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Abstract

We present a time-dependent formulation of coupled cluster theory. This theory al-

lows for direct computation of the free energy of quantum systems at finite temperature

by imaginary time integration and is closely related to the thermal cluster cumulant

theory of Mukherjee and co-workers. Our derivation highlights the connection to per-

turbation theory and zero-temperature coupled cluster theory. We show explicitly how

the finite-temperature coupled cluster singles and doubles amplitude equations can be

derived in analogy with the zero-temperature theory and how response properties can

be efficiently computed using a variational Lagrangian. We discuss the implementation

for realistic systems and showcase the potential utility of the method with calculations

of the exchange correlation energy of the uniform electron gas at warm dense matter

conditions.
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1 Introduction

In calculations of the electronic structure of molecules and materials, the effects of a finite

electronic temperature are usually not considered. This is sufficient for nearly all molec-

ular systems and for many systems in the condensed phase, because only a small number

of electronic states are thermally populated at typical temperatures. However, there are

cases where the electronic temperature plays a crucial role. In correlated electron materi-

als, interactions lead to low-energy electronic excitations and electronic phase transitions.1–5

Electronic free energy differences can also drive structural transitions, both in molecules,

such as in spin cross-over complexes,6 as well as in crystals.7 Hot electrons can be used to

drive new kinds of reactions, as seen in hot electron-driven chemistry on plasmonic nano-

particles.8 And finally, the properties of materials under extreme conditions,9 including at

high electronic temperatures,10 is also of interest for a variety of applications. For all these

problems, a quantum many-body theory at finite temperature is required, and this has lead

to renewed interest in computational approaches.

The simplest treatment of many-body systems is mean field theory, and mean field theory

at finite temperature, in the form of Hartree-Fock11 or density functional theory (DFT),12,13

is routinely used. In recent years, experimental interest in matter at high temperatures has

spurred much activity in finite temperature DFT.14–17 However, a description of electron

correlations beyond the mean-field/DFT level is often required for accurate computation

of chemical and material properties. Methods for the approximate treatment of correla-

tions based on finite-temperature perturbation theory and finite-temperature (Matsubara)

Green’s functions have been known for many years,18–20 and there has been some recent

interest in applying these techniques in an ab initio context.21,22 They are commonly used as

impurity solvers within dynamical mean field theory (DMFT)5,23,24 and the related dynam-

ical cluster approximation (DCA).1–4,25 Finite temperature quantum Monte Carlo (QMC)

methods such as determinantal QMC and path integral Monte Carlo (PIMC) have also been

studied for many years.26–30 However, for fermionic systems, QMC methods display a sign
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problem, limiting simulations to high temperatures, or requiring the introduction of addi-

tional constraints, such as the fixed node approximation in PIMC (called restricted PIMC

(RPIMC)).31,32 There has been recent work to explore formulations of QMC where the sign

problem is less severe under the conditions of interest, including the configuration path in-

tegral Monte Carlo (CPIMC)33 and density matrix quantum Monte Carlo (DQMC).34,35

Much of this research has been motivated by calculations on the uniform electron gas for the

benchmarking and/or parameterization of finite temperature density functionals.17,36,37 We

will return to this topic in Section 4.2.

The coupled cluster method, widely used for its accuracy at zero temperature,38–42 has

not seen widespread application at finite temperatures. Kaulfuss and Altenbokem were the

first to try to extend coupled cluster theory to finite temperatures by means of an exponential

ansatz for the density matrix.43 However, their formalism requires knowledge of the spectrum

of the interacting Hamiltonian and is therefore ill-suited to computations on realistic systems.

Mukherjee and coworkers have developed a more practical method which they have termed

the thermal cluster cumulant (TCC) method.44–48 This method is based on a thermally

normal ordered exponential ansatz for the interaction picture imaginary-time propagator.

The TCC method has a formal similarity to single reference and multi-reference coupled

cluster theories, but the applications have been limited to very small systems and semi-

analytical problems. Hermes and Hirata have recently presented a finite-temperature coupled

cluster doubles (CCD) method49 based on “renormalized” finite-temperature perturbation

theory.50 Hummel has independently developed a time-dependent coupled cluster theory51

which is closely related to Hirata’s renormalized perturbation theory. We will discuss some

aspects of these methods in Section 2.2.

In this paper we present an explicitly time-dependent formulation of coupled cluster

theory applicable to calculations at zero or finite temperature. Imaginary time integration

generates a coupled cluster approximation to the thermodynamic potential in the grand

canonical ensemble. This theory, which we will call finite-temperature coupled cluster (FT-
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CC), represents the finite temperature analogue of traditional coupled cluster in that it has

the same diagrammatic content. We highlight this fact by showing how the theory may

be derived directly from many-body perturbation theory. This theory is also equivalent

to a particular realization of the TCC method. In addition to the theory, we discuss the

implementation including analytic derivatives for response properties. Some benchmark

calculations are presented as a means of validating the implementation and evaluating the

accuracy of the method. Finally, we present calculations of the exchange-correlation energy

of the uniform electron gas (UEG) at conditions in the warm dense matter regime.

2 Theory

2.1 Finite temperature coupled cluster equations

Before discussing the details of the derivation of the FT-CC equations, it is instructive to

state the result and discuss the analogy with the zero-temperature theory. Conventional,

zero-temperature, coupled cluster theory is described in detail in a variety of reviews and

monographs.39,41,52,53 We will review the basic aspects of the theory in order to facilitate

comparison with the finite temperature theory developed in this paper. Recall that the

coupled cluster method can be derived from an exponential wavefunction ansatz

|ΨCC〉 = eT |Φ0〉, (1)

where |Φ0〉 is a single determinant reference. The T -operator is defined in some space of

configurations, {Φµ}, such that

T =
∑
µ

tµaµ (2)

where tµ is an amplitude and aµ is an excitation operator such that

aµ|Φ0〉 = |Φµ〉. (3)

4
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Generally, the T -operator is truncated at some finite excitation level. For example, letting

T = T1 + T2 yields the coupled cluster singles and doubles (CCSD) approximation. The

coupled cluster energy and amplitudes are then determined from a projected Schrodinger

equation:

〈Φ0|e−THeT |Φ0〉 = EHF + ECC (4)

〈Φµ|e−THeT |Φ0〉 = 0. (5)

These equations can be written explicitly in terms of the T -amplitude and molecular integral

tensors using diagrammatic methods38,53 or computer algebra.54,55 The correlation contribu-

tion to the energy has a particularly simple form in terms of the T1 and T2 amplitudes:

ECC =
∑
ia

tai fia +
1

4

∑
ijab

〈ij||ab〉(tabij + 2tai t
b
j). (6)

Though this wavefunction-based derivation is usually favored, the resulting energy has a

well-understood connection to perturbation theory (See for example Chapters 9.4 and 10.4

of Ref. 53).

In finite-temperature coupled cluster theory, we use an explicitly time-dependent formu-

lation. The time dependent analogues of the T -amplitudes are functions of an imaginary

time, τ , and will be denoted by sµ(τ). At finite temperature and chemical potential, we

denote the coupled cluster contribution to the grand potential as ΩCC such that, given a

particular reference,

Ω = Ω(0) + Ω(1) + ΩCC . (7)

The coupled cluster contribution is given by

ΩCC =
1

4β

∑
ijab

〈ij||ab〉
∫ β

0

dτ [sabij (τ) + 2sai (τ)sbj(τ)]

+
1

β

∑
ia

fia

∫ β

0

dτsai (τ) (8)

5
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with β the inverse temperature. In the limit β →∞ Equation 8 reduces to

lim
β→∞

ΩCC =
1

4

∑
ijab

〈ij||ab〉 lim
τ→∞

[sabij (τ) + 2sai (τ)sbj(τ)]

+
∑
ia

fia lim
τ→∞

sai (τ). (9)

In this limit, Ω→ E−µN . For an insulator, the correlation contribution to N will vanish at

zero temperature assuming that µ can be chosen such that the non-interacting and correlated

system have the same number of particles. This requires the non-interacting and correlated

energy gaps to have non-vanishing overlap which is typically the case, from which it follows

that

lim
β→∞

ΩCC = ECC . (10)

Comparing Equation 9 with Equation 6, it is clear that

lim
τ→∞

sai (τ) = tai lim
τ→∞

sabij (τ) = tabij . (11)

This is true as long as both amplitudes correspond to the same solution of the non-linear

amplitude equations. This correspondence also implies that the β →∞ limit of these time-

dependent amplitudes is related to the imaginary-time version of the amplitudes that appear

in time-dependent, wavefunction-based formulations of coupled cluster.56–60

The FT-CC amplitude equations closely resemble the amplitude equations of zero tem-

perature coupled cluster, and they are diagrammatically identical as we will discuss in Sec-

tion 2.3. This allows the equations to be written down in precise analogy with the zero-

temperature amplitude equations:

• replace tµ with sµ(τ ′)

• for each contraction, sum over all orbitals instead of just occupied or virtual orbitals

• include an occupation number from the Fermi-Dirac distribution (ni or 1 − na) with

6
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each index not associated with an amplitude

• multiply each term by −1

• for each term contributing to sµ(τ), multiply by an exponential factor exp[∆µ(τ ′− τ)]

and integrate τ ′ from 0 to τ .

As an example we compare the zero-temperature and finite-temperature versions of a term

linear in T1 (or S1(τ ′) at finite temperature) which contributes to T2 (or S2(τ) at finite

temperature):

tabij ←
1

∆ab
ij

P (ij)
∑
c

〈ab||cj〉tci (12)

sabij (τ) ← −P (ij)
∑
c

(1− na)(1− nb)nj〈ab||cj〉

×
∫ τ

0

dτ ′e(εa+εb−εi−εj)(τ ′−τ)sci(τ
′) (13)

The full FT-CCSD amplitude equations are given in Appendix A. We discuss the origin of

these specific rules in Sections 2.3 and 2.4.

2.2 Perturbation theory at zero and finite temperature

Perturbation theory for the many-body problem has a long history in chemistry and physics.

Time-independent Rayleigh-Schrodinger perturbation theory, time-dependent (or frequency-

dependent) many-body perturbation theory at zero temperature, and imaginary time-dependent

(or imaginary frequency-dependent) many-body perturbation theory at finite temperature

are discussed in a variety of monographs.18–20,53,61,62 For completeness, in Appendix B we

give explicit rules for the diagrammatic derivation of time-domain expressions for the shift

in the grand potential in the form most relevant to coupled cluster theory. As an example,

7
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applying these rules at second order yields

Ω(2) =
1

4β

∑
ijab

|〈ij||ab〉|2ninj(1− na)(1− nb)
[

β

εi + εj − εa − εb
+

1− eβ(εi+εj−εa−εb)

(εi + εj − εa − εb)2

]

+
1

β

∑
ia

|fai|2ni(1− na)
[

β

εi − εa
+

1− eβ(εi−εa)

(εi − εa)2

]
. (14)

In this expression, all sums run over all orbital indices. We use fpq and 〈pq||rs〉 to indicate

the one-particle and anti-symmetrized, two-particle elements of the interaction. We have

analytically performed the time integrals to obtain the final, time-independent expressions.

The terms containing exponential factors vanish when summed. However, one must be

careful when evaluating the terms where the energy denominators appear to vanish. Such

cases were called “anomalous” by Kohn and Luttinger63 and they require special considera-

tion to obtain the proper finite result. Since each term is an integral of a non-singular function

over a finite interval, each term in the sum should be individually finite. We explicitly include

the exponential factors in this discussion so that Equation 14 is finite term-by-term for finite

β. The second order correction can diverge as β →∞, but such divergences are well-known

in systems that are metallic at 0th order. In such cases, finite temperature perturbation

theory will not reduce to perturbation theory at zero temperature, as first observed by Kohn

and Luttinger.63 This is hardly surprising since the two perturbation theories compute dif-

ferent quantities. This is particularly clear if we express the 2nd order energy corrections in

terms of derivatives of the exact energy, E, with respect to a coupling constant, λ:

EMP2 =
∂2E

∂λ2

∣∣∣∣
λ=0,N

EFT−MP2 =
∂2E

∂λ2

∣∣∣∣
λ=0,µ

. (15)

For a metallic system, the derivative at fixed µ will differ from the derivative at fixed N even

as T → 0, simply because the chemical potentials of the Hartree-Fock reference system and

the interacting system are different. Santra and Schirmer published a pedagogical discussion

which elaborates on this particular aspect of finite temperature perturbation theory.64

8
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In light of this discussion, it is clear that the distinction between the two quantities in

Equation 15, termed the Kohn-Luttinger conundrum by Hirata and He,50 does not imply any

particular problem with FT-MBPT; it simply reflects the different conditions under which the

partial derivative is taken, from the different ensembles in the zero- and finite-temperature

theories. For this reason, we do not discuss the “renormalized” finite-temperature MBPT of

Hirata and He50 and the related coupled cluster doubles method,49 which incorrectly modify

finite temperature perturbation theory to force these two derivatives to be the same in the

limit of zero temperature.

2.3 Time-dependent coupled cluster from perturbation theory

The interpretation of coupled cluster theory in the context of many-body perturbation the-

ory can be used to directly define FT-CC theory. The essential point is to require that

the energy and amplitude equations reproduce exactly the diagrammatic content of the

zero-temperature theory. However, the time-dependent perturbation theory will in general

necessitate the consideration of different time orderings. Consider the open diagrams shown

in Figure 1 as an example. We must consider both diagrams A and B, and each corresponds

A B

C

Figure 1: Different time-orderings of a term relevant to CCSD.

to nested integrals of the form

A ∼ vjkbc (τ)

∫ τ

0

dτ ′f bj (τ
′)

∫ τ ′

0

dτ ′′vcaki (τ
′′) (16)

B ∼ vjkbc (τ)

∫ τ

0

dτ ′vcaki (τ
′)

∫ τ ′

0

dτ ′′f bj (τ
′′) (17)

9
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where we have omitted the summation and the factors of occupation numbers which will be

common in both terms. We have used vpqrs(τ) and fpq(τ) to represent the one and two-electron

matrix elements in the interaction picture:

vpqrs(τ) ≡ 〈pq||rs〉e(εp+εq−εr−εs)τ

fpq(τ) ≡ fpqe
(εp−εq)τ . (18)

These nested integrals can be simplified in a manner analogous to the factorization of per-

turbation theory denominators in coupled cluster at zero temperature (See Chapters 5-6 of

Ref. 53). By defining

V pq
rs (τ) ≡

∫ τ

0

dτ ′vpqrs(τ
′) Fpq(τ) ≡

∫ τ

0

dτ ′fpq(τ
′), (19)

such that

fpq(τ) =
d

dτ
Fpq(τ) vpqrs(τ) =

d

dτ
V pq
rs (τ), (20)

the reverse of the product rule can be applied to the sum of the two time orderings to yield

an expression where all quantities are evaluated at a single time

A+B ∝ vjkbc (τ)F b
j (τ)V ca

ki (τ) (21)

which we represent as diagram C of Figure 1. This is the time-domain equivalent of the de-

nominator factorization that allows zero-temperature coupled cluster diagrams to be written

without regard to the ordering of the different factors of T . Given this factorization, we may

define S-amplitudes at first order such that

sai (τ)
[1]
I ≡ −ni(1− na)Fai(τ) (22)

sabij (τ)
[1]
I ≡ −ninj(1− na)(1− nb)V ab

ij (τ) (23)

10
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where we use the subscript I to emphasize that we are using the interaction picture. The su-

perscript indicates that they are first order in the interaction. The finite temperature coupled

cluster equations at some truncated order (usually singles and doubles) then follow directly

from their diagrammatic representation. This guarantees by construction that the FT-CC

amplitude equations reproduce exactly the diagrammatic content of the corresponding zero

temperature theory.

For the purposes of this derivation, we have used the interaction picture. However, there

is a numerical difficulty associated with the time-dependent exponential factors which, at

long times, will be become exponentially large or small. This leads to problems of overflow

or underflow when storing the amplitudes as floating point numbers. This difficulty can be

largely overcome by moving to the Schrodinger picture:

sµ(τ) ≡ sµ(τ)Ie
−∆µτ . (24)

At first order, the Schrodinger-picture singles and doubles amplitudes are proportional to

the Schrodinger-picture matrix elements which are time-independent in the usual case. Fur-

thermore, these amplitudes are well-behaved in the limit as τ → ∞ in that they reduce to

the zero temperature coupled cluster amplitudes. The FT-CCSD amplitude equations for

the Schrodinger-picture amplitudes are given in Appendix A.

2.4 Relationship to thermal cluster cumulant theory

The finite temperature coupled cluster method that we have presented here can also be

viewed as a particular realization of the thermal cluster cumulant (TCC) theory developed by

Mukherjee and others.44–48 If we denote the thermal normal ordering of a string of operators

by N [. . .]0, then the TCC method uses a normal-ordered ansatz for the imaginary-time

propagator:

UI(τ) = N
[
eS(τ)+X(τ)

]
0
. (25)

11
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Here, S(τ) is an operator and X(τ) is a number. The imaginary time propagator obeys a

Bloch equation,

−∂UI
∂τ

= VI(τ)UI(τ), (26)

from which differential equations for S(τ) and X(τ) may be determined. The expression for

the thermodynamic potential follows directly from the ansatz of Equation 25:

Ω = Ω(0) − 1

β
X(β). (27)

As shown in Ref. 45, Equation 26 implies coupled differential equations for S and X.

Solving these equations by integration yields the FT-CC equations

X(τ) = −τΩ(1) −
∫ τ

0

dτ ′
[
V N
I (τ)N [eS(τ)]0

]
fully−contracted

(28)

S(τ) = −
∫ τ

0

dτ ′
[
V N
I N [eS(τ)]0

]
C
. (29)

V N
I (τ) is the thermally normal-ordered component of the interaction, and the first order

contribution to the free energy, Ω(1), is the number component of V . The subscript C

in Equation 29 indicates that we only consider terms in which V is connected to all the

amplitudes by at least one contraction. Inserting Equation 28 into Equation 27 yields the

first order contribution to the grand potential plus the interaction picture version of the

FT-CC contribution to the grand potential (Equation 8). A minor difference is that in

our formulation we have absorbed the occupation numbers into the definition of the S-

amplitudes, whereas in the TCC method the occupation numbers arise as a result of thermal

contractions involving the S operators. The connected cluster form of Equation 29 leads to

the same set of diagrams obtained in coupled cluster. When properly interpreted, these

diagrams reproduce the FT-CC amplitude equations in the interaction picture. Using

S(τ) = S1(τ) + S2(τ) (30)

12
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leads to the FT-CCSD method we have described.

2.5 Response properties

The primary utility of the thermodynamic potential is that differentiation will generate

ensemble averages. In practice we most often require the average energy, entropy, and

number of particles:

〈E〉 = Ω + T 〈S〉+ µ〈N〉 (31)

〈S〉 = −∂Ω

∂T
〈N〉 = −∂Ω

∂µ
. (32)

The partial derivatives in Equation 32 are partial thermodynamic derivatives but still require

the inclusion of the response of any parameters which determine the form of Ω. In general, an

observable corresponding to an operator O can be computed by defining a new Hamiltonian

H[α] ≡ H + αO (33)

and taking the derivative of the thermodynamic potential

〈O〉 =
dΩ[α]

dα

∣∣∣∣
α=0

. (34)

Just like the coupled cluster energy at zero temperature, ΩCC is not a variational function

of the amplitudes. This complicates the implementation of analytic derivatives, but this dif-

ficulty can be largely mitigated by using a variational Lagrangian as in the zero temperature

theory.52,53,65 The finite temperature free-energy and amplitude equations have the form

sµ(τ) +

∫ τ

0

dτ ′e∆µ(τ ′−τ)Sµ(τ ′) = 0 (35)

1

β

∫ β

0

E(τ) = ΩCC . (36)

The precise forms of E and S are given in Appendix A. The computation of properties can
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be simplified by defining a Lagrangian, L, with Lagrange multipliers λµ(τ)

L ≡ 1

β

∫ β

0

E(τ)

− 1

β

∫ β

0

dτλµ(τ)

[
sµ(τ) +

∫ τ

0

dτ ′e∆µ(τ ′−τ)Sµ(τ ′)

]
(37)

such that variational optimization of L with respect to the λ-amplitudes yields the FT-

CC amplitude equations. Variational optimization with respect to the S-amplitudes yields

equations for λµ. The solution of the FT-CC λ-equations is discussed in Appendix C.

Once the λ-amplitudes have been determined, any first order property may be computed

from the partial derivative of the Lagrangian. In practice, the specifics of the numerical

evaluation of the time integrals must be considered. Some details of the implementation of

analytic derivatives are discussed in Appendix C.

3 Implementation

We have developed a simple pilot implementation of FT-CCSD interfaced to the PySCF

electronic structure package.66 In our implementation, the numerical integration is performed

on a uniform grid using Simpson’s rule for the quadrature weights (see Appendix D for

details). Though effective at high temperatures, this integration scheme is far from optimal

at low temperatures and can be improved considerably by taking into account the structure

of the S amplitudes at low temperature. For example, we know that

lim
τ→0

sµ(τ) = 0 (38)

lim
τ→∞

sµ(τ) = [const.], (39)

and this information can be used to develop much more efficient quadrature schemes at low

temperatures. However, we have not pursued this in this work.

In our implementation, the integrals are contracted with the occupation numbers once
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before the start of the iterations. A guess for the S-amplitudes is obtained from the MP2

amplitudes or from a previous calculation. Using the modified integrals and the guess, the

coupled cluster iterations proceed in two steps. First, S1ai (τ
′) and S2abij (τ ′) of Equations 44

and 45 are evaluated at each time point. Second, these quantities are integrated as de-

scribed in Appendix D to obtain new amplitudes. In our implementation we compute the

amplitudes for all times at each iteration. It is possible to invert this algorithm so that the

amplitudes are converged in a point-by-point manner starting with τ = 0. The number of

iterations needed to achieve convergence is strongly temperature dependent: more iterations

are generally required at lower temperatures. In practice it is also sometimes necessary to

damp the iterations to achieve convergence at lower temperatures. Direct inversion of the

iterative subspace (DIIS) convergence acceleration67–69 could potentially be used to speed

up convergence at the cost of additional storage.

We used the formulation of Stanton and Gauss70 to implement the amplitude equations

efficiently. Similar intermediates are used in the solution of the λ-equations. At low tem-

peratures, the FT-CCSD equations can be somewhat simplified in that summations over all

orbitals can be restricted to those terms where the products of occupation numbers are non-

negligible. In other words, if 1−ni or na are small enough, some terms can be ignored in the

sums. Unfortunately, this threshold must be very tight in practice, and this simplification

did not provide any noticeable gains for the systems considered in this study. However, this

approximation will be absolutely necessary in the limit as β →∞ to prevent overflow.

4 Results

4.1 Benchmark calculation

In order to validate the implementation of the method and test its accuracy, we report

calculations on an exactly solvable system: Be atom in a minimal basis. It does not make

physical sense to consider a vacuum system in the grand canonical ensemble, but the model
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is nonetheless well-defined in a finite basis. This model system involves 5 spatial orbitals and

thus can be solved exactly. In the grand canonical ensemble an exact solution requires, at

least in principle, tracing over all possible particle number and spin sectors. In all calculations

we use the orbitals computed at zero temperature.

10.0 3.0 1.0 0.3 0.1 0.03

kbT (Hartree)

1.0

0.8

0.6

0.4

0.2

0.0C
o
rr

e
la

ti
o
n
 c

o
n
tr

ib
u
ti

o
n
 t

o
 Ω FT-MP2

FT-CCSD

Exact

Figure 2: The FT-MP2, FT-CCSD, and exact correlation contributions to the grand poten-
tial in Eh for the Be model. FT-CCSD at worst underestimates the correlation contribution
by ∼ 13%.

For this particular system, FT-CCSD performs very well. Figure 2 shows the correlation

contribution to the thermodynamic potential computed with FT-MP2, FT-CCSD, and ex-

act diagonalization. The temperature range was chosen to be high enough that the finite

temperature effects are quite significant, but not so high that the non-interacting system

becomes exact. FT-CCSD universally outperforms FT-MP2, as we might expect, and the

energies are at worst in error by 13%. The good performance of FT-CCSD persists even

in the problematic cases where Ω(2) is a significant overestimate of the exact correlation

contribution.

We have also used this model system to study the convergence with respect to the grid

used for numerical integration. The relative error in the computed value ΩCC due to numer-

ical integration is shown in Figure 3 as a function of the number of grid points. The number

of grid points required to obtain a specified accuracy depends strongly on the temperature.

In general, it will also depend on the energy spectrum of the particular problem. In this
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Figure 3: The convergence of the correlation contribution to the grand potential of the Be
model with respect to the size of integration grid for different temperatures.

case, acceptable accuracy can be obtained at high temperatures (kBT ≥ 1.0 Eh) with ∼ 10

grid points. At lower temperatures more grid points are required, and in practice one should

ensure convergence of the property of interest with respect to the quadrature grid. Also,

we have observed that the amplitude equations require less damping and converge in fewer

iterations when more grid points are used.

4.2 The uniform electron gas at finite temperature

The regime of “warm dense matter” has been the subject of much recent theoretical and ex-

perimental interest.9,37,71 Warm dense matter is loosely characterized by an electron Wigner-

Seitz radius, rs, and reduced temperature, θ = kBT/EF , both of order 1. The theoretical

description of matter under these conditions is challenging due to the similar importance of

thermal effects and quantum exchange and correlation. The uniform electron gas at warm

dense matter conditions has emerged as an essential test for theory and an ingredient for

the parameterization of various flavors of finite temperature DFT.17,36,72–74 Ref. 37 offers a

comprehensive review which highlights progress in quantum Monte Carlo (QMC) calcula-

tions in particular. In the past, some calculations have been reported in the grand canonical

ensemble,72,73,75,76 but recent work has focused on high quality QMC calculations on both
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the polarized32,77–79 and unpolarized32,80,81 UEG in the canonical ensemble. The fixed node

approximation of RPIMC is a source of uncontrolled error,82 and since the work of Brown

et al,32 there has been considerable effort to obtain more accurate results over a wider range

of rs.
34,35,77–81,81,83–85 In these studies the N = 33 polarized UEG and N = 66 unpolarized

UEG have emerged as benchmark systems.
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Figure 4: Total energies per electron of the uniform electron gas computed with FT-CCSD.
The RPIMC results are those of Brown et al.32

In Figure 4 we show the total energy per electron of the unpolarized UEG computed with

FT-CCSD for several relevant values of rs and θ. We use a basis of 57 plane waves and the

chemical potential is adjusted so that N = 38. This one-dimensional root finding problem,

N(µ)−38 = 0, is solved with the secant method and takes 4-5 iterations on average. 10 grid

points are used for all calculations. The error due to the finite grid will be maximal at low
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temperatures and at large rs, but even for rs = 4 and θ = 0.25, we estimate the impact of

this error on the exchange correlation energy be less than 1%. Comprehensive tables of all

our results are given in the supporting information where we also show results for N = 14

and N = 66 electrons. In Figure 5 we show the exchange-correlation energy for the warm-

dense UEG. We also offer comparisons with RPIMC calculations32 for all temperatures and

permutation-blocking PIMC81 for θ = 1. Note that, while the fixed node approximation of

RPIMC leads to significant errors for the polarized UEG,77,84 the fixed node error for the

unpolarized UEG is much less severe.81 Therefore, RPIMC provides a reasonable benchmark

for the range of rs presented here.

Note that the QMC and FT-CCSD calculations compute different quantities, as canonical

and grand-canonical ensemble results will only agree in the thermodynamic limit, and finite

size effects in both cases are large. In addition, the FT-CC works within a (small) orbital

basis, while both QMC simulations have no basis set error. Nonetheless, the comparison

between the two shows that the equation of state is qualitatively similar. Thus as improved

implementations of FT-CC appear, we expect it will become a promising tool for the study

of warm dense matter.

5 Conclusions

In this work we have shown how an explicitly time-dependent formulation of coupled cluster

can be used to develop a finite temperature coupled cluster theory. The resulting FT-

CC theory can be derived directly from many-body perturbation theory and is formally

equivalent to the normal-ordered ansatz of the TCC method. In addition to the derivation

of the FT-CCSD amplitude equations, we have also shown how first-order properties may be

computed as analytic derivatives using a variational Lagrangian. Preliminary calculations

on the uniform electron gas show that FT-CC methods are promising candidates for non-

perturbative, non-stochastic computation of the properties of quantum systems at finite
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Figure 5: Exchange-correlation energies per electron of the uniform electron gas computed
with FT-CCSD. The RPIMC results are those of Brown et al.32
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temperature.

For large-scale application, a variety of practical improvements are still necessary:

• Specialization to restricted reference

• Use of disk to lower memory footprint

• MPI parallelization over time points

• More stable iteration of the amplitude/λ equations

These improvements mimic the algorithmic advances that have made efficient, black-box

implementation of modern coupled cluster methods feasible. There is also further room for

improvement in the low temperature regime where the simple structure of the S-amplitudes

should allow for a reduction of the computational cost.

Finally, it should be noted that the time-dependent formulation of coupled cluster pre-

sented here is remarkably general. We have shown how it can be used to unify coupled

cluster, thermal cluster cumulant, and many-body perturbation theories into a computa-

tional method well-suited to practical implementation. However, further generalizations

including the extension to systems out of equilibrium, are possible and are the subject of

current investigation.
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A FT-CCSD amplitude equations

The FT-CCSD contribution to the thermodynamic potential, given in Equation 8, can be

written as

ΩCC =
1

β

∫ β

0

E(τ) (40)

where

E(τ) =
∑
ia

fias
a
i (τ) +

1

4

∑
ijab

〈ij||ab〉[sabij (τ) + 2sai (τ)sbj(τ)]. (41)

Note the analogy to the standard, zero-temperature, coupled cluster energy expression. The

singles and doubles equations similarly have the simple form

sai (τ) = −
∫ τ

0

dτ ′e(εa−εi)(τ ′−τ)S1ai (τ
′) (42)

sabij (τ) = −
∫ τ

0

dτ ′e(εa+εb−εi−εj)(τ ′−τ)S2abij (τ ′) (43)

where the integrands, S1 and S2, are precisely the equations of a zero-temperature CCSD

iteration except that each open line that connects to a Hamiltonian fragment carries with it

an occupation number:

S1ai (τ
′) = (1− na)nifai +

∑
b

(1− na)fabsbi(τ ′)−
∑
j

nifjis
a
j (τ
′) +

∑
jb

〈ja||bi〉sbj(τ ′)

+
∑
jb

fjbs
ab
ij (τ ′) +

1

2

∑
jbc

(1− na)〈aj||bc〉sbcij (τ ′)−
1

2

∑
jkb

ni〈jk||ib〉sabjk(τ ′)−
∑
jb

fjbs
b
i(τ
′)saj (τ

′)

+
∑
jbc

(1− na)〈ja||bc〉sbj(τ ′)sci(τ ′)−
∑
jkb

〈jk||bi〉sbj(τ ′)sak(τ ′)−
1

2

∑
jkbc

〈jk||bc〉sbi(τ ′)sacjk(τ ′)

− 1

2

∑
jkbc

〈jk||bc〉saj (τ ′)sbcik(τ ′) +
∑
jkbc

〈jk||bc〉sbj(τ ′)scaki(τ ′) +
∑
jkcd

〈jk||bc〉sbi(τ ′)scj(τ ′)sak(τ ′) (44)
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S2abij (τ ′) = ninj(1− na)(1− nb)〈ab||ij〉+ P (ij)
∑
c

nj(1− na)(1− nb)〈ab||cj〉sci(τ ′)

− P (ab)
∑
k

ninj(1− nb)〈kb||ij〉sak(τ ′) + P (ab)
∑
c

(1− nb)fbcsacij (τ ′)− P (ij)
∑
k

njfkjs
ab
ik(τ ′)

+
1

2

∑
cd

(1− na)(1− nb)〈ab||cd〉scdij (τ ′) +
1

2

∑
kl

ninj〈kl||ij〉sabkl (τ ′)

+ P (ij)P (ab)
∑
kc

nj(1− nb)〈kb||cj〉sacik (τ ′) +
1

2
P (ij)

∑
cd

(1− na)(1− nb)〈ab||cd〉sci(τ ′)sdj (τ ′)

+
1

2
P (ab)

∑
kl

ninj〈kl||ij〉sak(τ ′)sbl (τ ′)− P (ij)P (ab)
∑
kc

(1− na)nj〈ak||cj〉sci(τ ′)sbk(τ ′)

− P (ij)
∑
kc

fkcs
c
i(τ
′)sabkj(τ

′)− P (ab)
∑
kc

fkcs
a
k(τ
′)scbij (τ

′) + P (ab)
∑
kcd

(1− na)〈ka||cd〉sck(τ ′)sdbij (τ ′)

− P (ij)
∑
klc

ni〈kl||ci〉sck(τ ′)sablj (τ ′) + P (ij)P (ab)
∑
kcd

(1− na)〈ak||cd〉sci(τ ′)sdbkj(τ ′)

− P (ij)P (ab)
∑
klc

ni〈kl||ic〉sak(τ ′)scblj (τ ′) +
1

2
P (ij)

∑
klc

nj〈kl||cj〉sci(τ ′)sabkl (τ ′)

− 1

2
P (ab)

∑
kcd

(1− nb)〈kb||cd〉sak(τ ′)scdij (τ ′) +
1

4

∑
klcd

〈kl||cd〉scdij (τ ′)sabkl (τ
′)

+
1

2
P (ij)P (ab)

∑
klcd

〈kl||cd〉sacik (τ ′)sdblj (τ ′)− 1

2
P (ab)

∑
klcd

〈kl||cd〉scakl (τ ′)sdbij (τ ′)

− 1

2
P (ij)

∑
klcd

〈kl||cd〉scdki(τ ′)sablj (τ ′)− 1

2
P (ij)P (ab)

∑
kcd

(1− nb)〈kb||cd〉sci(τ ′)sak(τ ′)sdj (τ ′)

+
1

2
P (ij)P (ab)

∑
klc

nj〈kl||cj〉sci(τ ′)sak(τ ′)sbl (τ ′) +
1

4
P (ij)

∑
klcd

〈kl||cd〉sci(τ ′)sdj (τ ′)sabkl (τ ′)

+
1

4
P (ab)

∑
klcd

〈kl||cd〉sak(τ ′)sbl (τ ′)scdij (τ ′)− P (ij)P (ab)
∑
klcd

〈kl||cd〉sci(τ ′)sak(τ ′)sdblj (τ ′)

− P (ij)
∑
klcd

〈kl||cd〉sck(τ ′)sdi (τ ′)sablj (τ ′)− P (ab)
∑
klcd

〈kl||cd〉sck(τ ′)sal (τ ′)sdbij (τ ′)

+
1

4
P (ij)P (ab)

∑
klcd

〈kl||cd〉sci(τ ′)sak(τ ′)sbl (τ ′)sdj (τ ′). (45)

These expressions are most easily obtained by the rules given in Section 2.1. Note that the

Fock matrix, f , is meant to represent only the 1st order part and therefore does not include

the diagonal (orbital energies).
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B Rules for finite-temperature, diagrammatic pertur-

bation theory

The contributions to the free energy at some finite order, n, in perturbation theory can

be enumerated in the time domain by a diagrammatic procedure. There are many differ-

ent methods for this purpose, but we will use diagrams which mimic the anti-symmetrized

Goldstone diagrams common in quantum chemistry. We will imagine a time axis going from

bottom to top and the basic diagrammatic components are the same as those described in

Chapter 4 of Ref. 53. The nth order contribution to the shift in the grand potential can be

obtained by the following procedure:

1. Draw all topologically distinct diagrams with n interactions. Diagrams differing by the

time-order of non-equivalent interactions are considered distinct as with other types of

Goldstone diagrams.

2. Associate a unique orbital index with each directed line.

3. Associate a unique imaginary time (τ1, τ2, . . .) with each interaction.

4. With each 1-electron interaction associate a factor like fpqe
(εp−εq)τ where p is the index

of the outgoing line, q is the index of in-going line, and τ is the time associated with

the particular interaction.

5. With each 2-electron interaction, associate a factor like 〈pq||rs〉e(εp+εq−εr−εs)τ where

p, q, r, s are the indices of the left out-going, right outgoing, left incoming, and right

incoming lines respectively. τ is the time associated with the interaction.

6. Integrate each intermediate time from 0 to the next labeled time. The final time is

integrated from 0 to β: ∫ β

0

dτf . . .

∫ τ3

0

dτ2

∫ τ2

0

dτ1 . . . (46)
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7. Sum over all orbital indices.

8. Multiply the overall diagram by a factor of (−1)n−1(−1)l+h/β where l is the number

of closed loops and h is the number of hole lines.

9. For anti-symmetrized diagrams divide by 2s where s is the number of pairs of equivalent

fermion lines. If the standard (direct) interactions are used, the diagram should be

divided by 2 if it is symmetric with respect to reflection across a vertical line.

These rules can be used, at least in theory, to derive explicit expressions for the shift in the

grand potential at any finite order in perturbation theory. In practice, performing the time

integrals becomes increasingly cumbersome at higher order. This method can be viewed as

an alternative to the frequency space method which will involve the evaluation of Matsubara

sums.

C The FT-CCSD λ equations

The implementation of the FT-CCSD λ-equations mirrors that of the zero-temperature the-

ory, but we must explicitly take into account the numerical integration scheme in order to

faithfully reproduce finite difference differentiation (see Appendix D for the notation and

details pertaining to the numerical integration). Using a vector notation, the Lagrangian

can be written as

L =
1

β
gyE

y[sy]− 1

β
gyλ

y ·
{

sy +Gy
xe

∆(τx−τy)Sx[sx]
}

(47)

where we have used the fact that all terms in the amplitude equations are evaluated at the

same time. Taking the derivative with respect to a particular amplitude at a specific time

point (sxµ) yields an equation for the λ-amplitudes

λµx =
∂E[sx]

∂sxµ
− gyλνy

Gy
x

gx
e∆ν(τx−τy)∂S

x
ν [sx]

∂sxµ
(48)
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where we have used index notation with implied summations. If we define a quantity

λ̃νx ≡ gyλ
νyG

y
x

gx
e∆ν(τx−τy) (49)

we can write the λ equations in a form closely resembling the zero temperature analogue:

λµx =
∂E[sx]

∂sxµ
− λ̃νx

∂Sxν [sx]

∂sxµ
. (50)

Since the amplitude equations are diagrammatically identical to the zero temperature

amplitude equations, the λ equations will also involve the same diagrams. The only difference

is that we must in each iteration first compute λ̃ from λ and then compute the new λ

amplitudes at each time point. Properties can then be evaluated by evaluating L with the

appropriate derivative integrals. For E, S and N , we require derivatives of the occupation

numbers with respect to µ and β:

∂np
∂µ

= βnp(1− np)
∂np
∂β

= (µ− εp)np(1− np). (51)

As in the zero temperature formulation, this final step can be accomplished by contraction

with response-density tensors.

A slight complication arises when derivatives with respect to β (or T ) are required. In

this case we must also consider the terms which are proportional to the derivatives of g and G

which will in general depend on β. The specific form of these derivatives will depend on the

particular quadrature scheme. In this study, we have used Simpson’s rule on a uniform grid

which makes these terms simple to compute. Finally, there will some contributions from the

locations of the grid points which will depend on β. These contributions will vanish in the

limit of a dense grid, but are necessary to faithfully reproduce the finite difference derivatives

when using a small number of grid points.
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D Numerical integration

Our implementation is general enough to use a generic numerical quadrature. A function,

I(τ), evaluated at the grid points will be indicated as Ix ≡ I(τx); the n roots are labeled by

x, y, . . .. Integrals are then approximated as

∫ β

0

I(τ)dτ ≈
∑
x

gxIx (52)∫ τy

0

I(τ)dτ ≈
∑
x

Gx
yIx (53)

where g and G are the tensors of weights.

In this study we have employed a uniform grid for the sake of simplicity. For n grid

points, the first grid point is at τ = 0, the last is at τ = β, and the spacing between the

points is given by δ = β/(n− 1). Simpson’s rule is used for all integrations:

∫ a

0

I(τ)dτ =
δ

3
[I1 + 4I2 + 2I3 + 4I4 + . . .+ In] . (54)

This defines the weights, g and G. The uniform grid means we only need to perform integrals

from 0 to a where a is a grid point, and no interpolation is required.

To compute thermodynamic quantities, we furthermore require the derivatives of the

weight tensors with respect to β. Since the elements of these tensors are all linear in β, the

derivative is trivial.
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