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A Time-dependent Stopping Problem with 
Application to Live Organ Transplants 

ISRAEL DAVID and URI YECHIALI 
Tel Aviv University, Tel Aviv, Israel 

(Received May 1983; accepted March 1984) 

We consider a time-dependent stopping problem and its application to the 
decision-making process associated with transplanting a live organ. "Offers" 
(e.g., kidneys for transplant) become available from time to time. The values of 
the offers constitute a sequence of independent identically distributed positive 
random variables. When an offer arrives, a decision is made whether to accept 
it. If it is accepted, the process terminates. Otherwise, the offer is lost and the 
process continues until the next arrival, or until a moment when the process 
terminates by itself. Self-termination depends on an underlying lifetime distri- 
bution (which in the application corresponds to that of the candidate for a 
transplant). When the underlying process has an increasing failure rate, and the 
arrivals form a renewal process, we show that the control-limit type policy that 
maximizes the expected reward is a nonincreasing function of time. For non- 
homogeneous Poisson arrivals, we derive a first-order differential equation for 
the control-limit function. This equation is explicitly solved for the case of 
discrete-valued offers, homogeneous Poisson arrivals, and Gamma distributed 
lifetime. We use the solution to analyze a detailed numerical example based on 
actual kidney transplant data. 

'HIS WORK was motivated by a decision-making problem associated 
with transplanting a live organ-in this case, a kidney. The decision 

whether to transplant the organ depends on the degree of histocompat- 
ability between the "donor" and the recipient. One relevant criterion for 
compatability is the match level in the so-called HL-A antigeh system. 
Definitions of the various match-levels-A, B, C, D or E-are presented 
by Barnes and Miettinen [1972], who derive formulas for calculating the 
probability of any match-level between a given recipient and a random 
graft. With each match-level, we associate a value, such as the probability 
of graft survival for at least 1 year, or the expected lifetime of the graft 
(see, for example, data presented in Brunner [1975] and in Dausset et al. 
[1974]). Another decision-making consideration is the time that the 
potential recipient has been under medical care. For example, in the 
kidney case, medical care would be home or hospital dialysis. The problem 
Subject classification: 271 decision analysis related to live organ transplants, 570 time-dependent optimal 
stopping. 
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is to provide the physician with a quantitative tool specifying, for each 
combination of HL-A match and the recipient's time on dialysis, whether 
to perform a transplant or to reject (and lose) the graft and wait for a 
possibly better combination in the future. In this paper, we provide such 
a tool and give some quantitative results. 

The problem belongs to the family of optimal stopping problems. Books 
by Chow et al. [1971], De Groot [1970], and others gave expositions of 
the theory of optimal stopping, together with extensive bibliographies. 
Time-dependent aspects of the problem with emphasis on obtaining 
explicit solutions have been studied by Elfving [1967], who considered a 
decreasing discount function and Poisson-type arrival of offers, and also 
by Mucci [1978], who extended the solution of the exponential discount 
case to a wide class of arrival processes. Albright [1974] generalized 
Elfving's result to an n-person assignment problem. 

In Section 1 we formulate a general setting of an optimal-stopping 
problem whose underlying process has a failure-rate that depends on 
time. To illustrate some of the ideas developed in later sections, we first 
study situations in which offers arive at fixed instants, and show that 
the optimal policy is of a time-dependent control-limit type. 

In Section 2 we assume that the arrival of offers is a renewal process. 
We show that if the lifetime distribution of the underlying process has 
an increasing failure rate, then the optimal control limit is a continuous 
nonincreasing function of time. We further show that the increasing 
failure rate property is necessary to ensure such monotonicity. 

In Section 3 we study nonhomogeneous Poisson arrivals. We rederive 
Elfving's differential equation for the optimal control-limit function, 
using a different approach, which leads to a more tractable equation 
particularly suited to our model. With the aid of this equation, we develop 
properties of some special cases. In the case of homogeneous Poisson 
arrival, we derive in Section 4 an explicit solution of the equation, 
considering discrete-valued offers and Gamma distributed lifetime with 
shape parameter a 2. The method we use is applicable to problems 
with offers admitting finitely many values and any increasing failure rate 
lifetime distribution. 

In Section 5, we apply this explicit solution to determine the optimal 
policy for the kidney transplant problem, and present detailed calcula- 
tions based on actual data. 

1. THE MODEL 

Consider a stopping problem with actions taken at (random or fixed) 
times 0 = to < t1 < t2 < -- . At instant tj an offer Xj is available. We 
assume that tXj o` is a sequence of independent-identically distributed, 
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positive, bounded random variables having a distribution function F(x) 
P(X c x). An action at time tj is a decision whether to accept or reject 

the offer. If the offer is accepted, the process is stopped and a reward 
B(tj)X, is gained, where ,B(t) 0 0 is a continuous nonincreasing discount 
function with 3 (0) = 1. If the offer is not accepted, it is lost and the 
process continues until the next offer, or until it terminates by itself 
("dies")-whichever occurs first. The probability that the process ter- 
minates by itself before the new offer arrives at time t1+l is given by the 
variable 1 - ai =P(T c tj+1 I T > tj) defined by T, the lifetime of the 
underlying -process. If the process terminates by itself, no reward is 
gained. 

The objective is to characterize and find a stopping rule that maximizes 
the expected discounted reward from any time t onward. 

The Case of Fixed Arrival Instants 

Suppose that the sequence to, t1 tX, t2 , ti, is a set of fixed 
numbers, and that the process is allowed to continue for at most n; if it 
has not been stopped or self-terminated by time t,, the last offer, Xn, 
must be accepted. Suppose that at time tj the process is still alive and an 
offer Xj = x is available. Let Vn/(x) denote the maximal expected dis- 
counted reward attained from that situation, and write p(tj) = ,j. We 
have 

Vn (x) =nX 

Vn/(x) = max[Bjx, aj+1 V 1 (y) dF(y)J, 0 j < n. 
=0 

Define Xn n = 0, 

A= +Iaj l[Xl+'F( X+'/Oj+,) 1A., ,i+1xdF(x)], O<j n. (1) 

n / is the maximum expected discounted reward if an offer at time tj is 
rejected. Other authors (e.g., Ross [1970, p. 152]) have already com- 
mented that the probability of self-termination functions as (1 minus) a 
discount factor. 

It is clear that the optimal strategy is a control-limit type policy with 
a set of controls I X J I=o and that an offer Xj at time tj is accepted if and 
only if 1Xj > X J. It is also easy to show that, for each j c n, the set 

Xn is a nondecreasing bounded sequence of n and hence has a limit 
ii =.in,Xj 
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Letting -yj = lj/lj, we see from Equation 1 that 

r* 
lj = axj+31j+i[yj+iF(-yj+i) + x dF(x)]. (2) 

yj+1 

Consequently, for an infinite-horizon problem, where limj1 aj < 1, an 
offer at time tj is accepted if and only if Xj > -yj. 

The sequence {Ilj I is determined by the sequences Iaj I and I{3jo, but 
is not readily calculated because lj is forwardly defined in terms of lj+i. 
David and Yechiali [1983] present an example for calculating the se- 
quence lj I when X is uniformly distributed on (0, 1). When the sequence 
I aj I' is nonincreasing and f3j = 1 for all j, one can show that the sequence 
of controls {Ij}o is also nonincreasing. 

Now, if we let fj = 1 and aj = a for all j, we can see intuitively that 
there is a unique control limit ij = l for all j. Indeed, in such a case, 
Equation 1 takes the form 

00 
Xrj = a[Xa[jn+F(XjK+) + x dF(x)] f((Xi+'). 

Since Xn n = 0, one recursively obtains Xr/ i f(n j)(-Xnn) f(n -)(O), where 
f (0)(X) = X and f (k)(X) = f (f (k-l)(X)). Similarly, Vnj = f n( - 
f (n-i) (O) 

Thus, X = lA-j for all n and j c n. Taking limits as n -* oo, we have, 
for every j, 1I = limn,Xnj = liMn-o'n-j- = lo-1= 1. This limit can be 
calculated via Equation 2. For example, if X is uniformly distributed on 
(0, 1), Equation 2 reduces to l = a (I + 12)/2 with a solution 

l= a/(1 + 1 -a 2). (3) 

We turn now to the random-arrival case and derive analogous results. 

2. DETERIORATING LIFETIME AND RENEWAL-TYPE 
ARRIVAL OF OFFERS 

Let G(t) = P(T < t) be the probability distribution function of T, and 
let the interarrival times of offers constitute a renewal process with 
underlying distribution function H(s) = P(tj+l-tj ' s) forj 2 0. Suppose 
that the process has not been stopped or self-terminated by time t when 
an offer X = x arrives. Let V(t, x) be the optimal expected discounted 
reward from that instant on. Then 

V(t, x) = max{,3(t)x, X(t)} (4) 
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where 

A()= f G(s I t)LJ' V(t + s, y) dF(y)1 dH(s). (5) 

Here G(s I t) P(T > t + s I T > t) is the probability of survival beyond 
t + s, given that the process survives beyond t. Note that X (t) serves as 
a 44control limit" at time t, and is equal to the future expected discounted 
reward if the offer is arbitrarily rejected at time t and an optimal strategy 
(if one exists) is applied thereafter. 

Let 
00 

V(t) = f V(t, y) dF(y). (6) 
y=O 

If an optimal strategy exists, V(t) may be interpreted as its a priori 
expected discounted gain from time t on. 

We now characterize the structure of the optimal policy for a special 
family of distributions G (.). 

DEFINITION. A lifetime distribution function G is called IFR (Increasing 
Failure Rate) if and only if G(s I t) is nonincreasing as a function of t for 
any s - 0. 

When G possesses a density g(t), it is convenient to deal with the 
failure rate r(t) = g(t)/[1 - G(t)]. In these situations, this definition is 
equivalent to r(t) being nondecreasing on (0, oo) (see Barlow and Pros- 
chan [19751). To exclude trivialities, assume that f [1 - G(s)] dH(s) 
< 1. 

We are now in a position to derive the main result in this section. 

THEOREM 1. If G is IFR, then there exists an optimal policy characterized 
by a continuous nonincreasing real function X(t) on [0, oo), such that an 
offer x at time t is accepted if and only if ,3(t)x - X(t). 

Proof. Let BC denote the space consisting of all bounded continuous 
real-valued functions u(t, x), define on [0, oo) x [0, M], where M is the 
bound of the random variable X. Using the metric 

IIu - vii = sup Iu(t, x) - v(t, x)I, 
tE1O,o), 
xE[O,M] 

it is possible to use classical methods to show that BC is a complete 
metric space. Define an operator T:BC -4 BC by 

Tu(t, x) = max-j/(t)x, J G(s I t)[,f u(t + s,y) dF(y) dH(s)}. (7) 
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Now let u, v E BC be arbitrary, and fix t > 0 and 0 < x < M. Then, 

ITu(t,x) -Tv(t,x)I 

- max JB(t)x, j G(s I t)[ u (t + s, y) dFu(y) ]dH(s)} 

-max{0f(t)x, { G(s I t)LJ' v(t + s,y) dF(y) dH(s)} 

{ C(s I t)[J' u(t + s, y) dF(y)1 dH(s) 

- f G(s I t)[J' v(t + s, y) dF(y) dH(s) 

=-| X G(s l t)[J' (u(t + s, y) - v(t + s, y)) dF(y)] dH(s) 

00 

< sup I u(t, x)-v(t, x)J G(s I t) dH(s). (8) 
tE[O,o), O 
xE[O,MJ 

Since G is IFR, f o G(s I t) dH(s) < f ' G(s I 0) dH(s) = f [1 - G(s)] 
dH(s). By our assumption f ' [1 - G(s)] dH(s) -- a for some a < 1. If we 
replace f ' G(s I t) dH(s) by a, the right-hand side of (8) becomes 
independent of t and x. Hence, 11 Tu - Tv 11 a 11 u - v 11, a < 1, and T 
is a contraction. We deduce that there is a v* E BC satisfying Tv* = v*. 
Furthermore, TnUo __ v* for any u0 E BC. We claim that v* is nonin- 
creasing in t and x. It is sufficient to start with u0 possessing that 
property. Since j3(t)x is nonincreasing in t for any x, and since G is IFR, 
iterating (7) shows that, for any integer n > 0, T uo is nonincreasing in 
t for any x. Hence, the limit v* is nonincreasing as well. Define 

X*(t) = f G(s I t)[J v*(t + s, y) dF(y)1 dH(s). 

This nonincreasing property of v* and the IFR behavior of G imply that 
X*(t) is nonincreasing in t. Since Tv* = v*, A* and v* satisfy (4) and (5). 
Thus v * is the optimal reward and the result follows. (See also Mine and 
Osaki [1970] on the role of the principle of contraction mappings in 
dynamic programming models.) 

To strengthen the characterization, we prove the following result: 

LEMMA 1. In Theorem 1 the IFR assumption is necessary. 

Proof. For any non-IFR G(.), we can construct an example to show 
that the control limit is not a monotone decreasing function. To simplify 
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the presentation, we assume here that G is differentiable. Thus, if G is 
not IFR, we deduce from the definition that for some t < s, there exists 
an interval (0, E) such that, for all x E (0, c), G(x I s) > G(x I t). Fix an 
integer m = min{k I (s - t)/k < c, k - 11, and let h = (s - t)/m. Let G, = 

C(h I s) and Gt = G(h I t), i.e., G, > Gt. Now, choose a real number a > 1 
such that 1 < 1/GS < a < l/Gt. Define p* = (1 - G8)/(G5(a - 1)) < 1, and 
let po satisfy p* < po < 1. 

We consider a degenerate renewal process with constant interarrival 
time h, and assume that any offer X, may take on two values: xi > 0 
with probability Pi = 1 - po, and xo = ax1 with probability po. Assume 
further that A(t) = 1. Naturally, V(T, x) c xo for any r and x. Applying 
(5) in this case, we have 

X(t) = Gt[V(t + h, xo)po + V(t + h, xl)pl] c Gt[xopo + xopil 

= Gtxo < xo/a = x1. 

Using (4) and d (t) = 1 gives 

X(s) = G[V(s + h, xo)po + V(s + h, xi)pi] - G[xopo + x1p1] 

= G8x1(apo + (1 - po)) > x1G,(1 + p*(a - 1)) = xi. 

That is, for t < s, X(t) < xi < X(s), and hence X(.) is not a monotone 
decreasing function. This result completes the proof. 

Note that in the above example an offer x1 is accepted at time t while 
it is rejected at time s > t. This example also shows that a milder 
assumption on the deterioration of G (e.g., IFRA) is not sufficient to 
ensure the monotonicity of X (t). 

3. NONHOMOGENEOUS POISSON ARRIVAL PROCESS 

Suppose that the arrival process is a point process on t E [0, oo) with 
positive and continuous intensity function ,u (t). That is, P{no arrivals in 
(t, t + s)} = exp[- ft+s t (r) d(X)] for all s 2 0. Assume further that G(t) 
has a density g(t), and let r(t) = g(t)/[1 - G(t)] be the failure rate 
function. Also, let V(t, x), X (t) and V(t) be defined as in Equations 4, 5, 
and 6. We claim 

LEMMA 2. X(t) is continuous. 

Proof. For e > 0, we have 

X (t) = e t) X (t + e) 

+ U(s I t) V(t + s)e-ft+A(Tr)dr A(t + s) ds. (9) 

Equation 9 uses the properties of the Poisson process. The first term 
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follows by conditioning on the event of no arrivals during (t, t + c), while 
the second term follows by conditioning on the event that first arrival 
after t occurs at time t + s, for any 0 < s c E. Taking limits of (9) as 
E I 0, and observing that G(E I t) -- 1 as E I 0, right-continuity of X(t) 
follows. Left-continuity is shown similarly. 

THEOREM 2. X(t) satisfies the differential equation 

00 
X'(t) = r(t)X(t) - ,Bt)A(tu 010 (tF(x) dx (10) 

where F(x) = 1 - F(x). 

Proof. For E > 0, we use (9) to write 

X(t + E) -X (t) X (t + I)[1 - e f t 1(T)dTG(|c t)] (11) 

re~~~~~~~~~( - J G(s I t) V(t + s)e ft (T)dT (t + s) ds. 

Applying L'Hopital's rule, we find 

lime~o(1/c){1 expL-J / (T) dijG(E I t)} 

= limE OIexpL-f /1(T) dT}I(t + e)G(e I t) (12) 

+ g(t + e)/(1 - G(t)) expL-J' + (T) dTJ} = /(t) + r(t). 

By the mean value theorem, we can write 

limE Bo( 1/c){f,_ G (s I t) V(t + s)expL-f H (r) drTi/ (t + s) ds} 

(13) 

=lims* o{G(s I t) V(t +s *)exp[-J (T) d-}t(t + s*)= V(t)p(t). 

Thus, dividing Equation 11 by E, taking limits as E I 0, and using 
Equations 12 and 13, together with the continuity of X(t), we obtain 
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But V(t) = fx=o V(t, x) dF(x) = X(t)P[O3(t)X < X(t)] + fA(t)/:(t) f X(t)x 
dF(x), hence 

V(t) - X(t) = N3(t)[-(X(t)/3(t))(X(At)/f(t)) + x dF(x)] 
WOW:(t ( 15) 

00 
= A(t) J F(x) dx. 

(t)/3(t) 

Combining (14) and (15) yields (10), which completes the proof 

Now let y(t) = X(t)/f(t) andA(t) = 3(t)G(t), where G(t) = 1 - G(t). 
Then, ['y(t)A(t)]' = X'(t)G(t) - X(t)g(t). Using (10), we derive 

00 
[y (t)A(t)]' =-,u (t)A(t) J F(x) dx. (16) 

Equation 16 could be compared with Equation 3.1 of Elfving, with the 
interpretation that A(t) = f3(t)G(t) is a "compound" discount function. 
Note that, in Theorem 2, the role of the lifetime distribution is explicitly 
exhibited by means of r(t). 

Special Cases and Examples 

(i) Constant failure rate, exponential discount and homogeneous Poisson 
arrival 

Suppose that the lifetime is exponentially distributed with parameter 
r (i.e., r(t) r), and assume that the arrival of offers constitutes a 
homogeneous Poisson process with intensity p,(t) -,. Assume further 
that the discount function is f (t) = e- . 

For -y(t) = X (t)/f3(t), Equation 10 becomes 

1y'(t) = (d + r),y(t) - tJ F(x) dx. (17) 

The unique bounded solution of (17) is y (t) yo, where oyo satisfies 

(d + r),yo = u f F(x) dx. (18) 
0 

In other words, the exponential property of the discount function and 
the lifetime distribution determines a control limit for X that is inde- 
pendent of time (compare with Ross, pp. 156-158). 

Since y'(t) = fl-y(t) + e tX'(t) = 0, Equation 14 takes the form 

-f,yoe-pt = rX(t) - y[V(t) - X(t)]. 
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Since X (t) = wye-Ot, we finally obtain 

V(t) = (,u + r + f)/,u yoe-t. (19) 

Consequently, the ratio between V(t) and X (t) is fixed, that is, 
V(t)/X(t) = 1 + (r + fl)/,u. 

As a specific example, we calculate yo when X is uniformly distributed 
on [0, 1]. Substituting in (18) and arranging terms, we obtain 

avyo2/2 - yo + a/2 = 0 (20) 

where a = ,u/(f + r + ,). The solution of (20) is 

yo = a/(1 + 1-a2). (21) 

Note that result (21) is identical to result (3). In the present case, A(t) = 

1 is equivalent to d = 0 so that a = ,u/(r + ,). Indeed, in terms of Section 
1, the probability of arrival of an offer before self-termination of the 
process is 

a = P(T > tj+1 I T > tj) 

= { P(T > tj + s I T > tj)ie-ls ds - f ers,ie- ds = ,u/(r + ,). 

(ii) Increasing failure rate 

When the lifetime distribution G is IFR and the arrival process is 
nonhomogeneous Poisson with nonincreasing intensity p,(t), one can 
apply analytical arguments on Equation 10 to prove directly that the 
control limit function X (t) is nonincreasing (see David and Yechiali). 
Note that, when ,u(t) = ,u, this result is an immediate consequence of 
Theorem 1. Furthermore, if r(t) is strictly increasing, then X (t) is 
decreasing (David and Yechiali). 

(iii) A bound on X (t) 

The above results can be used to obtain a simple bound, which is 
decreasing in t, for the critical curve in the IFR case. 

LEMMA 3. If r(t) is increasing and p,(t) is nonincreasing, then 

0 < IX(t) c [,y(t)f(t)/r(t)]EX. 

Proof. From the discussion in the previous subsection, X '(t) c 0. Then, 
using (10) we have 

r( 
r(t) )X(t) c-,u i(t)O (t) P (x) dx c< ,u(t)#3(t)EX. 

X 1(t ) Rt 
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4. AN EXPLICIT SOLUTION FOR X(t)-AN EXAMPLE 

In this section we develop an explicit solution for X (t) when the lifetime 
distribution is Gamma with shape parameter a = 2 (i.e., G(.) is IFR). 
We let dl(t) = 1 and p,(t) = ,u. The density is given by 

g(t) = oata-1e-t/r(a) = 02te-&t for 0 > 0, 

and the failure rate r(t) = 02t/(1 + Ot) is increasing in t. X is taken to be 
a discrete random variable. Then ,uF(X) is a nonincreasing step-function 
of X. Since X(t) is monotone decreasing in t (see Section 3(ii)), ,F(X (t)) 
is a nondecreasing step-function of t. Consider a time interval where 
yF(X) is constant, e.g., 

,uF(()- c. 

For such an interval, Equation 10 reduces to 

X'(t) = (r(t) + c)X(t) + B (22) 

for some constant B. The general solution for this first-order linear 
differential equation can be obtained with the aid of an integrating factor 
exp[-f t (r(x) + c) dx], and is given by 

X(t)exp[-f (r(x) + c) dxl = B f exp[-f (r(x) + c) dxl di- + K 

for some constant K. 

Using the relation efor(x)dx - G(t), we see that the integrating factor is 
G(t)e-ct. Thus, 

rt 
X(t)G(t)ect = B 4 G(x)e-cx dx + K. (23) 

Substituting G(t) = eCt(1 + Ot) and integrating the right-hand side of 
(23) yield 

X(t) = B/-(6 + c) -B0/((6 + C)2(1 + Ot)) + De(O+c)t/(1 + Ot) (24) 

for some constant D. Define 

A = -(c + 0). (25) 

Without loss of generality, let the scale parameter 0 equal 1. Equation 24 
is now rewritten as 

X(t) = B/A - B/[A2(1 + t)] + De-At/(1 + t). (26) 

The parameters A, B, and D are determined separately and uniquely for 
each interval where y.F(X(t)) is constant. A is determined by (25). 
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Combining (22) and (10), we get 
00 

cX(t) + B =-u f F(x) dx. (27) 
(t) 

c and B are now readily found, since both sides of (27) are linear functions 
of X (t). Finally, D is determined by the continuity of X (t) at the endpoints 
of the interval. The next section presents the method of successive 
determination of the time endpoints of the above intervals, together with 
calculation of the corresponding constants A, B, and D. 

5. A NUMERICAL EXAMPLE 

We present an example using actual data related to the kidney trans- 
plant problem. We consider a case where the expected lifetime on dialysis 
is 5 years (see the 55-64-year age group in Brunner, pp. 16 and 18). 
Assume that the distribution of the lifetime T is Gamma with shape 
parameter a = 2 and scale parameter 0 = 1/2.5. That is, ET = a/0 = 5. 

TABLE I 

THE PROBABILITY DISTRIBUTION OF THE OFFER X 

Match X P(x) 

E 0.44 0.1758 
D 0.47 0.4073 
C 0.49 0.3134 
B 0.62 0.0941 
A 0.70 0.0094 

To simplify calculations, we assume 0 = 1, bearing in mind that our 
time unit is 2.5 years. We also assume that the Poisson arrival intensity 
is A = 16 (i.e., an average of 16 admissible donors for a specific recipient 
during the time period of 2.5 years). Each kidney arrival results in an A, 
B, C, D or E match as described in the introduction. To evaluate P(A), 
P(B) etc., we use Barnes and Miettinen's formulas (1)-(5), and the 
HL-A gene frequencies of Allen et al. that they cite. Assuming the 
recipient's antigens to be #1 and #2 in the first series, and #7 and #12 in 
the second series, we get P(A) = 0.0094, P(B) = 0.0941, P(C) = 0.3134, 
P(D) = 0.4073, P(E) = 0.1758. 

The values of X are given in terms of the graft survival probability 
within 1 year, and are taken from Dausset et al. Table I combines the 
above data. With the aid of Table I, determining the cumulative density 
function F(x) of X, we calculate and tabulate the results in Table II. The 
values of the parameters c and B for the various regions of X (t) are 
readily deduced from Table II and Equation 27. A is calculated via (25). 
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TABLE II 

FORMULAS FOR -A f8 |t) F(x) dx 

No. Region - A f X3t) F(x) dx 

I 0 C X(t) C 0.44 16 X(t) - 7.7961 
II 0.44 C X(t) C 0.47 13.1872 X(t) - 6.5585 

III 0.47 C A(t) C 0.49 6.6704 X(t) - 3.4956 
IV 0.49 < A(t) C 0.62 1.6544 X(t) - 1.0378 
V 0.62 C X(t) C 0.70 0.1504 X(t) - 0.1053 

We must still calculate the values of D, and determine the time intervals 
corresponding to the various regions of X (t). Then, by means of (26), the 
control limit function is completely determined. First, we note that the 
failure rate t/(1 + t) approaches 1 as t -- oo. Then, setting A = 0 and 
using limiting arguments similar to those that led to Equations 17-18, 
we get 

(0.70 

limt X(t) L = gJ F(x) dx. 

With the aid of Table II, we find L = 0.462. Since 0.44 c L ' 0.47, region 
I is not attained by X (t). Furthermore, D = 0 in region II, for otherwise 
(by (26)) X (t) is not bounded. Having A, B, D for this region, we substitute 
in (26) and solve for t*, the leftmost t in that region. Specifically, as X(t) 
is decreasing, Table III gives X(t*) = 0.47. Hence, 

t* = (-B/A2)/(0.47 - B/A) - 1 = 0.03258/(0.47 - 0.46228) - 1 = 3.2202. 

To calculate D of region III, we use continuity of X(t) at t*. Hence, 

0.47 = BIII/AIII - BIII/(A II(1 + t*)) + DI, e AIIIt*/(1 + t*). 

By substituting values of A,,, and BIII from Table III, we determine DI,, 
and proceed as above to find t** the leftmost t in region III. Computation 
gives t** = 0.73349. Continuing similarly, we find that, in [0, t**], X(t) 
stays in region IV, so region V is not attained by X (t). 

TABLE III 

VALUES OF A AND B FOR EQUATION 26 

No. Region c A B 

I 0 C X(t) C 0.44 16.0 -17.0 -7.7961 
II 0.44 C X(t) C 0.47 13.1872 -14.1872 -6.5585 

III 0.47 C A(t) C 0.49 6.6704 -7.6704 -3.4956 
IV 0.49 C X(t) C 0.62 1.6544 -2.6544 -1.0378 
V 0.62 C X(t) C 0.70 0.1504 -1.1504 -0.1053 
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Finally, we return to 1-year time unit and obtain 2.5. = 8.05 and 
2.5.t** = 1.83. 

We summarize our results. The optimal policy uses the following 
decisions: 

(i) From 0 to 1.83 years of "dialysis age"-wait for at least a B - 
match. 

(ii) From 1.83 to 8.05 years-wait for at least a C-match. 
(iii) Beyond 8.05 years-wait for at least a D-match. 

Note that an E match is never accepted, while on the other hand, a 
transplant is never conditioned on receiving an A-match, that is, matches 
A and B are always accepted. 
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