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Abstract—While segmentation consists in partitioning a given
image into meaningful constituents in order to identify relevant
structures such as homogeneous regions or edges, registration,
given two images, aims at finding an optimal orientation-
preserving one-to-one deformation aligning the structures visible
in an image into the corresponding ones in the other. Recently,
intertwining both tasks into a single framework has proven to
yield better results in terms of accuracy —in particular when
the images exhibit weak boundary definition —and increase of
reliability of the encoded structure matching —since now, not
only based on intensity distribution comparison but also on
geometrical and topological features —. In line with this idea, we
propose going a step further by adding explicitly some dynamics
in the modelling, i.e., by making the minimization problem
both space and time-dependent so that the correlation between
both tasks is achieved through the process, connecting thus the
problem to an interpolation one. The shapes to be matched are
viewed as Saint Venant-Kirchhoff materials, a special instance
of hyperelastic ones, and are implicitly modelled by level-set
functions. These are evolved in order to minimize a functional in-
cluding both a nonlinear-elasticity-based regularizer prescribing
the physical nature of the deformation and a term penalizing
the shape misalignment, thus promoting structure matching
rather than intensity pairing. Theoretical results emphasizing
the mathematical soundness of the model are provided, among
which the existence of minimizers and the existence of a weak
viscosity solution to the related evolution problem. The model is
then applied to the longitudinal registration of hepatic dynamic
contrast-enhanced MRI sequences and shows good performance.
This application has an important impact on the computer-aided
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follow-up of patients suffering from liver cancers.
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cosity solutions, hepatic DCE-MRI sequences.

I. INTRODUCTION

Multitask frameworks and especially variational ones have

demonstrated significant improvements over sequential ap-

proaches. The former cover a large spectrum of image pro-

cessing problems including combined segmentation and reg-

istration models (see references herein below); joint image

reconstruction and motion estimation [2], [8], [10], [26]; joint

reconstruction and registration for post-acquisition motion

correction [11] with the goal to reconstruct a single motion-

free corrected image and retrieve the physiological dynamics

through the deformation maps, joint optical flow estimation

with phase field segmentation of the flow field [7], or joint

segmentation/optimal transport models [5] (to determine the

velocity of blood flow in vascular structures). Sharing repre-

sentation between tasks and carefully intertwining them allows

to reduce error propagation, to create synergies, to compensate

for some possible flaws such as image quality impairment,

while increasing the accuracy of the outcomes and bridging

the gap towards generalization.

Joint segmentation and registration models such as [16], [18]

(joint phase field approximation and registration), [21] (model

based on metric structure comparison), [15], [25] (level set

formulation that merges the piecewise constant Mumford-Shah

model with registration principles), [17] (grounded in the ex-

pectation maximization algorithm), [14] (based on a nonlocal

characterization of weighted-total variation and nonlocal shape

descriptors), or [1], [20], [23], [24], [27], fall within this

framework.978-1-7281-8750-1/20/$31.00 ©2020 European Union
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Registration can be seen as the incorporation of prior

information —such as topological constraints for instance,

since the one-to-one property of the deformation makes the

moving shape homeomorphic to the original one —in the

segmentation process. By the same token, accurate segmented

structures enable one to drive the registration process correctly

by transferring edges for instance. The primary scope of the

paper is thus to go one step further in this bi-task formalism

by explicitly introducing some dynamics in the modelling, i.e.,

by making the optimization problem both space and time-

dependent phrased then on a Sobolev space of Banach-space-

valued functions. The model promotes large deformations in a

nonlinear-elasticity-based setting, and includes a fidelity mea-

sure fostering shape overlaps and relying on nonlocal shape

descriptors from the piecewise constant Mumford-Shah model

in a spatio-temporal setting.

This model is then applied to the longitudinal computer-

aided diagnosis and follow-up of hepatic diseases. In clinical

routine, Dynamic Contrast Enhancement MRI (DCE-MRI) is

a standard for liver cancers such as HCC (Hepato-Cellular

Carcinoma) for instance [3]. In DCE-MRI four main phases

may be visualized: at non-injected phase (phase I), the lesion

is difficult to differentiate from healthy tissues; at contrasted

arterial phase (phase II), the HCC is enhanced when compared

with the surrounding liver tissues; and at the portal and delayed

phases (phases III and IV), the signal of the HCC appears

slightly lower than the surrounding liver, defined as wash

out. In this context, our joint model serves as a registration

tool of such sequences and shows good behavior with high

Dice coefficient values. As a long-term vision, this will surely

improve computerized analysis of DCE-MRI volumes in the

follow-up of patients suffering from liver cancers as HCC.

II. MATHEMATICAL MODELLING

A. Mathematical background

Let Ω be a connected bounded open subset of R
2 of class

C1. Let us denote by R : Ω̄ → R the Reference image

assumed to be sufficiently smooth and by T : Ω̄ → R the

Template image. The shape contained in the Template image

is assumed to be modelled by a Lipschitz continuous function

Φ0 (input of the problem) whose zero level line is the shape

boundary. Denoting by C the zero level set of Φ0 and by

w ⊂ Ω the open set it delineates, Φ0 is chosen such that

C = {x ∈ Ω |Φ0(x) = 0}, w = {x ∈ Ω |Φ0(x) > 0} and

Ω \ w̄ = {x ∈ Ω |Φ0(x) < 0}. For theoretical and numerical

purposes, we may consider a linear extension operator (see [6,

p. 158]) P : W 1,∞(Ω) → W 1,∞(R2) such that for all Φ ∈
W 1,∞(Ω), (i) PΦ|Ω = Φ, (ii) ‖PΦ‖L∞(R2) ≤ C ‖Φ‖L∞(Ω)

and (iii) ‖PΦ‖W 1,∞(R2) ≤ C ‖Φ‖W 1,∞(Ω), with C depending

only on Ω. By this extension process, we consider then that

Φ0 ∈ W 1,∞(R2) to ensure that Φ0 ◦ ϕ – with ϕ introduced

later – is always defined.

We recall that, in the general case, if U is an open subset of

R
N , for 1 ≤ p ≤ +∞, the Sobolev space denoted by W 1,p(U)

consists of the functions in Lp(U) whose partial derivatives

up to order 1, in the sense of distributions, can be identified

with functions in Lp(U).
Let ϕ : Ω̄ → R

2 be the sought deformation. A deformation is

a smooth mapping that is orientation-preserving and injective,

except possibly on ∂Ω. The deformation gradient is ∇ϕ: Ω̄ →
M2(R), the set M2(R) being the set of all real square matrices

of order 2 identified to R
4. This deformation to be recovered

is seen as the optimal solution of a specifically designed cost

function, comprising a regularization on ϕ prescribing the

nature of the deformation, and a term measuring alignment or

how the available data are exploited to drive the registration

process. These are depicted hereafter.

B. Deformation regularization

Nonlinear elasticity principles dictate the design of the

smoothness on ϕ. The shapes to be matched are viewed as

hyperelastic materials (capable of undergoing large deforma-

tions), and more precisely as Saint-Venant Kirchhoff ones. The

considered regularizer is given, setting ξ = ∇ϕ, by :

QW (ξ) =

{

WSVK(ξ) + µ (det ξ − 1)
2

if ‖ξ‖2 ≥ α,
Ψ(det ξ) if ‖ξ‖2 < α,

(1)

with WSVK(F ) =
λ

2
(trE)

2
+µ trE2, the stored energy func-

tion of a Saint Venant-Kirchhoff material, λ and µ the Lamé

coefficients, E =
(
FTF − I

)
/2 the Green-Saint Venant

stress tensor measuring the deviation between ϕ and a rigid

deformation, and with the following notation A : B = trATB,

the matrix inner product, and ‖A‖ =
√
A : A the related

matrix norm (Frobenius norm). Additionally, α = 2 λ+µ
λ+2µ and

Ψ is the convex mapping defined by Ψ : s 7→ −µ
2 s

2 + µ (s−
1)2 +

µ(λ+ µ)

2(λ+ 2µ)
︸ ︷︷ ︸

:=γ

. Several arguments motivate this choice by

comparison to the stored energy function WSVK alone: (i)

first, although the stored energy function WSVK is the simplest

one that agrees with the generic expression of the stored

energy function of an isotropic, homogeneous, hyperelastic

material, it lacks a term penalizing the determinant. It thus

does not preclude deformations with negative Jacobian deter-

minant; (ii) second, it is not rank-1 convex and consequently

not quasiconvex (see [13, Chapter 9]), which raises some

theoretical issues in terms of existence of minimizers, contrary

to QW which exhibits this fine latter property; (iii) thirdly,

we see in the expression of QW that when ‖ξ‖2 < α, a

penalization on the determinant still remains, showing good

behavior under compression.

By introducing explicitly the time variable t ∈ [0, T̄ ] in the

model and the unknown ϕ = ϕ(x, t) being now space and

time-dependent, it yields the following regularization on ϕ

Reg(ϕ) =

∫ ∫

V

‖∂ϕ
∂t

‖22 dx dt

+

∫ ∫

V

QW (∇xϕ(x, t)) dx dt, (2)

‖ · ‖2 denoting the Euclidean norm in R
2 and with V = Ω×

[0, T̄ ].



C. Dissimilarity measure

Complying with the idea of promoting structure/shape

matching rather than intensity-based rules, we introduce a

metric fostering the overlap of shapes as follows. Recall that

the shape contained in the Template image is assumed to

be modelled by a Lipschitz continuous function Φ0 whose

zero level line is the shape boundary. The idea is to deform

the function Φ0 so that the zero level line of the deformed

function, Φ0 ◦ ϕ, is aligned with the boundary of the shape

belonging to the Reference. The trade-off between segmenta-

tion and registration —which makes our model a bi-task one

—is ensured by processing at the same time the segmentation

of the Reference via the level set function Φ̃ (see 4) and

the deformation of Φ0, and these tasks are connected in a

single framework to maximize the overlap of the two resulting

shapes. More precisely, the dissimilarity measure is defined by:

Fid(ϕ) =

∫ ∫

V

|Hε(Φ0 ◦ ϕ(x, t))−Hε(Φ̃(x, t))|2 dx dt,
(3)

Hε denoting a C∞-regularization of the one-dimensional

Heaviside function and the evolution of Φ̃ being dictated by

the following evolution equation, which constitutes a revised

version of [20] to unify local and global (region-based) fea-

tures to segment the Reference :






∂Φ̃

∂t
= |∇Φ̃|

[

div

(

g̃(|∇R|) ∇Φ̃

|∇Φ̃|

)

+ k
(
(R− c2)

2

−(R− c1)
2
)
]

+ 4
µ′

d2
H̄(Φ̃(x) + l)H̄(l − Φ̃(x))

∫

Ω

[

〈x−y,∇Φ̃(y)〉 e−‖x−y‖2
2
/d2 H̄(Φ̃(y)+l)H̄(l−Φ̃(y))

]

dy ,

Φ̃(x, 0) = Φ0(x) ,

∂Φ̃

∂~n
= 0, on ∂Ω ,

(4)

with c1 =
∫

Ω
H̄(Φ̃)R(x) dx
∫

Ω
H̄(Φ̃) dx

and c2 =
∫

Ω
H̄(−Φ̃)R(x) dx
∫

Ω
H̄(−Φ̃) dx

(we

dropped the dependency on Φ̃ to lighten the expressions). Φ0 is

naturally taken to be the initial condition of this segmentation

process. Function g̃ is an edge-detector function satisfying

g̃(0) = 1, g̃ strictly decreasing and lim
r→+∞

g̃(r) = 0. The

first two components of the right hand side of equation (4)

constitutes a balance between the classical geodesic active

contour model ( [9]) and the piecewise constant Mumford-

Shah model ( [22]) which allows to partition R into two phases

w and Ω \w with respective values c1 and c2. The latter one

prescribes some topological constraints ( [20]) in order for the

evolving contour to be homeomorphic to the original one.

The overall registration problem thus reads :

J(ϕ) =

∫ ∫

V

‖∂ϕ
∂t

(x, t)‖22 dx dt+
∫ ∫

V

[QW (∇xϕ(x, t))

(5)

+
ν

2

(

Hε(Φ0 ◦ ϕ(x, t))−Hε(Φ̃(x, t))
)2
]

dx dt,

with V = Ω× [0, T̄ ].

D. Theoretical results

We state the main theoretical result related to the existence

of minimizers.

Theorem 1 (Existence of minimizers): There exists at least

one minimizer of problem (5) in the functional space W =
{
ϕ ∈ L4(0, T̄ ;W 1,4(Ω,R2)) | ∂ϕ

∂t
∈ L2(0, T̄ ;L2(Ω,R2))

}

endowed with the norm ‖ϕ‖W = ‖ϕ‖L4(0,T̄ ;W 1,4(Ω,R2))+

‖∂ϕ
∂t

‖L2(0,T̄ ;L2(Ω,R2)).

Proof: The proof is divided into the following three steps

and relies on Aubin-Lions lemma:

• Coercivity inequality: By taking ϕ(t) = Id ∀t ∈ [0; T̄ ],
we get J(ϕ) < +∞ and the functional is proper. We first

derive a coercivity inequality:

J(ϕ) ≥ ‖∂ϕ
∂t

‖2L2(]0,T̄ [×Ω,R2)

+
β

2(c4 + 1)
‖ϕ‖4L4(0,T̄ ;W 1,4(Ω,R2)) − βα2meas(Ω)T̄

− µ(λ+ 3µ)

2(λ+ 2µ)
meas(Ω)T̄ + γmeas(Ω)T̄ + k′T̄ .

So, the infimum is finite.

• Convergence of a minimizing sequence: Let {ϕk}k∈N

be a minimizing sequence. As the functional is proper,

there exists ϕ̂ such that for all k large enough, J(ϕk) ≤
J(ϕ̂) + 1 < +∞. Then from the coercivity inequality,

we can deduce that {ϕk}k∈N is uniformly bounded in W
so we can extract a subsequence still denoted {ϕk} such

that ϕk ⇀ ϕ̄ in W . As W 1,4(Ω,R2) ⊂ L2(Ω,R2) with

compact injection, Aubin-Lions lemma states that the

embedding of W in L4(0, T̄ ;L2(Ω,R2)) is compact. As

L4(0, T̄ ;L2(Ω,R2)) ⊂ L2(]0, T̄ [×Ω,R2) is continuous

then the embedding of W into L2(]0, T̄ [×Ω,R2) is

also compact. We can therefore extract a subsequence

of {ϕk} still denoted {ϕk} such that ϕk → ϕ̄ in

L2(]0, T̄ [×Ω,R2).
• Weak lower semi-continuity: ‖.‖L2(]0,T̄ [×Ω,R2)

is convex and strongly continuous and so it is

weakly lower semi-continuous in L2(]0, T̄ [×Ω,R2)

so ‖∂ϕ̄
∂t

‖L2(]0,T̄ [×Ω,R2) ≤ lim inf
k→+∞

‖∂ϕk

∂t
‖L2(]0,T̄ [×Ω,R2).

As, ϕk → ϕ̄ in L2(]0, T̄ [×Ω,R2), up to a subsequence,

one has pointwise convergence of {ϕk} to ϕ̄ and the

dominated convergence theorem enables us to obtain the

weak lower semi-continuity of the data fidelity term.

Let {ψk}k∈N be a sequence that strongly

converges to ψ̄ in L4(0, T̄ ;W 1,4(Ω,R2)). Then
∫ T̄

0

‖ψ̄(t) − ψk(t)‖4W 1,4(Ω,R2) dt −→
k→+∞

0. By seeing

‖ψ̄(t) − ψk(t)‖4W 1,4(Ω,R2) as a real-valued function

depending on t defined on ]0, T̄ [ and by applying the

reciprocal of the dominated convergence theorem, we

get that ‖ψ̄(t) − ψk(t)‖4W 1,4(Ω,R2) converges to 0 for

almost every t ∈]0, T̄ [ up to a subsequence. So for

almost every t ∈]0, T̄ [, ψk(t) strongly converges to ψ̄(t)



in W 1,4(Ω,R2) and det∇ψk(t) →
k→+∞

det∇ψ̄(t) in

L2(Ω). From what was done in the stationary case [15],

for almost every t ∈]0, T̄ [,
∫

Ω

QW (∇ψ̄(t)) dx ≤ lim inf
k→+∞

∫

Ω

QW (∇ψk(t)) dx.

So by Fatou’s lemma, we get:

∫ T̄

0

∫

Ω

QW (∇ψ̄(x, t)) dx dt

≤ lim inf
k→+∞

∫ T̄

0

∫

Ω

QW (∇ψk(x, t)) dx dt.

Then it is convex and strongly sequentially lower semi-

continuous and so it is weakly lower semi-continuous.

We finally have

∫ T̄

0

∫

Ω

QW (∇ϕ̄(x, t)) dx dt

≤ lim inf
k→+∞

∫ T̄

0

∫

Ω

QW (∇ϕk(x, t)) dx dt,

which concludes the proof.

The well-definedness of Φ̃ is then investigated to ensure

that the fidelity term exhibits sufficient regularity and makes

sense. Equation (4) falls within the framework of viscosity

solution theory ( [4], [12]) for equations with a measurable

dependence in time (called L1 -viscosity solution). Under mild

assumptions, the following theorem holds.

Theorem 2 (Existence of weak solutions of the considered

evolution problem): Assuming that g := g̃(|∇R|), g 1

2 and ∇g
are bounded and Lipschitz continuous on R

2, for fixed c1 and

c2, problem (4) admits at least one weak solution.

III. NUMERICAL RESOLUTION

We now aim to apply this theoretical model to the longitudi-

nal study of an image sequence. Let (In)
N
n=0 be the temporal

image sequence. The segmentation evolution problem now

reads :






∂Φ̃
∂t

= |∇Φ̃|
[

div
(

g̃(|∇In|) ∇Φ̃
|∇Φ̃|

)

+ k((In − c2,n)
2

−(In − c1,n)
2)

]

+ 4µ′

d2 H̄(Φ̃(x) + l)H̄(l − Φ̃(x))

∫

Ω

[

〈x−y,∇Φ̃(y)〉e
−

‖x−y‖2

d2 H̄(Φ̃(y)+l)H̄(l−Φ̃(y))

]

dy,

c1,n =
∫

Ω
H̄(Φ̃)In(x) dx
∫

Ω
H̄(Φ̃)

, c2,n =
∫

Ω
In(x)H̄(−Φ̃) dx
∫

Ω
H̄(−Φ̃) dx

,

for t ∈ [tn−1, tn], N ≥ n ≥ 1,

Φ̃(x, 0) = Φ0(x),
∂Φ̃
∂~n

= 0, on ∂Ω.

(6)

For the registration problem, rather than considering a

continuum in time which is not realistic, we assume that the

problem is sampled in time and drop the regularization in

time introduced only for theoretical purposes. We thus solve

sequentially the subproblems :

inf
ϕi∈Id+W

1,4
0

(Ω,R2)

∫

Ω

QW (∇ϕi) dx

+
ν

2

∫

Ω

(

Hε(Φ0 ◦ ϕ1 ◦ · · · ◦ ϕi)−Hε(Φ̃(·, ti))
)2

dx,

for i ∈ {1, . . . , Nζ}, ζ being the number of steps saved in

the segmentation process between tn−1 and tn. In the end,

the overall deformation is given by ϕ1 ◦ · · · ◦ ϕNζ , and the

deformation between the initial frame and the n-th frame by

ϕ1 ◦ . . . ◦ ϕnζ .

Remark 1: From a theoretical standpoint, the existence

of minimizers for each subproblem is guaranteed: Rellich-

Kondrachov’s embedding theorem states that weak conver-

gence in W 1,4(Ω,R2) leads to uniform convergence in Ω̄,

an extension process as before can be applied on all ϕk,

k = 1, · · · , i−1 to ensure the well-definedness of the composi-

tion, and the continuous injection W 1,4(R2,R2) 	 C0(R2,R2)
holds, these three elements combined allowing to handle the

fidelity term.

In order to deal with the nonlinearity in ∇ϕ, we propose

introducing an auxiliary variable Vi simulating the Jacobian

deformation with a quadratic penalty method as in [15]. The

decoupled problem becomes :

inf
ϕi∈Id+W

1,2
0

(Ω,R2),Vi∈L4(Ω,M2(R))

∫

Ω

QW (Vi) dx

+
ν

2

∫

Ω

(

Hε(Φ0 ◦ ϕ1 ◦ · · · ◦ ϕi)−Hε(Φ̃(·, ti))
)2

dx

+
γ

2
‖∇ϕi − Vi‖2L2(Ω,M2(R))

, (7)

for i ∈ {1, . . . , Nζ}. We then use an alternating minimization

scheme to solve the problem. We refer the reader to [15,

Section 4.3.] for an exhaustive description of the algorithm

relying on the derivation of Euler-Lagrange equations solved

by an L2 gradient flow algorithm and an implicit/semi-implicit

Euler time stepping scheme.

IV. NUMERICAL SIMULATIONS

The proposed method has been evaluated both qualitatively

and quantitatively as a registration process to the longitudinal

analysis of 2 DCE-MRI sequences (composed of 4 MRI

phases each denoted I, II, III and IV) for a patient suffering

from cirrhosis and HCC. DCE-MRI exams were performed

on a 1.5T SIGNA™ Artist (General Electric, Milwaukee,

WI) with a phased array coil. Manual segmentations of the

liver have been elaborated thanks to a Slicer 3D plug-in we

are developing [19]. The segmentation step of our method

serves here as an interpolation process between the manual

segmentations to guide the registration and improve both the

matching quality and the topology-preservation property.

To assess the performance of our algorithm, we display the

visual outputs in Fig. 1 and use two metrics: the Dice coef-

ficient measuring set agreement with the highest score 1; the



mutual information to measure image alignment with larger

value meaning better matching. These quantitative measures

are reported in Table I along with the max and min value of

the deformation Jacobian determinant to appraise the topology

preservation. We can see in Fig. 1 that the deformed contour

is well aligned with the edge of the liver at all times and

the deformation grid does not exhibit overlaps, highlighting

the topology preservation property of our algorithm. This

is particularly visible in the zoom-in views of the complex

topology exhibited by the liver around the vena cava: the

segmentation delineates well the concavity without violating

topology preservation. It thus shows the capability of our

model to handle large deformations on complex shapes and

intensity variations between frames. This is further confirmed

by the analysis of the Dice coefficients between the deformed

initial frame (T ◦ ϕ) and the corresponding temporal frame

(R) and their mutual information. Indeed, the latter always

significantly increases between the non-deformed frame T
and the deformed one T ◦ ϕ, while the Dice coefficient is

greater than 98.7% at all times. Favoring shape matching

rather than intensity pairing has therefore a positive impact on

the registration quality when intensity changes are involved

between the temporal frames. Furthermore, we can see in

Table I that the determinant remains positive at all times which

translates into the ability of our model to generate physically

meaningful deformations along the longitudinal analysis. This

experiment is thus a proof of concept that our method can be

used for the longitudinal analysis of complex organs such as

the liver including intensity variations.

V. DISCUSSION AND FUTURE WORKS

In this article, we have proposed a novel joint registration-

segmentation model that minimizes a functional by integrating

both space and time-dependent terms. Our contribution enables

one to generate large deformations thanks to a nonlinear elas-

ticity regularization process and promotes structure matching

rather than intensity-based similarity measuring.

We have successfully exploited our model in a computerized

diagnosis and follow-up process by computing the registration

of liver shapes within DCE-MRI sequences. By construc-

tion, these MRI volumes have variable intensity ranges (due

to contrast agent absorption), which would have penalized

standard approaches that consider more pixel values than

geometrical or topological structures. In this context, we can

handle concavities that are generally considered as strong

topological constraints for registration. Our experiments show

that our model can offer accurate performance by means of

excellent Dice coefficient and mutual information measures.

As future works, we first plan to increase the capability

of our model by developing a fully 3D approach rather

than a slice-based one, and by studying multi-modal joint

registration-segmentation through the context of personalized

MRI/CT alignment. Moreover, we would like to tackle the

problem of internal tissue registration by studying tumors

throughout dynamic sequences. In this case, we can extend

our framework by considering two level sets: one for the liver

volume, and another one for the tumor. We can also produce

an approximate registration of the tumors by applying the

deformations obtained from the whole liver to internal tissues.

Finally, we can exploit further our model by calculating a more

precise segmentation of the liver and internal lesions within

medical 3D volumes.
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Fig. 1. Visual assessment of the longitudinal analysis performed on the sequence 19-02-2013 Phase I to IV followed by 08-08-2013 Phase I to IV. For each
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