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Introduction
Structured population models of discrete type have received

varying degrees of attention. Ecologists, mathematicians and
population biologists have observed that structure variables
provide more realistic results than global models at reasonable
computational expenses for a wide variety of biological popula-
tions. For example, biologists have observed that most exploited
fish populations migrate or are confined to some preferential
habitats at certain stages of their life cycle. Fishermen may follow
some of these spatial and seasonal patterns, in which case the
spatio-temporal distribution of fishing effort is closely tied to
that of fish abundance.1 We therefore need a state vector giving
the number of individuals of different ages and at different
locations. A list of ecological applications can be found in
refs 2–4.

Most animal species exploit resources distributed in discrete
patches in the environment, and natural selection should favour
individuals that exploit such patchily distributed resources most
efficiently. In this context, optimal foraging theory predicts that
animals should optimize their patch residence time to maximize
the rate at which resources are encountered and exploited.

To describe this behaviour, a Leslie matrix model is coupled to a
dispersal matrix model, leading to a large class of models — the
multi-regional Leslie models. Such models do not take into
account the time spent by individuals in the different patches of
the environment. In several cases, however, it is crucial to take
into account the residence time that individuals spend in the
different patches. For example, in ecotoxicology, the survival of
an individual can depend upon the amount of pollutant accu-
mulated in the organism. Survival does not therefore depend
only on the actual presence of an individual in a polluted patch
but rather on the total time it has already spent in this patch
throughout its life. When individuals have spent several years at
the same patch, they have gained experience which can be an

advantage for survival and for reproduction with respect to indi-
viduals that settled on that patch only recently. The aim of this
article is to take into account the time of residence in different
patches in a multi-regional Leslie matrix model and to examine
its effects on the global growth of a structured population living
in a set of patches connected by migration and dispersal. We
shall present an application in ecotoxicology by considering the
case of a set of two patches, with one patch being polluted and
the other not.

We classify individuals by the spatial patch they are in, their
age and the time spent in the patch, and we take pollutant effects
into account. The goal here is to estimate population responses
to increasing pollutant concentrations. The outputs of our model
are asymptotic population growth rate, stable age distribution
for each age class, and asymptotic residence time, these variables
being functions of the pollutant concentration.

The paper is organized as follows: In the following section, we
present the general mathematical multi-regional Leslie model
with time of residence. The next section is devoted to the study
of an example in ecotoxicology. We consider a numerical example
where we present the consequences of increased concentrations
of toxicants in the natural environment on stable age structure,
the asymptotic spatial distribution, the asymptotic population
growth rate, and on the asymptotic residence time. We give
sufficient conditions to exhibit strong ergodicity (tendency
towards a fixed population structure independent of the initial
conditions). This work has been inspired mainly by the paper by
Arino and Smith.5 These authors presented a linear continuous
model for age-structured populations which migrate between
several locations, taking into consideration the time spent in a
given area.

Notation, models, and basic results
Let us consider a population of N (≥2) individuals divided

between 2 patches (sites) and q age classes. We classify individuals
by the spatial patch they are in, the age and the time spent in the
patch, and we allow migration-survival and migration-fertility
rates to depend on these three factors. The model includes two
processes, demography taking into account the birth of each
individual as well as the transition between different age
groups, and migration characterizing the change of spatial
patch. We assume that the length of time spent in each age class
is the same as the projection interval. Parameters are assumed to
be constant over time.

The following notation is used throughout:
An individual belongs to age class a at time t if its age is

between a – 1 and a at time t.
For an individual in age class a, we denote by k the total

cumulative residence time in patch i (i = 1, 2) from birth to age a
(thus, the residence time in the second patch is a – k).
• Let N ti k

a
, ( ) be the number of individuals in age class a living on

patch i (i = 1, 2) at time t which have accumulated a residence
time k on patch i (i = 1, 2) and a – k on the second patch.
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We present a multiregional Leslie matrix population model for an
age-structured population in a heterogeneous environment of
patches connected by migrations. The aim of the model is to take
into account the time of residence of individuals in the patches. We
present an application of the model in ecotoxicology. We consider a
population located on two patches with a polluted patch whereas
the other one is unpolluted. We study the effects of pollutant concen-
tration and of the time of residence in the polluted patch on the
global population growth rate. The model could be generalized to
the case of N patches (N > 2) for Salmo trutta and cadmium concen-
tration.

aIRD UR GEODES Centre IRD de l’Île de France, 32 Avenue Henri Varagnat, 93143
Bondy Cedex, France.
bDépartement de mathématiques, Faculté des Sciences, Université Aboubekr
Belkaid-Tlemcen, Algeria.
cDépartement de Mathématiques, Faculté des Sciences Semlalia, Université Cadi Ayyad
de Marrakech, Morocco.
*Author for correspondence. E-mail: moussaouidz@yahoo.fr



• Let fi j
a k
,
, be the newborn number in patch i per individual in

age class a who was in patch j one step of time ago, with time of
residence k on patch j.

• Let si j
a k
,
, be the proportion of survivors in patch i per individual

in age class a who was in patch j one step of time ago, with time
of residence k on patch j.

The total population in patch i is given by:

The migration-survival model reads as follows:

When k = 1…, a – 1, we obtain the next equations:

To simplify the presentation of the model, we introduce the
following notations:

which is an a × 1 matrix (vector) of numbers of individuals aged a
in patch i (i = 1, 2); with different residence time distributions,
and where T denotes the transposition. We also define:

which is a 2a × 1 matrix (vector) of numbers of individuals
aged a. The composition of the total population is then given by
vector N(t) = (N1(t), N2(t);…, Nq(t))T.

is the 2 × 2a fecundity matrix per individual aged a (a ≥ 1).

is the 2(a + 1) × 2a migration-survival matrix of individuals
from age a to a + 1 (a ≥ 1). In particular, S1 is the migration-
survival matrix from birth to age 1.

Therefore, if we consider a fixed projection interval, the rate of
change for the whole population during that interval is then:

Finally, the global model describing the rate of change for the
whole population N consists of the following system of q(q + 1)
difference equations

where L generalizes the well-known Leslie (1945) matrix, with
scalar fecundity and survival parameters replaced by 2 × 2a and
2(a + 1) × 2a matrices, respectively.

Mild conditions of connectivity between patches and age
classes ensure that L is irreducible and primitive (ref. 3, p. 81;
ref. 6, p. 30), according to the Perron-Frobenius theorem (ref. 3, p.
83; ref. 4, p. 4). L has a real positive dominant eigenvalue �, which
is simple. � is the largest positive root of

The corresponding left and right eigenvectors v* and u* are
positive and verify:

which are usually scaled such as v*Tu* = 1: Then:

The multi-patch model thus obeys the well-known asymptotic
exponential growth regime.7,8 u* represents a stable age by patch
structure; v* represents age by patch reproductive values.

Effects of pollutant on demography
In a previous contribution,9 we presented a mathematical

model describing Salmo trutta (salmon) population dynamics in
an arborescent river network. In this model, we coupled a Leslie
matrix taking into account the ageing and reproduction
processes to a migration matrix describing the fish patch
changes in the river network. The river network was arborescent
with four levels of arborescence, in which small rivers at any
level were gathering to give birth to bigger rivers at the next
level, and so on. This first contribution aimed at looking for the
effects of river management such as building channels and dams
on the global growth rate of the fish population. A further contri-
bution10 aimed at taking into account annual spawning migra-
tions in the model. The three next contributions focused on
effects of pollutants on the fish population dynamics.9–11 These
papers again considered Salmo trutta and the effects of cadmium
as pollutant on the global dynamics of the fish population. We
focused on that species and that pollutant because data are avail-
able on the effects of chronic cadmium pollution on survival and
fecundity of this fish. In these models, we considered that
patch changes were rapid in comparison with reproduction and
mortality, which allowed us to use aggregation methods in order
to reduce the initial complete model into a global Leslie matrix
model, governing the total number of fishes in the different age
classes of the total network. It was thus possible to obtain a global
response of pollution on the dynamics of Salmo trutta, given by
the dominant eigenvalues of the aggregated model representing
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the global asymptotic growth rate of the population. We examined
several scenarios according to different cadmium concentrations
released at different levels of the network.

In these previous contributions, we had not taken into account
the time of residence of the fish in the different patches. How-
ever, it appears acceptable to think that when a fish can move in a
river network represented by a network of patches connected by
migrations, such as in refs 9 and 10, the amount of pollutant
ingested by a fish depends on the average time of residence
it has spent in polluted patches, which in turn determines its
ability to survive and reproduce. In this section, we shall consider
the case of a general network of patches. The example presented
here could apply to a Salmo trutta population and to chronic
cadmium pollution

We will now examine a simple numerical example in
ecotoxicology with only two patches. The model could be
extended easily to N (N > 2) patches in a river network with
hierarchical levels from upstream to downstream such as in
refs 9–13. A possible example of river network with three levels is
shown in Fig. 1. First we present the case of absence of toxicant.
Second, we study the effect of pollution on the global asymptotic
population growth rate, mean residence time, asymptotic
residence time and on spatial distribution.

We consider a population structured in three age classes.
Under these assumptions, there are twelve variables, Ni k

a
, ( i = 1,

2, a = 1, 2, 3, k = 1, 2, 3). We consider a particular example of a
multi-regional Leslie matrix with time of residence written as
follows:

First, we simulated the population growth in the absence of
toxicant. Figure 2(a) shows the time evolution of age and patch
population numbers for the initial population vector X(0) = [100;
140; 150; 200; 120; 170; 160; 300; 400; 550; 820; 300]T. The model
was run for 50 months (month = 1 unit of time). In this example,
the asymptotic population growth rate was equal to λ = 1.68. As
shown in Fig. 2(b), the relative proportions of age class converge
to a stable distribution.

Let us now consider a new case where a pollution discharge
occurs in patch 1.

In that case, the matrix population model depends on pollut-
ant concentration and can be written in general as follows:

where

and where Sa(C) is the proportion surviving from age a to age
a + 1; and Fa(C) is the fecundity of individuals of age a at a given
toxicant concentration C and where a = 1,…, q – 1.

Obviously, daily demographic rates must decrease as a
function of toxicant concentration and of residence time in the
polluted patch. Therefore, we use a decreasing logistical model
as follows:
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Fig. 1. An hierarchical river network with three levels represented by patches
connected by possible migrations in both directions between patches belonging to
different levels.

Fig. 2.(a) Numbers of individuals; (b) distribution of age classes with time.
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with

and

where s fi j
a k

i j
a k

,
,

,
,, are the natural survival and fertility rates, respec-

tively. Figure 3 shows the function α(C, s), which is a survival
reduction function for a given toxicant concentration C corre-
sponding to a population having a time of residence equal to s in
patch 1, and � and β are positive parameters.

The logistical Equation (2) is a decreasing function of toxicant
concentration C and of cumulative time of residence in patch 1.

The effects of toxicant on population dynamics will subsequently
be quantified from the population growth rate �, corresponding
to the first eigenvalues of L(C).

The effect of pollution on population growth rate
For C varying from 0 to 40, the decrease in � as a function of

toxicant concentration was simulated from population model
(1). Toxicant had a major effect on asymptotic population growth
rate �, which rapidly decreased when the toxicant concentration
increased. Above a concentration threshold of about 14, pollu-
tion leads to population extinction (� < 1) (Fig. 4).

Effects of pollutant on residence time
The mean residence time in each patch for individuals aged a

at time t is defined as follows:

where Na,i(t) is the total population aged a on patch i:

For any t, we have the next relation:

Our general assumptions for this section are:
1) There is at least a non-zero coefficient in the last age class,

that is, Fq ≠ 0. Moreover, there exists j such that g.c.d.(j, q) = 1

and there is at least a non-zero fertility coefficient in age class
j (F j ≠ 0).

2) For any age class, there is at least a non-zero survival coeffi-
cient, i.e. Si ≠ 0 for all i = 1,…, q.

The above assumptions guarantee that all results developed in
this section are valid for our example of an age and patch-
structured model (see refs 3, 4, 14, 15). Then, the system will
asymptotically have a fixed growth rate and a fixed population
structure, that are given by � and V, respectively.

The asymptotic time of residence in patch 1 for individuals
aged a is defined as follows:

where

are the normalized (by total population) right eigenvectors for
patch i, respectively, associated with the dominant eigenvalue of
the multi-regional Leslie matrix with time of residence.

Let us define a global time of residence in patch 1 for the popu-
lation as follows:

Figure 5 shows the changes in the mean residence time when
the concentration of toxicant increases from 0 to 25 units in
patch 1; we can see that the toxicant affects residence time.

Effects of pollutant on the global asymptotic residence time
Figure 6 presents reduction in asymptotic residence time for

each age class and on the asymptotic global residence time for
increasing discharges of pollution in patch 1 when the concen-
tration of toxicant increases from 0 to 25 in patch 1. Figure 6
shows that the toxicant has an important effect on residence time
and on distribution of the population between patches.
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Fig. 3. Reduction function �(C, s) as a function of pollutant concentration C and
time of residence s.

Fig. 4. Effect of increasing pollution concentration in patch 1 on the asymptotic
population growth rate � : The reference value of 1.68 for � corresponds to the case
of no pollution. In the presence of pollution, � decreases with increasing discharge
concentration C.
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Change in the spatial distribution
We now present the results for the spatial distribution when

the discharged pollution concentrations are increased in patch 1.
The distribution is symmetrical. Figure 7 shows that population
switches from patch 1 to unpolluted patch 2.

Conclusion
Fish populations are examples of migratory effects playing an

essential role. Most fishes are born in some place where adults
meet during the reproductive season, and then mature else-
where, the nurseries. Our study shows how a metapopulation
with residence time could be used in an ecological framework in

order to explore the effect of spatial distribution and contamination
on population growth. Our multi-regional Leslie model presented
in this paper could be used to describe the dynamics of a popula-
tion travelling between two specific areas. It takes into consider-
ation the time spent in a given area. Under some general
conditions, it has been shown that the population verifies the
ergodic property. This model is employed to assess the conse-
quences of increased concentrations of toxicants in the natural
environment on the population dynamics. We have demonstrated
that the asymptotic population growth rate, the stable age struc-
ture, the asymptotic spatial distribution and the asymptotic
residence time of a population living between two patches, vary
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Fig. 5. Changes in residence time for increasing discharges of pollution in patch 1.



in response to pollution concentration.
The model developed here can be extended to any number of

patches. However, in most cases, we can consider a two-patch
system only, with a zone 1 of patches where pollutant is present,
and a zone 2 of patches with no pollution.

In future work, we wish to apply this general model with time
of residence to several concrete examples such as the case of
Salmo trutta and cadmium.9,13 We believe that this general
approach is pertinent to many real-life cases, and different
species, different toxicants and different heterogeneous envi-
ronments in terrestrial as well as aquatic environments.
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Fig. 6. Effects of pollutant concentration on asymptotic residence time for each age class and on global asymptotic residence time.

Fig. 7. Effect of pollution concentration on population distribution in patches 1
and 2.


