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Abstract

The impedance condition in computational aeroacous-
tic applications is required in order to model acousti-
cally treated walls. The application of this condition in
time-domain methods, however, is extremely difficult be-
cause of the convolutions involved. In this paper, a time-
domain method is developed which overcomes the com-
putational difficulties associated with these convolutions.
This method builds on the z-transform from control and
signal processing theory and the z-domain model of the

impedance. The idea of using the z-domain operations
originates from the computational electromagnetics com-
munity. When the impedance is expressed in the z-
domain with a rational function, the inverse z-transform
of the impedance condition results in only infinite im-
pulse response type, digital, recursive filter operations.
These operations, unlike convolutions, require only lim-
ited past-time knowledge of the acoustic pressures and
velocities on the surface. One- and two-dimensional ex-
ample problems with and without flow indicate that the
method promises success for aeroacoustic applications.

1 Introduction

The surface impedance condition in computational
aeroacoustic (CAA) applications, such as the calculation
of sound propagation through an engine inlet duct,

1
"

4
 is

extremely important. Relatively quiet modern turbofan

engines rely heavily on acoustic treatment (liners) on the
inlet wall.

5
 Sound waves are absorbed by the liner ma-

terial to a degree depending upon the frequency content

of the waves. Thus part of the inlet noise is suppressed.
In order to calculate sound propagation over acousti-

cally treated surfaces in the time domain, the impedance

condition^ has to be properly formulated. To the au-
thors' knowledge, no time-domain implementations of

the acoustic impedance condition on surfaces with or
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without flow have been reported to date. This is due
to the fact that impedance conditions are best dealt
with in the frequency domain because the acoustic re-
sponse on a surface is a function of the wave frequency.

5

However, the frequency-domain methods,
6
 unlike the

time-domain methods, can only solve single frequency

problems one at a time. Expensive convolutions are re-
quired in time-domain applications, however, due to the
frequency-dependent characteristics of the lining mate-

rials.
This paper addresses the time-domain impedance con-

ditions exploiting the ideas of digital filter applications
of signal processing theory

7
 for efficient implementations

in CAA applications. The z-transform is used to formu-
late the impedance condition in the z-domain, and the
impedance is modeled by a rational function in z. Then
an inverse z-transform to the time domain provides the
time-discretized impedance condition. This approach
was used successfully by the computational electromag-
netics (GEM) community

8
'
9
 to establish a simple yet

efficient tool for including the impedance condition as
only infinite impulse response (IIR) type, digital filter
operations

7
 between the magnetic and electric fields (in-

put/output). However, there are complications in CAA

because of the convective flow effects. This is partic-
ularly true when the impedance is allowed to vary on

the wall. The complication in the z-transform applica-
tion is associated with the gradient of the rational func-
tion representation of the impedance in the equations.
Therefore, the impedance in this paper is assumed to be
independent of the location on the surface.

The time-domain Impedance condition is derived
starting from the frequency-domain formulation of My-

ers.
10

 This is discussed in the next section. Then the
z-transform procedure is introduced, which is followed
by tne-discussion--o£-the -numericaL4naplementatioiLin_a_
time-integration scheme. Then one and two-dimensional

test cases are discussed. The two dimensional case in-
volves the reflection of a Gaussian pulse from a flat plate
in uniform flow. The results indicate that the current
method has promise for further developments and appli-

cations.



2 Impedance Condition

Myers
10

 derived a general acoustic impedance boundary
condition assuming that a soft wall (acoustically treated
surface) undergoes deformations in response to an inci-
dent acoustic field from the fluid. He assumed these de-
formations are small perturbations to a stationary mean
surface, and the corresponding fluid velocity field is a
small perturbation about a mean base flow Vm. His lin-
earized, frequency-domain impedance (with an e

Mt time
dependence) can be expressed as

V(w) • n = -

+ n • (n • VVm) [p(w)/twZ(w)l (1)

where V is the complex amplitude of the velocity pertur-
bation, (jj is the circular frequency, n is the mean surface

normal, p is the complex amplitude of the pressure per-
turbation, Z is the impedance, t = \/—T, and Vm is
the mean velocity about which the linearization is per-
formed. The use of this condition is restricted to linear
unsteady flow situations due to the assumptions made
in its derivation. The impedance is usually given by

where R{u) and X(cj) are the frequency-dependent resis-
tance and reactance, respectively, of the lining material.
The impedance surface is assumed locally reacting.5'

11

That is, the behavior of the lining material is indepen-
dent of the detailed nature of the acoustic pressure in
the surrounding.

It is clear from Eq. (1) that in the absence of flow, the
impedance condition reduces to

V(w)-n = -p(w)/Z((j), soft wall; no flow, (3)

V(w)-n = 0 hard wall (4)

These equations are rather easy to implement in a
frequency-domain method. A time-domain implemen-
tation, however, requires the inverse Fourier transform
of the impedance condition, which results in a convolu-
tion equation. For example, transforming the impedance
condition given for the no-flow case we arrive at the equa-
tion

p'(t) = - Z(t - T) n • V'(r) dr (5)

where now -the impedance mast be-expressed i
domain and the past time history of the normal velocity
perturbation n • V = v'n at the wall must be provided
hi order to evaluate the integral.

The time-domain impedance condition in the presence
of flow becomes more difficult to deal with. Assuming

the impedance is independent of the surface location and
multiplying through Eq. (1) by iuZ(u), we can write

+ Vm • Vp(w) - n • (n • VVm) p(u)

= -[iwZM] [t)n(w)] (6)

After the inverse Fourier transform, we obtain

Vm • Vp'(i) - n • (n - VVm)p'(f)

d
(7)

A convolution integral is usually evaluated numerically
with a simple summation formula over the discrete time

range 0, ...,nAt, where At is the time increment. For
example, the right-hand side of Eq. (7) can be computed

using

T<(
Jo

t-T dr £ At

(8)

This equation evidently indicates a need for signif-
icant computational resources for problems over long
tune periods, typical to CAA. If the calculations are be-
ing carried out for 10,000 time steps, for example, on
a 128 x 128 surface mesh, Eq. (8) requires an array of
size (10000,200,200) for the acoustic velocity v'n. Hence
the evaluation of the above convolution integral is com-
putationally expensive and consequently impractical for
multi-dimensional CAA problems. Moreover, the time
accuracy of Eq. (8) is usually hindered by the above sim-
ple summation approach. This fact will be demonstrated

by an example later.

3 The z- Transform

The ^-transform procedure is used in the GEM commu-
nity8'9 to overcome the difficulties associated with the

convolution integrals of the impedance condition. One
can consider the impedance term that appears in the
convolution integral of Eq. (5) or Eq. (7) as the acoustic
system's response to the acoustic normal velocity input,
and the integrals as the output. The idea here is then
to represent the discrete form of the output (e.g. the
summation in Eq. (8)) as a linear combination of the

previous inputs and outputs. By this approach one can
find an equivalent finite series to a convolution summa-
tion. The z-transform is a useful tool to accomplish this

task. If the impedance Z can be expressed as a fraction
of two finite polynomials in the complex variable z, this

goal is achieved easily. This procedure is described with
an example below. First we give the definition of the
z- transform.



If <?(£) is a time-continuous variable, its discrete form
is given by

q[n]=q(t)6(t-n&t), -oo < n < +00 (9)

where S() is the Dirac delta function. Then the definition

of the z-transform is8

(10)

where Q(z) is the z-transform of the sequence q[n]. Sim-
ilar definitions are also possible.

7
 Thus, if h(t) is time-

continuous data given, for example, by

=  ^°, t>o,
to

the z-transform of its discrete form is

(11)

n=0

1 _ e-Af/to 2-1
(12)

The ^-transforms have common properties with the
Fourier transforms, such as convolution, shifting, etc.

Thus

Z{q((n - = z~1(5(z) (13)

is the shifting property that will be used below.
A time derivative can be approximated by a first-order

backward difference as

m_

Tt
q(t

> ~

The z-transform of this is then given by

(14)

(15)

Now since e
lu

 <—> z, the no-flow impedance condi-
tion, for example, given by Eq. (3) can be written in the

z-domain simply as

= -Z(z)Vn(z) (16)

where P(z) is the z-transform of the acoustic pressure,
Z(z) is the z-transform of the impedance, and Vn(z) is
the z-transform of the acoustic normal velocity at the
wall.

Hence, if we knew the z-transform of the impedance
in terms of the ratio of two finite polynomials in z, like
the one given by Eq. (12), using the shifting property
of the z-transform (Eq. (13)), we could obtain a simple

relation between the acoustic velocity and pressure. For
example, let Z(z) be given by

(17)
1 -

where a's and 6's are some constants. Then, the substi-
tution of Eq. (17) into Eq. (16) yields

(1 - biz-
1
 - M = -(ao + aiz-

l
)Vn(z) (18)

Then after the inverse z-transform using the shifting
property (Eq. (13)), we obtain

where now the superscript n indicates the time level,
a common notation used in CFD and CAA. The left-
hand side of the above equation is, therefore, nothing
but the current time output of the acoustic system as a
function of the previous outputs and inputs as well as the
current acoustic velocity input. Thus the right-hand side
is analogous to a digital filter, specifically to a recursive,
IIR filter.

7
 Thus a very simple connection is established

between the discrete acoustic pressure and the normal
velocity on the surface.

4 Impedance Condition in the z-

Domain

In order for the more general frequency-domain
impedance condition given by Eq. (6) to be formulated
in the z-domain, we simply use the following derivative
operator relations:

f
£
—^f

1
 <

20
>

where T is the Fourier transform operator. A bilinear
approximation can also be used:

2 1 v — 1

However, the following discussion and derivations will

use the backward difference approach (Eq. (20)). Then
by the substitution of Eq. (20), the impedance condition

(Eq. (6)) can be expressed in the z-domain as

• P(z) + Vm • VP(z) - n • (n • VVm) P(z)

1-z-1

Ai
•Z(z)Vn(z) (22)

Now let the z-transform of the impedance be modeled

in general by

MN

+
Z(z} =

e=i
MD

i - E
(23)



where a's and 6's are the constants that give the best
approximation to the impedance. For stability, the poles
of Z(z) must be in the upper half of the complex plane.7

After the substitution of this Z(z) into Eq. (22) and some
algebra and manipulation,,we obtain

At

where

-P(z) + Vm • VP(z) - n • (n • VVm)P(z)

l-*-1,, , . =
= -a0—-rr-Vn(z) + R (24)

+
MD

*=1

MD

- n • (n • VVm) £>z~feP(z) (25)
*=i

Then the multiplication of Eq. (24) by z and a conse-
quent inverse z-transform of it result in the following
time-discretized impedance condition

pn+l _ pn

Vm • Vpn+1 - n • (n •

= -a0-

where

Rn
'
n
~

1
"" = -

+
MD

MD

*=i (27)

where p and vn are the acoustic pressure and normal
velocity on the wall, respectively. This equation requires

the mean flow information. Note that on the surface the
mean flow satisfies

a--Vm-=a- (28)

Therefore, if the impedance condition is formulated on a
body-fitted orthogonal coordinate system (£, 77, C) with rj
emanating from the surface, the Vm • Vp term becomes

— op — dj}
V_ • VT) — //_ —-- -i- IV _— /*9Q\v"» v^

 m
 fte ~ '

 m
 as (.za;

where Um and Wm are the contravariant mean velocities

in the £ and £ directions, respectively. If the £ curves are
the azimuthal grid lines of a mesh around an engine inlet,
for example, the mean velocity Wm is usually small com-
pared to Um, except around the stagnation points, and
identically zero for axisymmetric mean flows. Therefore,
the product Wmdp/d£ could be negligible on most of the
acoustically treated regions of the engine inlet wall. Also,
the n • (n • VVm) is usually small where the curvature of
the wall does not change significantly. Thus, the above
impedance condition can be simplified significantly. The
negligence of Wmdp/d(, is far more important because

the spatial discretization of Eq. (26) yields a linear sys-
tem of equations on the surface, as will be seen later.

In general, the solution of Eq. (26) for the current time

step acoustic pressure, p
n+1

, requires the current time
step acoustic velocity, u£+1, and the acoustic pressure
and velocity histories of lengths MD and MN, respec-
tively, where MD is the number of the constant 6's, and
MN is the number of a's in the z-domain impedance
model. The modeling of the z-domain impedance and

the incorporation of the impedance condition in a time-
accurate aeroacoustic method are discussed in the fol-
lowing sections.

5 Numerical Implementation

5.1 Modeling of Impedance

The impedance has to be modeled first in the z-domain
in order to apply the above boundary condition in a nu-
merical algorithm. The frequency-dependent behavior

of the resistance and reactance must be provided ac-
curately in the frequency range of interest. Substitut-
ing z"1 from the backward difference relation given by
Eq. (20), we can show that the resistance and reactance
of the impedance must satisfy two equations of the form,

respectively,

op + + + ...

pc

b0 4 ...

C3UI
5

(30)

(31)

where a, b, c and d are constants that give the best re-

sistance and reactance. Notice that the resistance is an
even function and the reactance is an odd.function^of

the circular frequency w. The reason for this is that
when w = i (z~

l
 - l)/At is substituted into the above

models, we remove the i dependence from the z-domain

impedance so that it becomes

Z(z] = R(z) + X ( z ) (32)



Hence the corresponding a's and b's of Eq. (23) are eas-
ily identified. Figure 1 shows the frequency-dependent
behavior of a typical lining material. The symbols rep-
resent the experimental data of Motsinger and Kraft5

and the curves are the results of a nonlinear least square
fit12 of the above two rational functions representing the
resistance and reactance.
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Figure 1: Resistance and reactance of a 6.7% perforate
plate (at M = 0 and 126 dB incident sound). Experi-
mental data is from Motsinger and Kraft.5

5.2 Time Integration

CAA problems are usually solved using high-order ac-
curate, explicit, finite-difference, time-marching tech-
niques. The hybrid ducted fan noise method of Ozyoriik
and Long,2'

3 for example, uses a fourth-order accurate
Runge-Kutta (R-K) time-integration scheme to integrate

the three-dimensional, time-dependent Euler and nonre-
flecting boundary conditions equations. Since the time-

discretized impedance condition (Eq. (26)) requires the
full-time step solutions p

n+1
 and v

n+l
 on the acousti-

cally treated wall, the application of the wall boundary
conditions in an R-K scheme is of a special interest in
this section. If the semi-discretized governing equations
are given as

(33)

the R-K scheme (compact
13

) is then given by

Q_(1) = Q-V

n+l = Q(4)

where Q is the vector of dependent solution variables,
is the collection of the spatial derivatives, £>(Q) is

artificial dissipation, and At is the time increment from

one step to the next, and as = [1/4,1/3,1/2,1].
First we discuss the hard-wall case (Z(u) = oo). In

this case, the wall boundary condition for the Euler cal-
culations is that the normal velocity on the wall vanish.
That is, V • n = 0. Theoretically the other variables can
be solved from the interior equations. However, within
an R-K iteration the following solution procedure is usu-

ally applied for the entire computational domain.

Do s=l, RK_stages
-Update interior, QW
-Update far field, Q'<«)

-Set v^ - 0 on wall
-Extrapolate pW,u|*' from interior onto wall

-Solve normal momentum equation for p£aii
-Obtain pe^ from equation of state on wall

End Do

where vn and vt are the normal and tangential compo-
nents of the total velocity on the wall.

However, the impedance condition states that there is
transpiration of mass into or out of the wall. That is,
V • n ,£ 0 anymore. The amount of mass transpiration
is fixed by the impedance of the wall. Therefore, instead
of simple extrapolation of the density and the tangential
velocities we simply use the interior equations to solve
for these quantities. The normal velocity in this case
can also be solved using the interior equations. How-
ever, since the impedance condition has resulted in an
implicit relation between the acoustic pressure and nor-
mal velocity on the wall, either the acoustic pressure or
normal velocity at the current time level n + 1 (full time

step) must be provided by the flow solver. The other is
obtained from the impedance condition. Therefore, the
application of the impedance condition in the R-K stages
presents a difficulty as associated with the intermediate
solutions being advanced by fractions of the time step
size. We overcome this difficulty by assuming that the

acoustic velocity vf? is the available value of t>£+1 and
this is then substituted into the impedance condition for
u£+1 to obtain pW as the available value of pn+l on the

wall. This then poses the question what At must be used
in approximating to; by (1 — 2-1)/At in the z-transform

procedure. The answer to this is given in the results

section by numerical experimentation.

It should be noted that the acoustic velocity v£> (as-
sumed to be the available value of u£

+1
) required on

the. wall_by,jjie_iinp£dance^cooditiott-can_b£_ohtaitied

explicitly by solving the interior equations via the R-K

scheme itself. However, as will be demonstrated later,
in some cases this may result in a numerical instabil-

ity at the wall. However, we leave this procedure as an
option in our calculations. A superior treatment is the

discretization of the normal momentum equation implic-



itly within the R-K stage and its simultaneous solution
with the impedance condition equation.

Another significant issue is the solution of the
impedance condition equation for the acoustic pressure
in the presence of flow. When this equation is discretized
in space, the result is a linear system of equations arising
from the Vm- Vpn+1 term, which is equivalent to the tan-
gential gradient of the acoustic pressure since n • Vm = 0
on the wall. This system of equations has to be inverted
at every R-K stage.

Thus, in the case of acoustic treatment on the wall, an
R-K iteration involves the following procedure in general:

Do s=l, RK_stages
-Update interior, Q/s)

-Update far field, Q'<'>

-Update p('), Vf ' at wall using interior eqs.

-At wall, solve for Vn using either
a) ONLY interior equations (explicit)
b) or interior equations

PLUS the impedance condition (implicit)

-Solve for p'aii using the impedance cond.
-Obtain pe^*> from equation of state at wall

End Do

We consider only one and two-dimensional inviscid
problems in this paper to address various numerical is-
sues. These cases involve the reflection of broadband
acoustic pulses from acoustically treated walls. Three-

dimensional cases can be solved in a similar manner.

5.3 One-dimensional cases

The one dimensional cases involve acoustic pulse prob-
lems in a semi-infinite domain (x > 0) with an acoustic
treatment at x = 0. Of course in this case there is no flow
and any term involving Vm in the impedance expression
given by Eq. (26) vanishes. The one-dimensional Eu-
ler equations are solved for the interior points, and one-
dimensional nonreflecting boundary conditions are ap-
plied at x = XB • The perturbation quantities in this case
are p,u,p. Thus, the impedance condition (Eq. (26)) on
the wall requires

= -a0(u
n+l

 - un) -
1=1
MD

Clearly the right-hand side of this equation is the approx-
imation to the right-hand side (convolution) of Eq. (5)
with t = nAt. As indicated earlier, we consider u^

as the available value of u
n+1

 in order to incorporate
this equation in the R-K scheme, where the superscript

(s) represents an R-K stage. Thus the acoustic velocity
is obtained from the time-discretized linear momentum
equation at the wall:

u( ')_un = _At*J_^ (36)
Poo OX

where the superscript * indicates that the evaluation

stage is optional for the derivative term at this point
and At* will depend on this option. If the term dp* /dx

is discretized at the R-K stage (s), Eq. (36) gives an im-
plicit relation between acoustic pressure and velocity. In
this case the time increment At* can be taken as either

Ai or a, At. The effects of these will be discussed in the
results section. However, the evaluation of the above
spatial derivative with values from the previous stage,
i.e. (s — 1), results in an explicit solution of the acous-
tic velocity. In this case the R-K scheme is used, as is,
to obtain the velocity. In both the explicit and implicit

discretization cases u^ is substituted into Eq. (35) for
u

n+1
 to obtain the acoustic pressure p

n+1
 (equivalent to

pW).

5.4 Two-dimensional cases

The two-dimensional cases involve acoustic pulse prob-
lems in a semi-infinite plane (—00 < x < +00, y > 0)
with an acoustic treatment (soft wall) at y = 0. This
domain is truncated to finite size using nonreflecting
boundary conditions. In flow cases the mean flow is as-

sumed to be uniform and in the direction of +x. That is,
Qm = [Ax>,Uoo,0, (pe)00]

T
. Thus, the impedance condi-

tion (Eq. (26)) at the wall requires

At

where

dx At

1=1

MD

MD dpft+l-k

dx
(38)

Now the right-hand side of Eq. (37) is an approximation

to the right-hand side of Eq. (7). Similarly to the one-
dimensional case, the acoustic velocity and the pressure
at the time level n + 1 are in an implicit relation. There-

fore, the normal momentum equation is again used. In
the case of small perturbations in the domain, the lin-
earized y-momentum equation can be used. The dis-
cretized form of this equation is

At*

dv*
^oo <-,

OX Poo dy
(39)



This equation can be solved explicitly using the R-K
scheme. However, for stability and accuracy enhance-

ments dv*/dx and dp*/dy can both be discretized at
the current R-K stage or, dv*/dx at the previous stage
and dp*/dy at the current stage. The implicit dis-
cretization of the pressure derivative is more important
for numerical stability. Thus, when the substitution of
(„(«) -u»)/Ai* from Eq. (39) into Eq. (37) is made with

dp/dy evaluated implicitly and dv/dx evaluated explic-
itly, we obtain, after rearranging,

(t)

= p
n
 + a0 At* Uo

ox
(40)

where Rn
'
n 1>— is given by Eq. (38).

It should be noted that the evaluation of dv/dx also
implicitly would result in a second order x derivative
in Eq. (40), complicating this equation further. The x

derivative of Eq. (40) is discretized using second-order

accurate central and the y derivative is discretized using
third-order one-sided finite differences. Thus the follow-
ing tri-diagonal system of equations results on a grid
with uniform mesh spacings Arc, Ay:

w + CPi+\,jw ~ (Rp}i,jw

(41)

where the subscript i signifies the nodal point in the x di-
rection and j signifies the nodal point in the y direction,
jw being on the wall, and

(42)

(43)

(44)

2Az
22 a0Ai*

A =

B =

C =

6 Results and Discussion

The above impedance conditions were programmed and

tested on CM-5 for one and two-dimensional cases, as a

preliminary step towards a fully three-dimensional incor-
poration into the time-domain, parallel, hybrid ducted
fan noise code1"4 of the present authors. This section
presents results that address various numerical issues.

6.1 One-Dimensional Gaussian Pulse

The simplest case to test the time-domain impedance
condition is the one-dimensional wave propagation to-

ward an. acoustically treated wall. For convenience we

use a lowpass filter type impedance at the wall (x = 0).
We assume the frequency-dependent impedance is given

by

Z(u)

1 +
(45)

where t0 is a time constant. The impedance is plotted
in Fig. 2 for the two different time constants used in this

section. The inverse Fourier transform of this impedance

function in fact is

(46)

which is the lowpass filter function chosen in Section
3. The exact z-transform of the time-discrete form of
this function is given by Eq. (12). However, we use the

backward difference approximation for the iu term in
the impedance expression to obtain the approximate z-
transform of the impedance. Thus we have

PooCoo/(l + to/At)
(47)

^' l-[(to/At)/(l + tb/At)]2ri

Hence the constants of Eq. (23) are easily identified as

00 = pooCoo/(l +to/At),

at = 0, 1 = 1,2,...,

61 = (to/At)/(l +to/At),

bk = 0, £ = 2,3,... (48)
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Figure 2: The variation of the specific resistance and

reactance of the impedance rno~dei,T?(d;J//9ooCoo = I/ (1+

Because of its broadband frequency content, a Gaus-
sian pulse is used for the acoustic wave. The solu-

tion process involves an implicit wall treatment with

At* = At for the acoustic velocity. Figure 3 shows the



evolution of the one-dimensional Gaussian pulse. The
pulse is split into two components, one propagating to
the right and the other propagating to the left. An arrow
by a Gaussian indicates the propagation direction. The
left propagating component hits the acoustically treated
wall with to = 10~

4
 sec. The reduction in the reflected

wave amplitude and the deformation in the wave form
are evident from the figure. The numerical results axe

compared with the analytical solution, which is given in
the Appendix. The comparisons reveal excellent agree-
ment between the exact solution and the z-transform
solution.
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Figure 3: Absorption of a ID Gaussian pulse by an
acoustically treated wall, Z(w)/ pooCoo = l/(l + 10~

4
itc>).

Since the impedance condition is applied at every R-
K stage and the discrete-time-domain impedance con-
dition uses the full time step in its original derivation,
it is crucial to examine the effects of the time step size
used in the solution of the wall pressures and veloci-
ties. This was studied using the same one-dimensional
problem with an implicit treatment of the wall veloc-
ity. Figure 4 compares three different cases with the
exact solution for the reflected Gaussian pressure. The
comparisons indicate that if the fractional time step size

(a, At) is used for the discretization of the normal mo-
mentum equation and the full time step (At) is used
for the impedance model Z(z) given by Eq. (47), the
numerical solution does not compare to the exact so-
lution as well as when the full or fractional time step
size is used for both the iinpedanee-.£(z) and the-time—

discretized momentum equation. This suggests that the

time step size used in the time-discretized impedance
condition and the normal momentum equations be con-
sistent.

The question of whether the explicit or implicit dis-
cretization of the velocity equation at the wall yields

4.5E5

3.0E5

4*
Q.

1.5E5

O.OEO

R-K, Z(z)
a,At, At
a*At, a,At

At, At
exact solution

0 100 200 300 400 500
x/Ax

Figure 4: Tune step effects on the z-transform solution

via the R-K scheme with implicit treatment of wall ve-

locity, Z(w)/pooCoo = 1/(1 + 10-
4
iw).

more accurate results is answered in Fig. 5, where the
z-transform solutions using both approaches are com-
pared with the exact solution for this one-dimensional

case. There are essentially no significant differences in
the results of the implicit and explicit discretizations for

this specific case.
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6E6  
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70 80 90 100
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110 120 130

Figure 5: Comparison of the reflected pressures af-
ter explicit and implicit treatment of wall velocity,

In some cases, however, it was observed that an im-

plicit discretization of the normal momentum equation

helps remove the possible instability development at the
wall. This fact is shown with an example in Figure 6. For
this case the time constant is tQ = 10~3 sec, as opposed
to t0 = 1CT4 sec of the previous cases. In this particular
example increasing this time constant results in an insta-
bility development at the wall when the acoustic velocity

is obtained using the regular, explicit R-K discretization.
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Figure 6: Instability development at the wall in ex-

plicit treatment of wall velocity, Z(cj)/pooCoo = 1/(1 +

Another very good indicator of how well the z-
transform approach works in the present method is to
compare the value of the convolution given by Eq. (5)
with its recursive approximation given by Eq. (35) using
the ^-transform. The convolution of Eq. (5) was calcu-
lated by a simple summation formula similar to Eq. (8).

The same numerical velocities were used in both Eq. (5)
and Eq. (35). The evaluation of the convolution used
the exact impedance given by Eq. (46). It is evident
from Fig. 7 that the right-hand side of Eq. (35) agrees

with the exact solution excellently, while the exact con-
volution (Eq. (5)) lacks accuracy because of the simple
summation formula. However, the smaller the time step
size (Courant number, CFL) , the smaller the error.
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Figure 7: Right-hand sides of Eqs. (5) and (35)
(which give the wall pressure) as calculated using the

wall pressures and velocities of the z-transform solution,

6.2 Two-Dimensional Gaussian Pulse

This section discusses two two-dimensional cases. As
shown in Fig. 8, a Gaussian pulse is produced at time
t = 0 above a flat plate over which there could be a
uniform flow. The center portion of the flat plate is
acoustically treated. Near the edges of the plate hard-
wall boundary conditions are used. This was done be-
cause of the difficulties encountered with the solution of
the impedance condition together with the nonreflecting
boundary conditions used. The impedance of the acous-
tic treatment is assumed to be given by Eq. (45) as in the
previous section. The time constant of the impedance

model is taken as to = 10~
4
 sec.

NRB

M

NRB

Gaussian pulse

C®) NRB

mmM  Hard wall

lgSjgggg  Acoustic treatment

NRB  Nonreflecting boundary

Figure 8: Sketch for the 2D problems.

Figure 9 shows the evolution of the Gaussian pulse
for the no-flow case. In this case the convected terms
in the impedance condition (Eq. (41)) are zero and no
tri-diagonal equation system needs to be inverted. It is

evident from the later time solutions that the Gaussian
pulse is partially absorbed by the acoustic treatment of
the wall.

Figure 10 shows the evolution of the Gaussian pulse
for the case with flow. Now the Mach number of the

uniform flow is 0.3. Again it is clear from the figure that

the acoustic treatment dissipates part of the Gaussian
pulse's acoustic energy resulting in lower-amplitude re-

flected waves. However, it should be indicated that due
to the infinitely large jump in the impedance of the wail
between the acoustically treated region and the solid wall
region (where Z(/jj) = oo), at later time steps an insta-
bility developed downstream over the right-hand solid

wall. A numerical procedure is needed to circumvent
this problem. A gradual transition in impedance could

resolve this problem, but the method does not presently
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Figure 9: Absorption of a 2D Gaussian pulse by an Figure 10: Absorption of a 2D Gaussian pulse by an
acoustically treated wall. M^ = 0, ^(w)//900c00 = acoustically treated wall. M^ = 0.3, Z(o;)/p00c00 =

allow spatial variations in impedance.

Figure 11 shows the accuracy of the z-transform pro-
cedure by comparing the right-hand side of Eq. (7) (con-

volution) with its recursive approximation, namely the
right-hand side of Eq. (37) (half-way on the acoustically

treated portion of the wall). Again the convolution was
evaluated using the exact impedance and the numerical
acoustic velocity as given by the present method. Both
results in this case agree very well, indicating that the
^-transform procedure is capable of producing accurate
results.

7 Conclusions

The time-domain acoustic impedance condition is ex-

tremely important for turbofan noise calculations. A

time-domain method has been developed using the z-

transform from control and signal processing theory. The

frequency-domain impedance condition is formulated in

the z-domain assuming the impedance is independent of
the location on the surface and the impedance is modeled
by a rational function in the z-domain. This allows the
construction of a digital filter type response function as
the approximation to the expensive convolution integral

of the time-domain impedance condition. This response

function uses the current acoustic velocity input and the
previous acoustic pressure outputs and acoustic velocity
inputs recursively, reducing the required computations.

The incorporation of this time-discretized impedance
condition into the four-stage Runge-Kutta time-

integration scheme has been discussed. The solution
procedure for the current time step acoustic veloc-

ity required by the impedance condition has been dis-

cussed. One-dimensional numerical experimentation has

revealed that the use of inconsistent time step sizes in the

impedance condition and the R-K discretization of the

10
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Figure 11: Comparison of the z-transform approxima-
tion of the convolution with the numerically calculated
exact convolution. M^ = 0.3, ̂ (w)//j00c00 = 1/(1 +

normal momentum equation to obtain the acoustic veloc-
ity at the wall degrades the accuracy of the results. Also,
it has been shown that an implicit time discretization for
the acoustic velocity at the wall improves the stability
and accuracy characteristics of the present method.

The one and two-dimensional cases with and without
flow indicate that the present method is capable of accu-
rately simulating the physical phenomena over acousti-

cally treated walls. Though the present method assumes
that the impedance is independent of the location on the
surface, it would be useful to add the capability to allow
spatial variations in impedance.
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Appendix
In this section we give the one-dimensional solution of

the wave propagation problem in the semi-infinite do-
main x > 0. The impedance at the x — 0 boundary
is given by Z(u), and the initial pressure distribution is

given by pt(x). The ambient density is po and the am-

bient speed of sound is CQ. Then the solution for the

11



acoustic pressure at any time t > 0 and any x > 0 is
given by

Soft-wall solution:

1) for x < opt

P(t, x) = -pi(x + cot) - -Pi(cot - x)

ft
4- / W(t - T)pi(coT - x) dr, (49)

Jx/co

where

in which £~j is the inverse Laplace transform operator
and Z(s) is the Laplace transform of the impedance.

2) for x > Opt

Hard-wall solution:
If Z(S)/POCQ ->• oo, we obtain the special case (hard- wall)
solution as
1) for x < cpt

P(t, x) = Pi(x + cot) + Pi(cot - x) (52)

2) for x > cpt

P(t, x) = -pi(x + cot) + -Pi(x - cot) (53)
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