P-values= 0.042
and 0.012, respectively.

The fit parameters (D
∞
, c, Fig. 5b, c) estimated individually in

MS patients are compared between MS lesions and NAWM. The
bulk diffusivity D

∞
along axons in t→∞ limit is significantly

larger in MS lesions than that in NAWM (P-value= 0.031,
Fig. 5b). Furthermore, the strength c of restrictions along axons is
significantly smaller in MS lesions than that in NAWM (P-value
= 0.031, Fig. 5c).

Discussion
The time-dependent dMRI signal measured in vivo in brain WM
provides a signature for along-axon caliber variation. The speci-
ficity to this microstructural feature is determined here from a
characteristic power-law decay of the diffusivity and validated by
performing realistic MC simulations of diffusion inside axons
from 3d EM images of mouse brain. In particular, our simulation
results are consistent with in vivo measurements and the corre-
sponding theoretical prediction that diffusion along axons is

characterized by short-range disorder in 1d, with the dynamical
exponent ϑ= 1/2 for Eq. (1). This short-range disorder was
confirmed by the power spectrum analysis of the actual shape of
segmented myelinated axons in the 3d EM sample of mouse brain
in this study, and it was also observed in a preliminary study32

performing MC simulations within realistic axons segmented
from a large 3d EM sample of human subcortical WM.

Furthermore, simulations in different microgeometries based
on this EM sample allow us to disentangle the contributions of
different microstructural features to the overall 1d structural
disorder and reveal that the diffusivity and kurtosis time depen-
dence along axons is dominated by caliber variations rather than
axonal undulations. For example, in Supplementary Information,
simulations of diffusion in fiber bundles composed of fibers
without caliber variations, such as undulation-only fibers (geo-
metry IV in Fig. 2a) or perfectly straight cylinders, demonstrate
very small axial diffusivity time dependence along the main
direction, even for highly dispersed case (Supplementary Fig. 3).
Similarly, mitochondria have negligible impact on the time
dependence, due to their low volume fraction (Supplementary
Fig. 1). Yet, mitochondria are shown to correlate with axon
caliber (Fig. 6) and hence could indirectly impact the time
dependence, as discussed below for the MS pilot study.
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functional form of D(t). b The

bulk diffusivity D
∞
along axons is significantly larger in MS lesions than that

in NAWM. c The corresponding strength c of restrictions along axons is

smaller in MS lesions than in NAWM. In b and c, each patient is

represented by a blue segment. The parameter differences between MS

lesions and NAWM are compared by using one-sided Wilcoxon signed-

rank test (*P-value < 0.05).
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Using PGSE dMRI in vivo in human brain, the power-law
scaling (Eq. (1)) was found in all WM ROIs (Fig. 3a, b). In
particular, in genu, the fit parameters of PGSE measurements
(Table 3) are of the same order as those in the MC simulations for
dispersion angles θ= 15°–30° (Table 2), which is consistent with
the fiber dispersion ≃20° observed in histology23,33.

The fitted power-law parameters show similar patterns over
different WM regions between subjects (Fig. 3a, b), and espe-
cially in CC composed of highly aligned axons, demonstrating
the potential of clinical applications in the future, as discussed
later. Admittedly, the regional variations in the bulk diffusivity
D
∞
and strength c of restrictions are noisy for individual sub-

jects; however, we are still able to observe the general trends
across the CC for the average over all subjects: the trends relate
remarkably well to the pattern of axonal density in CC observed
in histology34 and of axonal volume fraction in CC estimated
via dMRI17,35, as well as the higher spectrum of large axon
diameters in the midbody according to ref. 34. On the one hand,
the high–low–high trend in D

∞
in CC could be related to the

pattern of axonal density in CC observed in histology, with the
assumption that the axial diffusivity in IAS is larger than that in
extra-axonal space28. On the other hand, the low–high–low
trend in c in CC could be related with the bead width and/or
distance between local caliber maxima along individual axons.
This observation cannot be supported or rejected by 2d his-
tology and remains incompletely explained. For example, fiber
bundles composed of (1) caliber-varying axons or (2) perfectly
straight cylinders can have exactly the same 2d cross-sectional
diameter distribution (Supplementary Fig. 3). Three-
dimensional histology and analysis in different regions of CC
are needed in the future to better understand our empirical
observation of the trends across the CC.

In addition to in vivo PGSE measurements in human brain
WM reported here, the power-law dependence has also been

reported using STE measurements in vivo in human brain WM21

and ex vivo in the spinal cord WM36, where the diffusion time is
varied by changing the mixing time. Both studies reported
somewhat stronger time dependence, as manifested by larger
amplitude c for the time dependence (cf. Table 2 of ref. 21 and
Table 1 of ref. 36 as compared to current study Tables 2 and 3), a
potential overestimation caused by water exchange between
intra-/extra-axonal water (fast diffusion, long T1, T2 values) and
myelin water (slow diffusion, short T1, T2 values) during the
mixing time of the STE sequence37. Furthermore, in gray matter,
the power-law dependence has been observed for the mean dif-
fusivity using oscillating gradients in human brain38 and rat
brain15,39, suggesting that the characteristics of short-range dis-
ordered restrictions to diffusion along axons and dendrites are a
universal feature of neuronal tissue.

Conventionally, diffusion in WM has been modeled using the
featureless stick model (reviewed by ref. 4), thereby assuming
Gaussian diffusion, corresponding to a negligible axial intra-
axonal kurtosis. Here, however, based on realistic simulations,
combined with theory and experimental verification, we conclude
that the intra-axonal axial kurtosis is non-negligible at clinical
diffusion times. Indeed, for t= 20–100 ms, the intra-axonal
kurtosis along axons is ~0.7 for θ= 30° based on simulations
(Fig. 2f), and ~0.8 for monopolar PGSE measurements in the
human brain WM (Fig. 3c, d). The measured kurtosis in
experiment is slightly larger than the intra-axonal kurtosis in
simulations, likely due to the additional contribution of the extra-
axonal space to the overall K(t) in the measurement (Eq. (10b) in
“Methods”).

Simulations also demonstrated that the intra-axonal K(t)
increases with dispersion angle, especially for θ≳ 30° (Fig. 2f),
which can be understood by the corresponding increasing range
of intra-axonal diffusivity values when projected to the fiber
bundle’s main direction, resulting in a larger contribution to the
overall K(t), i.e., the first right-hand-side term in Eq. (10b).
Hence, the higher-order cumulants of the intra-axonal signal,
including K, are very sensitive to the fiber dispersion (i.e., the
functional form and the degree of orientation distribution) and
should be incorporated in future biophysical models of
dMRI in WM.

Besides the nominal (nonzero) value of the axial kurtosis, the
observed time dependence of both D(t) and K(t) are nontrivial
and should be considered in WM biophysical modeling. For
D(t) time dependence along axons, proportional to
Δð1=

ffiffi

t
p

Þ � Δt � t�3=2, it is negligible only when the time range Δt
is small (e.g., Δt < 5ms), or the diffusion time is long (e.g., t > 200
ms). For K(t), our simulations in IAS show 7% changes over the
clinical time range t= 20–100 ms.

The observation of axon caliber variation and beading with
non-invasive time-dependent dMRI calls for evaluating the role
of this microstructural feature in pathology. In this work, we
demonstrated altered diffusion time dependence along axons in
WM lesions vs. NAWM of five MS patients (Fig. 5), with cor-
responding changes in the fit parameters that are potentially
related to specific pathological changes. In particular, the increase
in the bulk diffusivity D

∞
along axons in MS lesions vs. NAWM

(Fig. 5b) may suggest ongoing demyelination and axonal loss40.
Although this observation alone has been reported before with
dMRI41–43, our results reveal, for the first time to our knowledge,
that the diffusivity time dependence along WM axons, i.e., c in
Eq. (1), is smaller in MS lesions than that in NAWM, with c∝ the
correlation length lc.21 This observation is potentially indicative of
an increase in mitochondria density, a feature of chronic
demyelination documented from histology in axons and astro-
cytes of WM lesions44. As mitochondria and axon caliber are

Fig. 6 Mitochondria segmentation and characterization of the relation

between mitochondria and axon caliber or diameter. a Approximately 1300

mitochondria (red) in the 227 axons (gray) of Fig. 1a, b were manually

segmented. b The inner axonal diameter 2r approximately correlates with

each axon’s mitochondrial volume per unit length (Vmito/L) via a quadratic

function. c Axonal diameters in cross-sections where mitochondria are

present (red) are significantly larger, compared to cross-sections where

mitochondria are absent (blue) (P-value < 0.001).
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shown to correlate (Fig. 6c)45, an increase in mitochondria would
shorten the correlation length lc that characterizes the distance
between local maxima of the axon. Hence, the parameter c
potentially targets the specific pathology of mitochondria increase
in MS. However, the exact relation of c and restriction
properties (e.g., their width and distance between them) is non-
trivial and requires further explorations, for example, by solving
the Fick-Jacobs equation for a caliber-varing fiber with randomly
distributed beads along the fiber.

Conventional MRI methods (e.g., T2-FLAIR) are well-known
to distinguish MS lesions from NAWM and the distinction is
typically attributed to demyelination44. Here, however, we aim to
use MS lesion data to in vivo validate the strength c of restrictions
in Eq. (1) as a specific measure for changes in mitochondria: we
demonstrate significant difference in c between MS lesions and
NAWM (Fig. 5c), and attribute it to an increase in mitochondria
as a response to demyelination in MS lesions44. This observation
may contribute to understanding the underlying pathological
mechanisms taking place in MS lesion formation. In addition, our
finding also suggests diffusion time dependence measurements as
potential biomarker suitable for monitoring other pathologies
presenting increased neurite beadings due to other mechanisms
(rather than mitochondrial increase).

In addition to MS46, axonal beading in WM has been observed in
several other pathologies, such as traumatic brain injury (TBI)47,48

and ischemic stroke49. Axonal varicosities, or axonal beading
along axons, can be a pathological change caused by accumula-
tion of transported materials in axonal swellings after TBI47,48; it
has been observed that varicosities arise during dynamic stretch
injury, caused by microtubule breakdown and partial transport
interruption along axons. Furthermore, varicosities due to
ischemic injury to WM axons can be caused by Na+ loading of
the axoplasm, which leads to a lethal Ca+ overload through
reversed Na+-Ca+ exchange49. Hence, the average distance
between varicosities is potentially a biomarker for axonal injury in
TBI and ischemia, facilitating evaluation of the effectiveness of
treatment and rehabilitation services. As the average distance
between varicosities along axons is of the order of 10 μm47–49,
much smaller than the resolution of most of the clinical imaging
techniques, dMRI is the method of choice to estimate in vivo the
pathological change of TBI50,51 and of ischemic stroke52. In
particular, time-dependent diffusion tensor imaging may enable
the estimation of the correlation length of varicosities along
axons, related to the average distance between varicosities, a
potential biomarker for monitoring TBI and ischemic stroke
patients.

Besides beading in WM, the ubiquitous 1=
ffiffi

t
p

time dependence
along neurites in gray matter15,39,53 suggests possible applications
in other neurodegenerative diseases. For instance, reduced density
of axonal varicosities was observed in the human superior frontal
cortex of mild to moderate Alzheimer disease54; decreased den-
dritic spine density was observed in the human prefrontal cortex
of Schizophrenia55; and an increased density of axonal var-
icosities was observed in injured dopaminergic neurons in the rat
substantia nigra, an animal model of Parkinson’s disease56. The
ability to evaluate restriction changes along neurites opens a door
to monitoring the progression and therapy response of these
diseases.

Thanks to recent advances in 3d EM57, our work, for the first
time to our knowledge, demonstrate the feasibility to employ EM-
derived microstructure as numerical phantoms for realistic 3d
simulations. By fully controlling the microgeometry of numerical
phantoms, MC simulations provide complete flexibility to eval-
uate the influence of different microstructural features. Here, they
were employed to elucidate that the time-dependent diffusion
signal along axons mainly originates from the caliber variations,

with the contributions from mitochondria and axonal undula-
tions having relatively small effects.

While we demonstrate here the value of realistic simulations as
a validation tool, one can think of extending this approach further
to study the sensitivity of MRI to microstructure. Larger EM
samples58 would be needed to enable diffusion simulations at
longer diffusion times. For the EM sample used in the current
study, the maximal axon length L ~ 18 μm corresponds to a
length-related correlation time τL= L2/(2D0)≃ 80 ms for D0 ~ 2
μm2/ms, which sets the maximum feasible diffusion time for the
simulation. This maximum time ~τL also prevents us from vali-
dating the relation of power-law scaling in D(t) and K(t), i.e., ΔD
(t)/D∞ = ΔK(t)/268, since the power-law scaling in K(t) happens
at longer diffusion times. Furthermore, we only focused on the
intra-axonal geometry of myelinated axons in WM. Although the
contribution of extra-axonal space is non-negligible, extra-axonal
signals are relatively smaller than the intra-axonal ones because of
the shorter T2 in extra-axonal space and long echo time applied in
experiments28. For the diffusivity time dependence along the fiber
bundle, we expect that the diffusivity time dependence in extra-
axonal space is similar to that in IAS, as water molecules
experience similar beading arrangement in either intra- or extra-
axonal spaces. Faithfully segmenting and simulating the diffusion
in the extra-axonal space is needed to understand how robust the
observed power-law is with increasing dispersion. In addition,
other structures, such as unmyelinated axons, glia cell, and blood
vessels, may have nontrivial contributions to the (time-depen-
dent) diffusion signal and can be added to the numerical
microgeometry. Ultimately, a large human EM sample32 (com-
parable to MRI voxel size), prepared with extra-cellular space
preserving technique if possible, would provide the most repre-
sentative numerical phantom to the human tissue microstructure
after fully segmenting all the cells inside the sample.

Finally, although the proposed framework here focuses on
performing MC to model diffusion in realistic WM micro-
structure, it can also be applied to gray matter, or tissue samples
with pathology. In addition, the framework can be extended to
include other MR contrast mechanisms, e.g., magnetization
transfer, mesoscopic susceptibility59, T1 and T2 relaxation60, and
water exchange61, thereby facilitating the exciting ability to vali-
date non-invasive MR-based tissue microstructural mapping.

Methods
All procedures performed in studies involving animals were in accordance with the
ethical standards of New York University School of Medicine. All mice were treated
in strict accordance with guidelines outlined in the National Institutes of Health
Guide for the Care and Use of Laboratory Animals, and the experimental proce-
dures were performed in accordance with the Institutional Animal Care and Use
Committee at the New York University School of Medicine. All procedures per-
formed in studies involving human participants were in accordance with the ethical
standards of New York University School of Medicine. All protocols were approved
by the local institutional review board (New York University School of Medicine).
Informed consent was obtained from all individual participants included in
the study.

EM and IAS segmentation. The brain tissue from a female 8-week-old C57BL/6
mouse’s genu of CC was processed and analyzed with a scanning EM (SEM) (Zeiss
Gemini 300 SEM with 3View). Part of the data was discarded due to unstable
quality, leading to a volume (Fig. 1a) of 36 × 48 × 20 μm3. To segment long axons
passing through all slices, we employed a simplified seeded region growing
algorithm23,62,63. The segmented axons (Fig. 1b) shorter than 20 μm were dis-
carded, leading to 227 long axons (≥20 μm in length). More details were reported
in our previous work23.

The IAS segmentation was down-sampled into a voxel size of (0.1 μm)3. The
effect of orientation dispersion was controlled by subsequently realigning axons
along the z-axis (Fig. 2a). The aligned axons were truncated at both ends by 1 μm to
avoid oblique end faces, resulting in axons of about 18 μm in length.

Mitochondria density affects inner axonal diameter. To evaluate the influence
of mitochondria on the axon caliber variation and on the diffusion time
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dependence, we manually segmented ~1300 mitochondria in 227 axons (Fig. 6a).
For individual axons, their inner diameter is found to correlate with the mito-
chondrial volume per unit length via a quadratic function (Fig. 6b), similar to the
observation in ref. 64. In addition, the axonal diameters calculated based on cross-
sections with and without the presence of mitochondria are 1.29 ± 0.43 μm (n=
13,653) and 0.94 ± 0.38 μm (n= 31,747), respectively (Fig. 6c), indicating that the
presence of mitochondria in IAS corresponds to larger axonal diameters (P-value <
0.001) and in agreement with a previous histological study in human and non-
human primate retinas45.

MC simulations in realistic microstructure. MC simulations of random walkers
were implemented in CUDA C++ for diffusion in a continuous space. Walkers
(2.27 × 109 in total) were employed inside 3d segmentations of 227 IASs, with 1 ×
107 walkers per IAS. The walker encountering the cell membrane is elastically
reflected or permeates through the membrane based on a permeation probability

for highly permeable membranes65, P1!2 ¼ min ð1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2=D1

p

Þ with intrinsic dif-
fusivities D1 and D2 in compartments 1 and 2. The top and bottom faces of each
IAS binary mask, artificially made due to the length truncation, were extended with
its reflective copies (mirroring boundary condition) to avoid geometrical dis-
continuity in diffusion simulations24.

Each particle diffused over 5 × 105 steps with a duration δt= 2 × 10−4ms and a

length
ffiffiffiffiffiffiffiffiffiffiffiffi

6Daδt
p

¼ 0.049 μm for each step in IAS and
ffiffiffiffiffiffiffiffiffiffiffiffiffi

6Dmδt
p

¼ 0.013 μm in the

mitochondria, where the intrinsic diffusivity, Da= 2 μm2/ms in IAS and Dm= 0.13
μm2/ms in the mitochondria, is taken to agree with recent in vivo experiments10,11

and previous in vitro study29. Maximal diffusion time in simulations is t= 100 ms.
Total calculation time was ~4 days on ~20 NVIDIA Tesla V100 GPU on the NYU
Langone Health BigPurple high-performance computing cluster.

The i-th axon’s moment tensors hxj1xj2 ii and hxj1xj2xj3xj4 ii are calculated in the

axon’s frame of reference based on the simulated diffusion displacement vector x
(with the component xj1 , j1= 1, 2, or 3)66,67, and their projections yield the axon’s

apparent diffusivity Diðt; n̂Þ and apparent kurtosis K iðt; n̂Þ in the direction n̂ (with
the component nj1 )

66,67:

Diðt; n̂Þ ¼
hs2ii
2t

; ð8aÞ

K iðt; n̂Þ ¼
hs4ii
hs2i2i

� 3; ð8bÞ

where

hs2ii ¼ nj1nj2 hxj1xj2 ii;
hs4ii ¼ nj1nj2nj3nj4 hxj1xj2xj3xj4 ii;

and the summation over the pairs of repeating indices is implied.
To simulate the effect of any fiber orientation dispersion, we draw an axon’s

direction n̂0 from the orientation distribution and then calculate the axon’s
apparent diffusivity and apparent kurtosis along the z-axis (fiber
bundle) direction by using Diðt; n̂Þ and K iðt; n̂Þ in the direction
n̂ ¼ 2ðn̂0 � ẑÞẑ� n̂0 . This is similar to the reflection of light, with the incident light
along �n̂0 falls on the surface normal to ẑ, and is reflected along n̂. It is then
straightforward to calculate the overall D(t) and K(t) using Eq. (10) below.

Ensemble averaging over axons. The dMRI signal from many axons can be
approximated by the cumulant expansion3,66

Sðb; tÞ ’ e�bDðtÞþ1
6b

2D2ðtÞKðtÞþOðb3Þ

¼
P

i

f i � e�bDiðtÞþ1
6
b2D2

i ðtÞK iðtÞþOðb3Þ;
ð9Þ

where D(t) and K(t) are overall diffusivity and kurtosis, and Di(t) and Ki(t) are
diffusivity and kurtosis of individual axons with volume fractions fi, such that
∑ifi≡ 1. Expanding Eq. (9) up to b2, we obtain66,68

DðtÞ ¼ hDiðtÞi �
X

i

f i � DiðtÞ; ð10aÞ

KðtÞ ¼ 1

D2ðtÞ
X

i

3f i � DiðtÞ � DðtÞð Þ2 þ f i � D2
i ðtÞK iðtÞ

� �

: ð10bÞ

Equation (10a) yields that the overall D
∞
and c entering Eq. (1) are given by the

volume-weighted averages of the corresponding parameters of the individual
axons,

D1 � hDi;1i; c � hcii: ð11Þ
Throughout, we use the time interval t= 20–80 ms to fit Di,∞ and ci from MC

simulations of individual axons, i.e., fitting Eq. (1) to Di(t), and employ these
parameters to predict the axial diffusivity D(t) of all axons in Eq. (1) and Eq. (11).
The maximal diffusion time used for fitting is bounded by the axonal length of the
EM substrate L ~ 18 μm: L2/(2D0)≃ 80 ms for D0= 2 μm2/ms.

Considering a fiber bundle with the orientation dispersion, the diffusion
displacement within an axon (dispersed along θi) is generally along the axon due to

its thin size. Its projection to the fiber bundle’s main direction leads to a
contribution to the second order cumulant hs2ii / cos2θi along the fiber bundle. As
a result, the overall diffusivity and corresponding parameters are given by

DðtÞ
DðtÞjθ¼0

¼ D1
D1jθ¼0

¼ c

cjθ¼0

’ hcos2θi: ð12Þ

However, for a highly dispersed fiber bundle (e.g., θ= 45°), some axons are
oriented roughly perpendicular to the fiber bundle’s main direction; these axons’
radial diffusivity ∝1/t can be projected to the main direction, resulting in a small
contribution to the overall axial diffusivity D(t)21, biasing the estimate of c. To
account for this contribution, a correction term is added to the overall D(t) in Eq.
(1):

DðtÞ ’ D1 þ c � 1
ffiffi

t
p þ c0 � 1

t
; ð13Þ

where c0 is related with caliber variation20 and undulation69.

Relation of relative caliber variation and relative diffusivity variation. In
Fig. 2d, the metric specifying the axonal shape, the coefficient of variation of radius
CV(r)= σr/〈r〉 (σr is the SD and 〈r〉 is the mean radius), and the relative diffusivity
variation ζ≡ (D0−Di,∞)/Di,∞

70 highly correlate with each other. Note that, CV(r)
is calculated solely based on axons’ 3d microgeometry; in contrast, the relative
diffusivity variation is estimated based on simulation results. To explain this
observation, we derive a relation to link the two metrics.

Our argument is based on the coarse-graining of 1d axonal microstructure by
diffusion4,15. When the diffusion length Ld(t) grows beyond the correlation length
of caliber variations, all the effective 1d diffusion physics is represented by a 1d
coarse-grained diffusion coefficient D(z) varying in space on the scale Ld(t). For

sufficiently large Ld(t) (long t), the local fluctuations δDðzÞ ¼ DðzÞ � D become

small, i.e., jδDðzÞj � D, where D is the average of D(z) along the axon. In

particular, the local fluctuation of the coarse-grained local 1d diffusivity δDðzÞ ’
ð∂D=∂�nÞδnðzÞ is proportional to the local fluctuation of restriction density δn, with
�n the mean density15. It is then straightforward to calculate each individual axon’s
bulk diffusivity Di,∞, given by70

1
Di;1

¼ 1
DiðzÞ

D E

z
’ 1

D
1þ h δDð Þ2iz

D
2

h i

’ 1
D

1þ ∂lnD
∂ln �n

� �2 hðδnÞ2iz
�n2

� 	

;

simplified as

D� Di;1
Di;1

/
δnð Þ2


 �

z

�n2
ð14Þ

to the lowest order in δn. Above, we neglected the third and higher orders of δn
and so this derivation is by construction perturbative and valid for small ζ and CV
(r).

The CSA variation A(z) along an axon can be expressed as the convolution of
restriction density n(z) and 3-dimensional shape function of a restriction v(z), i.e.,
A(z)= n(z) � v(z), or in the Fourier domain, A(kz)= n(kz)v(kz). The coarse-grained

density fluctuation δn(kz) at scales much longer than the mean restriction width �l,

corresponding to kz ��l � 1, causes the corresponding fluctuation

δAðkzÞ ¼ δnðkzÞvðkzÞ ’ δnðkzÞv0; v0 ¼ vjkz¼0 � φ � A
�n
:

Here, v0 is the restriction strength (e.g., single bead volume), and φ is the volume

fraction of restrictions. Hence, when φ ~ const, δAðkzÞ=A � δnðkzÞ=�n, or
δnðzÞ
�n

� δAðzÞ
A

/ δr

hri ;

as δr= r− 〈r〉, δA ~ 〈r〉 ⋅ δr, and A � hri2 . Substituting into Eq. (14) and

approximating the local average diffusivity by the free diffusivity D ’ D0 (no
restrictions for δn= 0), we obtain

ζ �
D0 � Di;1

Di;1
/ hðδAÞ2iz

A
2 / hðδrÞ2i

hri2
¼ CV2ðrÞ; ð15Þ

which is demonstrated by plotting ζ versus CV2(r) in Fig. 2d, where the correlation
coefficient= 0.8917 is high and a small intercept= 0.09 verifies this simple
relation. We note that Eq. (15) has been derived for small ζ and CV(r), and the
scatter close to the origin in Fig. 2d is indeed much closer to the straight
line. Similarly, a decrease of axial diffusivity due to increased amplitude of
periodically arranged beads was numerically observed in ref. 71.

In vivo MRI of healthy subjects. dMRI measurements were performed on five
healthy subjects (four males/one female, 21–32 years old) using a monopolar PGSE
sequence provided by the vendor (Siemens WIP 919B) on a 3T Siemens Prisma
scanner (Erlangen Germany) with a 64-channel head coil. For each subject, we
varied the diffusion time t= [22, 28, 34, 40, 50, 60, 70, 80, 90, 100] ms and fixed the
diffusion gradient pulse width δ at 15 ms. For each scan, we obtained three b= 0
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non-diffusion-weighted images (DWIs) and 62 DWIs of b-values b= [0.4, 1, 1.5]
ms/μm2 along [12, 20, 30] gradient directions for each b-shell, with an isotropic
resolution of (3 mm)3 and a field-of-view (FOV) of 210 × 204 mm2. The whole
brain volume was scanned within 30 slices, aligned parallel to the anterior com-
missure (AC)–posterior commissure (PC) line. GRAPPA with acceleration factor
= 2 and multiband with acceleration factor= 2 were used. All scans were per-
formed with the same TR/TE (repetition time/echo time)= 4000/139 ms. Total
acquisition time is ~60 min for each subject. In the main text, we focus on this
dataset. The data of 10 additional subjects scanned with a smaller voxel size,
exhibiting similar outcomes, are shown in Supplementary Information.

Our image processing DESIGNER pipeline is based on ref. 72 and includes five
steps: denoising, Gibbs ringing elimination, Eddy current and motion correction,
and Rician noise correction. For each voxel, we fitted dMRI data to the diffusion
and kurtosis tensor using weighted linear least square73, and calculated eigenvalues
of the diffusion tensor (in the order of λ1 ≥ λ2 ≥ λ3) and the fractional anisotropy
(FA) accordingly74. Experimental axial diffusivity is defined by D ≡ λ1 and
experimental axial kurtosis is defined by the apparent kurtosis along the principal
axis of the diffusion tensor.

Each subject’s mean FA map, averaged over all diffusion time points, was
registered to FSL’s (FMRIB Software Library) standard FA map with
FMRIB’s (Functional MRI of the Brain) linear and non-linear registration tools
(FLIRT, FNIRT)75,76. We retrieved the transformation matrix (FLIRT) and the
warp (FNIRT) to inversely transform Johns Hopkins University (JHU) DTI-based
WM atlas ROIs77 to the individual space. Cerebrospinal fluid (CSF) mask was
segmented by FSL, FAST78 and expanded by 1 voxel to exclude WM voxels close to
CSF. We focused on main WM tracts, such as anterior corona radiata, posterior
corona radiata, superior corona radiata, anterior and posterior limb of the internal
capsule, genu, midbody, and splenium of the CC.

To further discuss the variation of tissue properties in CC, we divided CC ROIs
defined in JHU DTI atlas into nine sub-regions in total (Fig. 4a), such as G1, G2,
G3 for the genu, B1, B2, B3 for the midbody, and S1, S2, S3 for the splenium. The
nine sub-regions are then co-registered and transformed to individual subject’s
space by using FSL.

In vivo MRI of multiple sclerosis patients. The dMRI measurements were per-
formed on five MS patients (five females, 32–48 years old) using a monopolar
PGSE sequence provided by the vendor (Siemens WIP 511E) on a 3T Siemens
Prisma scanner (Erlangen Germany) with a 64-channel head coil. For each subject,
we varied the diffusion time t= 21–110 ms and fixed the diffusion gradient pulse
width δ at 15 ms. For each time point, we obtained three b= 0 non-DWIs and
DWIs of b= 0.5 ms/μm2 along 30 gradient directions, with an isotropic resolution
of (3 mm)3 and an FOV of 222 × 222 mm2. A slab of the brain volume was scanned
within 15 slices, aligned parallel to the AC–PC line. All scans were performed with
the same TR/TE= 4200/150 ms. Total acquisition time of DWIs is ~15 min for
each subject.

Sagittal 3d MPRAGE (magnetization-prepared rapid gradient echo) brain
images were acquired with an isotropic resolution of (1 mm)3, an FOV of 256 ×
256 mm2, TR/TE= 2100/2.72 ms, and inversion time= 900 ms. Axial FLAIR brain
images were acquired with an anisotropic resolution of 0.6875 × 0.6875 × 5mm3,
an FOV of 220 × 220 mm2, TR/TE= 9000/90 ms, and inversion time= 2500 ms.

The image processing pipeline was the same as that in healthy subjects. MS
patients’ WM lesions were manually segmented by identifying hyper-intensity
regions in FLAIR images. The segmented lesions were further transformed to the
DWI space by using FLIRT and FNIRT75,76. The NAWM was segmented in
MPRAGE images by using FAST78 and transformed into the DWI space. To avoid
partial volume effect, we excluded voxels close to MS lesions and CSF by expanding
the mask of lesions and CSF by one voxel. An example of ROIs of MS lesions and
NAWM is shown in Fig. 5a.

Statistics and reproducibility. The normality of distributions of inner axonal
diameters in cross-sections with or without the presence of mitochondria was
tested by using Anderson–Darling test, with a null hypothesis of normal dis-
tribution at 0.05 significance level; the null hypothesis was rejected for both dia-
meter distributions with P-values < 0.001. Further, the two diameter distributions
were compared using one-sided Wilcoxon sum-rank test, with the null hypothesis
that axonal diameters with the presence of mitochondria are not larger than those
without. The significance level is 0.05.

Eigenvalues and axial diffusivity were calculated voxel by voxel and averaged
over each ROI. To evaluate the strength of axial diffusivity time dependence in

healthy subjects, we assumed that D(t) is a linear function of 1=
ffiffi

t
p

based on Eq. (1)
and calculated P-values with the null hypothesis of no positive correlation (one-
sided test). Both the time-dependent parameters (D

∞
, c) in WM lesions and

NAWM of MS patients did not pass the normality test (Anderson–Darling test)
and were therefore compared using a paired one-sided Wilcoxon signed-rank test.
For bulk diffusivity D

∞
, the null hypothesis is that D

∞
in lesions is not larger than

that in NAWM; for strength c of restrictions, the null hypothesis is that c in lesions
is not smaller than that in NAWM. The significance level is 0.05.

In this study, we chose one-tailed non-parametric test as we specifically
hypothesized a decrease in the strength c of restrictions in MS lesions as compared
with NAWM, and an increase in the bulk diffusivity D

∞
. Indeed, as (1) the inner

axonal diameters in cross-sections with the presence of mitochondria are larger
than those without based on the previous histological study45 and Fig. 6c, and (2)
mitochondria density is increased in MS lesions due to demyelination44, more
variation in axon caliber is expected in lesions with a corresponding decrease in c.
Similarly, we expect that D

∞
in MS lesions is larger than that in NAWM due to

demyelination40. We would like to note that the MS data is rather exploratory due
to the small sample size (n= 5), which increases the risk of type 2 errors. In
addition, the smallest possible P-value of a one-sided Wilcoxon signed-rank test
with n= 5 is 0.03125, which provides a lower-bound for the P-value in this study.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The SEM data and axon segmentation can be downloaded on our web page (http://cai2r.

net/resources/software). All human brain MRI data for this study are available upon

request. Data underlying Figs. 1–6 are provided as Supplementary Data.

Code availability
The source codes of Monte Carlo simulations can be downloaded on our github page

(https://github.com/NYU-DiffusionMRI).
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