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A Time-Domain Harmonic
Balance Method for Rotor/Stator
Interactions
In the absence of instabilities, the large deterministic scales of turbomachinery flows
resulting from the periodic rotation of blades can be considered periodic in time. Such
flows are not simulated with enough efficiency when using classical unsteady techniques
as a transient regime must be bypassed. New techniques, dedicated to time-periodic flows
and based on Fourier analysis, have been developed recently. Among these, harmonic
balance methods cast a time-periodic flow computation in several coupled steady flow
computations. A time-domain harmonic balance method is derived and adapted to phase
lag periodic conditions to allow the simulation of only one blade passage per row re-
gardless of row blade counts. Sophisticated space and time interpolations are involved
and detailed. The test case is a single stage subsonic compressor. A convergence study of
the present harmonic balance is performed and compared with a reference well-resolved
classical unsteady flow simulation. The results show, on one hand, the good behavior of
the harmonic balance and its ability to correctly predict global quantities as well as local
flow pattern; on the other hand, the simulation time is drastically reduced.

1 Introduction

Computational fluid dynamics #CFD$ has become a very effi-
cient tool to help engineers design new jet engines. Today, turbo-
machinery design is mostly based on the assumption of steady
flows: The mixing plane technique !1" or frozen rotor !2" simula-
tions are standards in the industry. Motivated by environmental
concerns, the Advisory Committee for Aeronautics Research in
Europe challenged the civil aircraft industry to reduce the carbon
dioxide and noise emissions by half and the nitrogen oxides by
80% in 2020 !3". The aircraft aerodynamics and the engines have
a key role to play in achieving these ambitious objectives. CFD
will be of great help, but designers can no longer rely only on
steady flow simulations. Indeed, to achieve the performance im-
provements required, turbomachines are now designed in portions
of the design space where blade row interactions play a significant
role, such that the classical steady mixing plane approach fails to
predict the performance characteristics accurately #see Ref. !4",
for instance$.

Depending on the spatial and time scales to be resolved, numer-
ous nonlinear time-marching methods are available. Direct nu-
merical simulations and even large eddy simulations are still too
expensive with respect to the best computing resources available
today to satisfy industrial requirements. So far, unsteady
Reynolds-averaged Navier–Stokes #U-RANS$ techniques have
proved to be the most efficient ones to meet industrial needs.
Efficiency is not an absolute notion since it results from a trade-
off between the quality of the physics and the time needed to
complete the simulation. In external aerodynamics, U-RANS
techniques are generally predictive enough and require relatively
short simulation time because of short transient regimes. It is not
the case for internal flows yet.

To build an efficient method for unsteady flows, it is interesting
to take into consideration all the flow characteristics. Turboma-

chineries induce time-periodic forced motion of the blades. Even
though the chaotic nature of turbulence prevents these flows from
being strictly periodic, the largest deterministic scales, the ones
engineers are interested in, are also periodic. Several dedicated
methods have been developed during the past years. They con-
sider flow variables either in the time domain or in the frequency
domain. The frequency-domain techniques are extensively re-
viewed in Refs. !5,6". Linearized methods !7" form an important
group among these methods. A harmonic perturbation is superim-
posed over a steady flow, and they do not really rely on a time-
marching procedure. Consequently, they are inexpensive to com-
pute. However, when the flow presents strong shock
discontinuities and/or unsteady nonlinearities, for instance, the
linearity assumption is no longer true #see Ref. !8", for instance$.
Ning and He !9" extended these techniques to take account of the
nonlinearities, yielding the nonlinear harmonic method. This one
is limited to only one harmonic of the flow and requires a specific
treatment for time stepping. Then, Chen et al. !10" extended it to
several harmonics, and He et al. !11" extended it to several fre-
quencies not necessarily multiple of each other for multistage tur-
bomachineries.

In the recent years, similar time-domain methods dedicated to
time-periodic flows have been developed. Hall et al. introduced a
harmonic balance #HB$ method !12", applied to blade cascade
computations. Then, Gopinath and Jameson !13" presented the
time spectral method #TSM$ for external aerodynamic applica-
tions. Both methods are essentially similar and allow one to cap-
ture the fundamental frequency of the flow and a given number of
its harmonics. They cast the unsteady governing equations in a set
of coupled steady equations corresponding to a uniform sampling
of the flow within the time period. These steady equations can
then be solved using standard steady RANS methods with conver-
gence acceleration techniques such as local time stepping, multi-
grid !14", and implicit schemes. The convergence of a steady flow
computation is better mastered than the transient needed by an
unsteady flow computation to reach the periodic state since itera-
tive convergence is easier to monitor than time accuracy. This
method proved to be efficient in periodic problem computations
such as vortex shedding !15,16", flutter !17", helicopter rotor flow
!18", and turbomachinery applications !5,19". The harmonic bal-
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lon Cedex, France.



ance approach has also been extended by Ekici and Hall !20,21" to
treat several frequencies and has been applied to multiple row
configurations, with or without blade vibration

In this paper, a time-domain harmonic balance approach for
single stage turbomachines is investigated, where in each blade
row, only the frequency #and harmonics$ relative to the adjacent
blade row is resolved. After presenting the governing equations in
Sec. 2, the time-domain harmonic balance formulation is derived
#Sec. 3$. Then, turbomachinery applications are presented in Sec.
4. The derived HB method is first adapted to the phase lag peri-
odic conditions !22" to allow for the simulation of only one blade
passage per row regardless of the blade count of rows. It is then
tested on a single stage subsonic compressor #Sec. 5$. First, only a
radial slice is considered to remove tip leakage flow problems
arising in the whole configuration. Then, a procedure to initialize
the full 3D computation is given to avoid numerical problems due
to the tip leakage flow. Finally, the vortex pattern generated at the
tip is analyzed.

2 Governing Equations

The Navier–Stokes equations in Cartesian coordinates are writ-
ten in semidiscrete form as

V
!W

!t
+ R#W$ = 0 #1$

W is the vector of conservative variables complemented with an
arbitrary number of turbulent variables as within the RANS
framework. R#W$ is the residual vector resulting from spatial dis-
cretization of the convective fci and viscous f

vi fluxes,

R#W$ =
!

!xi

f i#W$

with f i= fci− f
vi and

fci =%
!Ui

!UiU1 + p"i1

!UiU2 + p"i2

!UiU3 + p"i3

!UiE + pUi
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vi =%

0
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#i3

u · #i − qi

&
Here, " denotes the Kronecker symbol. The components of the
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The heat flux vector q components are qi=−%!T /!xi, where T is
the temperature and

% = Cp' $lam

Prlam
+

$turb

Prturb
(

The total viscosity $ is the sum of the laminar $lam and turbulent
$turb viscosities. Prlam and Prturb are the associated Prandtl number.
For an ideal gas, the closure is provided by the equation of state,

p = #& − 1$!'E −

UiUi

2
(

3 Harmonic Balance Method

If the flow variables W are periodic in time with period T

=2' /(, so are the residuals R#W$, and the Fourier series of Eq.
#1$ reads

Table 1 CME2 compressor characteristics

Rotor:stator blade count 30:40
Casing radius 0.275 m
Rotor/stator axial distance 13 mm #hub$

22 mm #casing$
Hub/casing ratio 0.78
Tip gap 0.8% blade span
Rotation speed #nominal point$ 6300 rpm #105 Hz$
Mass flow rate #nominal point$ 10.5 kg s−1

Pressure ratio #nominal point$ 1.14

Ω

W (x, r, θ, t)

W (x, r, θ, t + ∆t)

W (x, r, θ, t + 2 ∆t)

Ω

Fig. 1 Blade row interface duplication process „left: relative mesh posi-
tion; right: duplication with phase lag periodic conditions…

Fig. 2 CME2 Navier–Stokes wall-law mesh „one out of every
two points…



)
k=−)

)

#ik(VŴk + R̂k$exp#ik(t$ = 0 #2$

where Ŵk and R̂k are the Fourier coefficients of W and R corre-
sponding to mode k. With the complex exponential family form-
ing an orthogonal basis, the only way for Eq. #2$ to be true is that
the weight of every mode k is zero. An infinite number of steady
equations in the frequency domain are obtained as expressed by

ik(VŴk + R̂k = 0, ∀ k ! Z #3$

McMullen et al. !23" solved a subset of these equations up to
mode N, −N*k*N, yielding the nonlinear frequency-domain
method. As the present HB method has to be implemented in the
ELSA solver !24", which is a time-domain solver, Eq. #3$ cannot
easily be solved.

The HB technique !12" and the TSM !13" use a discrete inverse
Fourier transform #DIFT$ to cast back in the time domain this

subset of 2N+1 equations from Eq. #3$. The DIFT induces linear

relations between Fourier coefficients Ŵk and a uniform sampling
of W within the period

W! = E
−1Ŵ!

⇔ Wn = )
k=−N

N

Ŵk exp#ik(tn$, 0 * n + 2N + 1

This leads to a time discretization with a new time operator Dt as
follows:

R#Wn$ + VDt#Wn$ = 0, 0 * n + 2N + 1 #4$

These steady equations correspond to 2N+1 instants equally
spaced within the period. The new time operator connects all the
time levels and can be expressed analytically by

Dt#W
!$ = iE−1

DEW!
⇔ Dt#Wn$ = )

m=−N

N

dmWn+m #5$

where D is a diagonal matrix equal to the corresponding wave-
number Dk,k=k( and with

dm = *
'

T
#− 1$m+1 csc' 'm

2N + 1
( , m " 0

0, m = 0 +
A similar derivation can be made for an even number of instants,
but van der Weide et al. !19" proved that it leads to an odd-even
decoupling, and as a consequence, the method can become un-
stable.

A pseudo-time derivative V!Wn /!tn
! is added to Eq. #4$ in order

to time march the equations to the steady-state solutions of all
instants. The term VDt#Wn$ appears as a source term that repre-
sents a high-order formulation of the initial time derivative in Eq.
#1$. The pseudo-time marching takes advantage of accelerating
methods such as a multigrid technique !14", local time stepping,

(a) first radial plane (b) mid radial plane (c) last radial plane

Fig. 3 Slice mixing plane computation
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and implicit schemes. The latter is carried out by the Block-Jacobi
symmetric over-relaxation #BJ-SOR$ implicit algorithm developed
by Sicot et al. !25".

4 Turbomachinery Boundary Conditions

Turbomachinery simulations are seldom carried out on the
whole circumference of the annulus due to the high computational
cost. At a stable operating point, the flow shows a spatial period-
icity in the azimuthal direction, and thus only a sector of the
annulus can be considered in order to reduce the computational
domain. Unfortunately, the spatial periodicity of real turboma-
chineries is often a large fraction of the annulus and sometimes
the whole annulus. Using the phase lag periodic conditions #Erdos
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et al. !22"$, the computational domain can be reduced to a single
passage for each row, regardless of the actual blade count.

As a HB simulation ensures the coupling of steady flow com-
putations corresponding to a uniform sampling of the period, a
turbomachinery HB simulation is equivalent to coupling frozen
rotor computations at different relative positions between the
blade rows, sampling a blade passage. It is therefore relevant to
initialize a HB simulation with a mixing plane computation so that
the wakes propagate into the downstream row at the different HB
instants’ relative position.

4.1 Phase Lag Periodic Conditions. When solving for only
one blade passage of the true geometry, the flow is time-lagged
from one blade passage to another. The phase lag periodic condi-
tion is used on the azimuthal boundaries of a single blade passage.
It states that the flow in a blade passage at time t is the flow at the
next passage, but at another time t+,t,

W#x,r,- + -G,t$ = W#x,r,-,t + ,t$ #6$

This time lag can be expressed as the phase of a rotating wave
traveling at the same speed as the relative rotation speed of the

(a) U-RANS (b) HB 5 instants

(c) HB 7 instants (d) HB 9 instants

(e) HB 11 instants (f) HB 13 instants

Fig. 10 Entropy at midspan



opposite row: ,t=. /(.. The interblade phase angle #IBPA$ de-
pends on each row blade count and relative rotation velocity and
is given by Gerolymos et al. !26",

. = − 2' sgn#/ − /̄$'1 −

B̄

B
(

The Fourier series of Eq. #6$ reads

)
k=−)

)

Ŵk#x,r,- + -G$eik(.t = )
k=−)

)

Ŵk#x,r,-$eik(.,teik(.t

The spectrum of the flow is then equal to the spectrum of the
neighbor blade passage modulated by a complex exponential de-
pending on the IBPA,

(a) U-RANS (b) HB 5 instants

(c) HB 7 instants (d) HB 9 instants

(e) HB 11 instants (f) HB 13 instants

Fig. 11 Close-up of entropy at midspan at the row interface



Ŵk#x,r,- + -G$ = Ŵk#x,r,-$eik.

Again, a linear combination of all the time instants can be derived,
thanks to spectral interpolation,

W!#- + 0-G$ = E
−1

MEW!#-$ ⇔ W#x,r,- + 0-G,tn$

= )
m=−N

N

bmW#x,r,-,tn+m$

where M is a diagonal matrix equal to the IBPA modulation
Mk,k=eik. and with

bm =
1

2N + 1
'1 + 2)

k=1

N

cos,k'2'
m

2N + 1
− 0.(-(, 0 = 1 1

As the HB method solves and stores simultaneously a uniform
sampling of the time period, it could be considered similar to
Erdos’ direct store method. Actually, the method used here is
closer to the shape correction developed by He !27", in a sense
that the lag is computed, thanks to the Fourier series.

4.2 Row Coupling. Considering only one blade passage per
row, the fundamental frequency of a HB computation is the blade

passing frequency #BPF$ of the opposite blade row (= B̄/. It
means that the time span and thus the time instants solved in each
blade row do not match. As a consequence, a time interpolation of
the flow in the donor row to the time instants of the receiver row
must be performed. A spectral interpolation is achieved in order to
preserve the spectrum of the donor row flow,

W̄#t$ = E
−1

ĒW̄#t̄$ ⇔ W̄#tm$ =
1

2N + 1)
n=0

2N

cm,nW̄#t̄n$ #7$

where Ē considers the opposite row frequencies and time instants

Ēk,n= #1 / #2N+1$$exp#−i(̄kt̄n$ and E−1 considers opposite row fre-
quencies to conserve the spectrum but the current row time in-
stant,

#E−1$m,k = exp#i(̄ktm$ = exp'2i'
B

B̄
k

m

2N + 1(
The coefficient of Eq. #7$ can be derived analytically and read

cm,n = 1 + 2)
k=1

N

cos,2'
k

2N + 1'B

B̄
m − n(-

Due to the relative motion between blade rows and the different
row pitches, the flow also has to be interpolated in space. This is
done, thanks to a totally nonmatching mesh interface !28" per-

forming complex polygon clipping to ensure conservativeness. As
shown in Fig. 1, the flow from the stator row has to be duplicated
in azimuth in order to provide full information to the rotor row.
This duplication has to take the time lag #Eq. #6$$ into account.

Finally, to get rid of spurious waves, a filtering is applied in the
receiving row, thanks to an oversampling of the donor row.
Orszag’s criteria !29" state that 3N+1 instants per time period are
sufficient to allow the filtering of aliasing frequencies. For practi-
cal reasons, the donor row flow is oversampled at twice the HB
computation number of instants, i.e., 4N+2 instants, satisfying
Orszag’s criteria, so that the receiver row can keep one out every
two samples while filtering. The latter considers the 4N+2 in-
stants and keeps only the N frequencies of interest,

W̄ f = F
+
FW̄

where F is a rectangular Fourier matrix #2N+1$2 #4N+2$ and F+

is the Moore–Penrose pseudo-inverse of F #F+F"I$.

5 Numerical Applications

The present HB method has been implemented in the parallel
structured multiblock ELSA solver !24" owned by ONERA, the
French Aerospace Lab. The code capability is wide as it can simu-
late steady and unsteady, internal and external flows, in a relative
or fixed motion. It is applied here on the single stage compresseur
mono-etage 2 #CME2$ subsonic compressor !30", whose charac-
teristics are given in Table 1.

The mesh is shown Fig. 2. The rotor and stator blades are
discretized in the streamwise direction by 183 and 171 points,
respectively. There are 57 radial planes and 10 in the tip region in
the rotor row, leading to a total of 900,000 grid points. No-slip
boundary conditions are used in conjunction with wall law. A
uniform injection condition is prescribed at the inlet, and a throttle
condition with radial equilibrium is used at the outlet.

The second-order scheme with artificial dissipation of Jameson
et al. !31" is used for the inviscid terms. The first-order flux split-
ting of Steger and Warming !32" is also applied on the residual
linearization to ensure diagonal dominance of the implicit matrix
and thus convergence. A second-order centered scheme is used for
the viscous terms. Turbulence is modeled by the transport equa-
tion of Spalart and Allmaras !33".

5.1 Radial Slice. A radial slice between 40% and 60% of the
blade span is first considered. Five radial planes are retained, com-
prising 72,000 mesh points. The real geometry is kept so that the
blade slice has some twist. This can be clearly seen from the
mixing plane computations used to initialize the HB and U-RANS
simulations #Fig. 3$. At the first radial plane #a$, the flow is de-
tached in the stator row, while it is detached in the rotor row at the
last radial plane #c$. At midspan #b$, the flow is correctly attached.

The U-RANS simulation is also carried out on a single blade
passage per row using a phase lag periodic assumption and the
row interface treatment developed in Ref. !26". All the computa-
tions are resolved with a dual time stepping method !34" with 20
subiterations, and the periodic state is reached within 80 rotor
blade passages #more than 2.5 revolutions$. A convergence study
is performed to get a correct reference. The unsteady isentropic
efficiency is plotted #Fig. 4$ in the stator time period #linked to the
rotor BPF$ for different time samplings, namely, 80, 160, and 320
instants per period. The coarsest sampling and the 160-instant
sampling provide close results only on the second half of the
period. On the first half, the shape is similar but with a gap of
about 0.5%. The second sampling is close to the finest sampling of
320 instants per period with an error lower than 0.1% on all the
period. Therefore, the U-RANS computation is considered con-
verged with 160 instants per period.

The mass flow rate #MFR$ convergence is plotted in Fig. 5. The
upstream MFR is the slowest to converge and is thus used to
monitor convergence #a$. The last ten periods of MFR are then

Fig. 12 Downstream row without wake crossing the row
interface



shown at the mesh row interface #b$ and outlet #c$.
The residual convergence of the HB simulations is shown in

Fig. 6. The three-instant computation fails to converge. The sam-
pling is probably too coarse to provide good space/time interpo-
lations needed by the phase lag periodic conditions and row cou-
pling. For the higher-order computations, the residuals drop about
four orders of magnitude in 5000 iterations.

The mass flow rate convergence of the 15-instant HB compu-
tation is shown in Fig. 7. As the rotor wakes at the interface have
different azimuthal positions for each sample, each solution has a
different value of the MFR at the interface #b$. This information

needs a few hundreds of iterations to reach the inlet and outlet and
have these MFRs separate. As in U-RANS, the upstream MFR #a$
is the slowest to converge: It does not change any further after
4000 iterations, while the outlet MFR #c$ is converged after 3000
iterations.

Figure 8 compares U-RANS and HB unsteady signal of outlet
MFR #a$ and isentropic efficiency #b$. The MFR given by the
five-instant HB computation underestimates the amplitude and
shows a small lag. Sampling with two more instants slightly over-
estimates the amplitude, but the trend is closer to the reference
U-RANS result. The HB computation with nine instants matches

(a) U-RANS (b) HB 5 instants

(c) HB 7 instants (d) HB 9 instants

(e) HB 11 instants (f) HB 13 instants

Fig. 13 Pressure at midspan



the U-RANS MFR. Beyond 11 instants, all signals are superim-
posed. The isentropic efficiency curves are more scattered. Five-
and seven-instant HB computations give poor results as the aspect
is far from the U-RANS prediction. With nine instants, the HB
method results are improved and get closer to the U-RANS. The
higher-order HB signals are superimposed on the U-RANS with
160 instants per period. The U-RANS made with 80 instants per
period #see Fig. 4$ is also plotted to show that both methods
converge toward the same result and that a HB computation with
nine instants already gives a better solution than a poorly resolved
U-RANS computation.

The time-averaged MFR and isentropic efficiency are presented
#Fig. 9$ for the U-RANS and HB computations and compared
with the results of the mixing plane computation. The latter over-
estimates the U-RANS MFR by 0.4%. The five-instant HB com-
putation provides a better estimation with a relative error of 0.1%,
which decreases to 0.05% with a sampling of nine instants. The
isentropic efficiency predicted by the mixing plane simulation is
much lower than the one predicted by the U-RANS. The former
underestimates it by 5.5% due to the detached flow at the lowest
and highest radii #see Fig. 3$. Although the five- and seven-instant
HB computations provide poor efficiency #see Fig. 8#b$$, their
time-averaging give an error lower than 0.2%. With nine instants,
the error is decreased by half and does not improve when further
increasing the number of instants.

Some instantaneous snapshots of entropy at midspan are shown
in Fig. 10. The HB computation with five instants #b$ provides a
poor pattern of wakes compared with the reference U-RANS
simulation #a$. Just downstream of the row interface, the wakes
are made of sharp and thick bubbles of entropy, which finally
dissipate further downstream. This is clearly an effect of the HB
method source term #Eq. #5$$ together with a coarse time sam-
pling. The nonmatching mesh interface probably adds some nu-
meric noise, as will be shown latter on. Even though the rotor/
stator interactions are poorly resolved with five instants, it is
noteworthy that the coupling of five steady “frozen rotor” compu-
tations can actually capture unsteady flow effects: The wakes are
well aligned and at the right position. With seven instants #c$, the
result is far better. Even if bubbles can still be observed, they are
better merged and thinner, and the wake scheme is correct as far
as the outlet. The rotor/stator interactions are then well captured.

Figure 11 presents a close-up of the previous entropy snapshots
around the blade row interface. The HB computations ##b$–#f$$ are
based on a totally nonmatching mesh technique #see Sec. 4.2$,
while the U-RANS #a$ transfers Fourier coefficients in both time
and azimuthal directions to allow the reconstruction of the field in
the opposite row. The five-instant HB computation #b$ shows
strong discontinuities at the blade row interface. The wake is well
formed upstream and then suddenly changes into these sharp
bubbles. With seven instants, the contour lines are better aligned
with the upstream wakes but still present some bubbles. The
wakes are also thicker. With 13 instants, the downstream wake is

well formed, but the contour lines are still not perfectly matching.
This is a typical behavior of the nonmatching mesh interface
implementation used in the present study.

In the present test case, the stator row pitch being lower than
the rotor row pitch, it can happen that an instant solved in the
stator row is right in the middle of a rotor blade passage; i.e., it
does not receive a wake from its interface but rather from its
azimuthal boundaries, as sketched in Fig. 12. This can only be
recreated by means of the HB time operator and phase lag peri-
odic condition, which need to have enough information from the
other instants. So, as the difference of each row pitch increases,
the time sampling needs to be finer to compensate for.

The pressure at midspan is presented in Fig. 13. The five-instant
HB computation #b$ shows a bad pattern especially upstream of
the rotor row and at the interface. With seven instants #c$, the
results are improved upstream of the rotor but remain poor at the
interface. Eleven instants #e$ are needed to perfectly match the
U-RANS reference #a$.

The harmonic analysis of the wall pressure on the stator blade
is performed, and the L2-norm of the difference with the U-RANS
computation is shown in Fig. 14. The five-instant HB computation
captures the first harmonic with a difference of 4.5% with the
U-RANS and the second harmonic, the highest mode allowed by
such a sampling, with a difference close to 8%. The seven-instant
HB computation captures the third harmonic with a difference of
13%. For all harmonics, the trend consists in a rapid decrease in
the difference as the sampling gets finer, and it quickly reduces
under 1%. Two more comprehensive studies of harmonic behavior
of the HB method can be found in Refs. !35,36".

Finally, a HB computation with nine instants gives a good es-
timate of unsteady general quantities such as mass flow rate and
isentropic efficiency. Figure 15 shows the CPU time gains of the
HB computations compared with the reference U-RANS compu-
tation. A nine-instant HB computation is five times faster. The
11-instant computation perfectly matches U-RANS results and is
almost four times faster. Regarding the memory requirement of
the method, the gain in computational speed is obtained at the
price of an increased storage of data: Since all the instants are
solved simultaneously, they are all stored in memory. For the
nine-instant case, the memory needed is about nine times that of
the classical U-RANS computation, and it scales linearly with the
number of instants.

5.2 Full 3D Configuration. Now, the HB method is applied
on the full 3D CME2 configuration. Some problems arise from the
tip leakage flow, which corrupts all the domain, and the compu-
tations fail to converge. It appears to be a transitory problem and
can be solved with an appropriate initialization procedure. For
instance, Vilmin et al. !37" first computed a solution on a coarse
grid with a small number of harmonics. The result is then inter-
polated to be used as an initial condition to a higher-order com-
putation on the fine grid. This grid/harmonic sequencing strategy
allows us to filter errors that appear as high frequencies on the
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coarse grid and ease convergence on the fine grid. In our case, the
mesh is not multigrid compliant. A second initialization procedure
is therefore developed: The turbulence is frozen over the mean
flow #the HB operator Eq. #5$ is no longer applied on the turbulent
equations$, and the Courant-Friedrich-Levy #CFL$ number was
drastically lowered by two orders of magnitude. Once the compu-
tations pass this transient, the parameters are set back to regular
values and the computations converge. It is possible that this prob-
lem arises due to some nonsynchronous activity in the tip-gap
shear layer, which clearly cannot be accounted for by the present
HB method #see Ref. !15" for an example of the need for a well-

defined prescribed frequency$. Although this is a limitation of the
method, the same holds for the classical U-RANS method since
the phase lag boundary conditions on the azimuthal frontiers and
stage interface filter nonsynchronous unsteadiness as well.

The unsteady MFR is provided Fig. 16#a$. The HB computa-
tions converge faster than those in the slice case since the un-
steady MFR signal does not evolve beyond seven instants. The
maximum MFR is slightly overestimated compared with the
U-RANS. While the five-instant HB computation gives a poor
unsteady MFR, it provides the best estimate of time-averaged
MFR, as shown Fig. 16#b$ with a relative error of 0.04% com-

(a) HB 5 instants (b) HB 7 instants

(c) HB 9 instants (d) HB 11 instants

Fig. 17 Instantaneous helicity at constant radius „98% blade span…
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pared with U-RANS. All the other HB computations overestimate
the MFR but are nonetheless under 0.1% of error, while the mix-
ing plane simulation overestimates the averaged MFR by 2.55%.

The vortex pattern generated by the tip leakage flow is now
investigated. Figure 17 presents instantaneous snapshots of helic-
ity, defined as U rot U, plotted on a blade to blade cut at 98% of
the blade span. The helicity is normalized between 31 and 1.
These two bounds represent counter-rotating vortices, while zero
means no rotation. One can observe a vortex generated at the rotor
leading edge impacting the next blade pressure side. Another vor-

tex is present all along the rotor blade suction side and separates at
about 80% of the chord. The rotor wakes are made of vortices
rotating in the opposite way. Despite the not-so-well-resolved
wake pattern of low-order HB computation #which was already
observed in Fig. 10$, the vortex pattern is well captured for any
number of instants. This is probably due to a rather weak
unsteadiness.

This is confirmed by Fig. 18, showing some axial cuts at 86%,
92%, and 98% of the rotor blade chord. The black line on the rotor
indicates 98% of the blade span, used for the radial cuts of Fig.

(a) U-RANS

(b) HB 5 instants (c) HB 7 instants

(d) HB 9 instants (e) HB 11 instants

Fig. 18 Instantaneous helicity at axial sections



17. Another vortex is located close to the casing at the suction side
and rotates the opposite way of the ones previously observed. It
gets larger as the axial distance grows. Again, all the HB compu-
tations ##b$–#e$$ provide similar results to the U-RANS computa-
tion #a$.

6 Conclusions and Prospects

A time-domain harmonic balance method has been derived and
adapted to phase lag periodic conditions to reduce the computa-
tional domain. A row coupling strategy has been set up, involving
time and space interpolations complemented by a filter to remove
spurious waves. The derived HB method was first tested on a
radial slice of the CME2 single stage compressor. It shows that the
HB method is capable of capturing rotor/stator interactions and
returns results that are quantitatively similar to a well-converged
U-RANS reference computation. However, the convergence de-
pends of the quantities monitored. For instance, the unsteady mass
flow rate is well predicted with a number of instants lower than
needed for the isentropic efficiency. In the end, the HB method is
four to five times faster than the U-RANS for similar accuracy.

The whole 3D configuration shows problems arising with the
tip leakage flow. Two initial strategies have been reviewed, and
one is tested. The results show that the vortex patterns are well
captured.

The HB method is currently being extended to capture several
frequencies not necessarily multiple of each other, which is
needed for multistage applications where a row is sensitive to
different adjacent row blade-passing frequencies. This extension
is performed following the work of Gopinath and Ekici but is
done purely in the time domain. Since multiple frequency phase
lag boundary conditions !38" are not widespread yet in the indus-
try, the multistage HB approach stands as an interesting alterna-
tive to full 360 deg computations for multistage turbomachines.
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Nomenclature
B 4 number of blades in a row
E 4 energy
E 4 discrete Fourier transform matrix: Ek,n=exp#

−i(ktn$
k 4 mode number:− N*k*N

N 4 number of harmonics
p 4 pressure
r 4 radius

R#W$ 4 residuals resulting from space discretization
t, t!, T 4 time, pseudo-time, time period

U 4 flow speed
V 4 cell volume
W 4 conservative flow variables: #! ,!U ,!E$T

. 4 interblade phase angle #IBPA$
! 4 fluid density

(, / 4 angular frequency, rotation speed
-, -G 4 azimuth, row pitch

an 4 nth instant of the period: an.a#tn$=a##n / #2N

+1$$T$, 0*n+2N+1
âk 4 kth Fourier coefficient of a:

âk= #1 / #2N+1$$)n=0
2N an exp#−ik(tn$, −N*k*N

ā 4 property of the opposite row

a!#â!$ 4 concatenation of all instants #modes$ of a: a!

= #a0 , . . . ,a2N$T
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