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Abstract—A Time Domain Morphology and Gradient (TDMG)
based algorithm is presented in this paper for the extraction of
all the fiducial time instances from a single PQRST complex.
By estimating these characteristic points, all clinically important
temporal ECG parameters can be calculated. The proposed
algorithm is based on a combination of extrema detection and
slope information, with the use of adaptive thresholding to
achieve the extraction of 11 time instances. A pre-processing
step removes any noise and artefacts from the captured ECG
signal. Initially, the position of the R-wave and the QRS-complex
boundaries are localized in time. Following, by focusing on
the part of the signal that precedes and succeeds the QRS-
complex, the remaining fiducial points from the P and T waves
are estimated. The initial localisation of the wave boundaries
is complimented by amendment steps which are introduced to
cater for atypical wave morphologies, indicative of particular
heart conditions. The proposed algorithm is evaluated on the QT
and PTB databases against medically annotated ECG samples.
The results demonstrate the ability of the proposed scheme,
to estimate the ECG fiducial points with acceptable accuracy
from a single-lead ECG signal. In addition, this investigation
reveals the ability of the TDMG algorithm to perform accurately
irrespective of the lead chosen, the different disease categories
and the sampling frequency of the captured ECG signal.

I. INTRODUCTION

The most widespread method to observe the electrical
activity of the heart over time is the electrocardiogram (ECG).
Owing to its non-invasive nature and ease of use, the ECG is
utilized in virtually every medical situation which involves the
evaluation of the heart’s clinical condition. By observing the
ECG waveform, physicians can detect possible anomalies in
the heart’s functionality as well as deduce what type of further
medical evaluation is required. Every cardiac cycle (heartbeat)
is depicted on the ECG as a sequence of five deflections (the
PQRST-complex), each one representing the electrical activity
during the different phases of the cardiac cycle .

Since the ECG provides a direct representation of the heart’s
electrical activity, cardiologists have defined a number of ECG
parameters that are used for the evaluation of the heart’s
condition. These features are either morphological (e.g. R-
height) or temporal (QRS-duration, QT-interval, ST-segment,

This work was supported by E.U. ARTEMIS Joint Undertaking under
the Cyclic and person-centric Health management: Integrated appRoach
for hOme, mobile and clinical eNvironments - (CHIRON) Project, Grant
Agreement # 2009-1-100228.

etc). Fig.1 illustrates a typical PQRST-complex and the rele-
vant ECG features. Evaluation takes place by examining the
morphology of the waveform and the value of the clinically
important parameters. For example, a prolonged QT-interval is
a bio-marker of arrhythmia, while an elongated QRS may be
indicative of bundle branch block. Similarly, abnormal wave
morphologies (additional peaks, discontinuities) are related to
a number of heart conditions (e.g. hypertrophy, myocardial
infarction) [1], [2].
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Fig. 1. The PQRST complex. Image reproduced from [3].

The estimation of the aforementioned parameters requires
the detection of a total of 11 time instances from the PQRST-
complex. In details, the onset and offset instances of the P-
wave, the QRS-complex and the T-wave, as well as the time
instance of the peak of each wave (P,Q,R,S,T) must be ex-
tracted. By obtaining this set of 11 time points, all the relevant
temporal ECG parameters can be calculated. Additionally,
parameters defined between successive heartbeats (e.g. P-P
interval, R-R interval) can also be approximated.

A number of techniques and algorithms on ECG feature
extraction has been reported on the relevant literature. The
majority of these approaches focuses on the detection and time
localisation of the QRS-complex. Kodhler et. al. perform a
review of the various methodologies and algorithms that have
been proposed for QRS detection [4]. The Pan-Tompkins al-
gorithm is one of the first approaches to exploit the steep slope
of the QRS complex for detection purposes [5], [6]. Laguna et.
al. present a Pan-Tompkins based method for estimating the
ECG wave boundaries for multilead ECG systems. The results
from different leads are combined to achieve more robust
estimation [7]. The use of Wavelet Transform (WT) has also
been investigated for feature extraction in ECG signals [8]—



[10]. WT analysis transforms the ECG signal into its frequency
components with their corresponding time localisation [11].
Thus, by investigating the value of WT coefficients at different
decomposition levels, the ECG features can be estimated. The
“Common Standards for Quantitative Electrocardiography”
(CSE) project provided a reference database and also defined
the acceptable tolerance limits for automated ECG feature
extraction [12], [13] systems.

In this paper, we present the design of a Time-Domain
Morphology and Gradient (TDMG) based algorithm for the
extraction of the fiducial time instances of the PQRST com-
plex. Different to a number of previous gradient-based ap-
proaches, which combine all 15 standard leads in estimating
the ECG fiducial points, we focus on a single-lead feature
extraction approach. Consequently the TDMG algorithm can
be considered in situations where only a limited number of
leads is available (e.g. Holter, ambulatory ECG). In addition,
the TDMG algorithm also takes into account some atypical
ECG morphologies (QRS fragmentation, double hump P,T
waves) which are met in a number of abnormal heart rhythms.

The rest of this paper is structured as follows. Section II
presents the details of the TDMG algorithm. Experimentation
results from applying the TDMG algorithm on ECG signals
from two databases are provided in the sequel. Ultimately,
Section IV summarizes the paper and discusses ideas for future
work.

II. PROPOSED TDMG FEATURE EXTRACTION
ALGORITHM

The proposed technique aims at extracting the 11 parameters
of interest as mentioned in Section I from a single PQRST-
complex. A full PQRST-complex is defined as the sequence of
the five composite waves with some isoelectric line segments
(100 — 130 ms) included at the beginning (before the P-
wave) and the end (after the T-wave). The TDMG algorithm
is structured as a two-stage process. The first stage pertains
to the pre-processing of the sampled PQRST-complex and
the second stage is the main feature extraction operation. In
essence, the 11 time instances of interest can be grouped
into two categories; onset/offset time points and peak time
points. The onset/offset time instances are approximated by
considering them as inflection points. Due to the morphology
of the ECG waves (P,QRS,T), the value of the slope exhibits
an abrupt change at the onset/offset time instances of each
wave compared to its value at the isoelectric line segments.
By capturing this change one can determine the onset/offset
time instances. On the other hand, the peak time points are
extracted by considering these points as local extrema around
their vicinity. Following the standard medical convention,
the TDMG algorithm considers that, the Q and S-peak are
always negative deflections (local minima) while the R-peak
is positive (local maximum). Different to this, the P and T-
peak can be upright (positive deflection), downright (negative
deflection) or sometimes biphasic (both positive and negative
segments) compared to the isoelectric line. A block diagram
of the TDMG algorithm is depicted in Fig. 2.

The two main objectives that the TDMG algorithm attempts
to achieve are accuracy and ubiquity. In order for the extracted
features to be used for medical evaluation, the desired param-
eters must be calculated with the maximum possible accuracy.
Ubiquity refers to the ability of the algorithm to handle all the
intricacies of different heart conditions as these are reflected
on the ECG waveform (e.g. ST-elevation, ST-depression, frag-
mented QRS). In addition, the TDMG algorithm is designed to
be independent of the lead used to capture the ECG signal, as
well as be able to perform adequately on ECG signals sampled
with low sampling frequencies (100-250Hz).
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Fig. 2. Block diagram of the TDMG Extraction Algorithm.

A. Pre-processing

The first step of the algorithm pertains to the denoising
of the ECG signal from corrupting noise added due to power
mains interference, loosely attached electrodes, respiratory and
motion artefacts. This is accomplished by passing the ECG-
signal through a zero-phase digital band-pass filter, with cut-
off frequencies at 0.5Hz and at 43Hz. These are selected
based on the fact that the electrical activity of the heart lies
within these boundaries [4]. Zero-phase filtering preserves the
temporal location of the morphological features present on
the filtered signal exactly where those features occur in the
unfiltered signal. This step is followed by a smoothing stage
where the output of the bandpass filter is passed through a
moving average smoothing filter.
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Fig. 3. Pre-Processing Stage. z[n] is the sampled ECG-signal and f[n] is
the formulated feature signal.

After the completion of the denoising stage, we proceed to
the formulation of the feature signal. Inspired by the Pan-
Tompkins algorithm, the feature signal is synthesized as a
linear combination of the first and second derivatives of the
ECG signal [5]. The derivative signals are calculated with
the use of a moving slope filter. This filter operates on a
given sliding window and approximates the slope (derivative)



of that window with the use of a first order model. The
smoothing filter is also applied on the derivative signals.
The feature signal f[n] is defined as linear combination of
the first and second derivative using experimentally verified
coefficients; f[n] = 1.3gradi[n] + l.1grads[n]. The feature
signal attenuates the P and T-wave while enhances the QRS-
complex. By looking at Fig. 4 it is clear that the boundaries of
the QRS complex can be approximated from the feature signal
with the use of a threshold policy. The entire pre-processing
stage is illustrated in Fig.3.
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Fig. 4. The outcome of the pre-processing stage.

B. Feature Extraction

The strategy that is followed in the feature extraction
segment of the TDMG algorithm is to first identify the R-peak
position, followed by the extraction of the QRS boundaries
(QRS-onset and offset) along with the Q-peak and S-peak time
instances. Finally, by focusing on the part of the signal that
precedes and succeeds the detected QRS-complex, the desired
features (onset, offset, peak) of the P and T-wave, are extracted
respectively.

1) Temporal Search Windows: The estimation of the on-
set/offset time points for each wave (P,QRS,T), is accom-
plished by investigating the value of the gradient signal (for
PT) or the feature signal (for QRS), within specific time
windows around a reference point. The values that are used
to define the width of the search window for each point, are
based on the experimentation that was carried out during the
development of the algorithm and ensure that the point to be
estimated, always falls within these windows irrespective of
the ECG morphology, the lead, or the sampling frequency of
the signal.

2) ORS-complex: Typically the R-wave is the most out-
standing feature of the PQRST-complex. However, in a number
of leads in the standard 12-lead ECG system, a high negative
deflection which corresponds to either the Q or the S-wave is
the most prominent feature. This is caused due to the polarity
of the different leads and the direction of the heart’s electrical
axis. To account for this, we follow a two-stage process in the
characterisation of the R-peak time instance.

To begin with, a peak detection algorithm is executed on the
PQRST-complex to detect the position in time of all the local
maxima. In order for a time instance to be characterised as an

extreme point, it must have the highest value in its vicinity
and must be preceded by a time point which has a value
smaller than a predefined threshold. From the collection of
the extreme points, the R-peak time instance is extracted as
the local maxima which has the highest gradient value (slope)
around it. This is accomplished by summing the value of the
gradient signal for a 30ms window around the local maxima
points and comparing the sums. Nevertheless, in situations
where the R-wave height is small, other extreme points (e.g.
P-peak, T-peak) may exhibit higher gradient around them,
resulting in faulty detection of the R-peak time instance.

For these situations we introduce the second step of the
R-peak detection procedure. In this step, we first perform an
estimation of the QRS onset and offset positions. The QRS
onset and offset time instances are extracted by comparing
the value of the feature signal against an adaptive threshold.
The maximum point of the feature signal is identified (¢ p,q2)
and used as a reference. The time windows within which the
QRS boundaries are searched are 170ms wide, defined by
the following time instances, ?fmas — 200ms and fmae —
30ms for the QRS-onset and tfp,q, + 30ms and trpe, +
200ms for the QRS-offset. Considering 4, as reference,
the ultimate time instance on the left side window which has
a value smaller than a pre-defined threshold is considered to
be the QRS-onset, while the first time instance at the right
side window that has a value smaller than the same threshold
is extracted as the QRS-offset. This procedure is illustrated in
Fig. 5. By obtaining the QRS boundaries the amendment on
the R-peak position is carried out in the following way.
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Fig. 5. QRS boundaries extraction from the feature signal.

The extracted R-peak time instance is checked if it falls
within the QRS boundaries. If this is not satisfied, the initial
approximation of the R-peak position is considered erroneous.
The R-peak position is then calculated as the local maxima
present within the QRS boundaries. Maxima are calculated
with the use of the same peak detection algorithm limited this
time in returning at most two maxima for comparison. The
complete procedure that is employed for the characterisation
of the R-wave is summarized in Proc.1.

Having obtained the final R-peak position, the next step in
the feature extraction algorithm includes a refinement of the
QRS boundaries and the identification of the time instances
for the Q and S-wave. The refinement on the QRS boundaries
is required due to the fact that in ECG signals captured
from subjects suffering various diseases, the QRS-complex



Procedure 1 QRS Features Extraction Pseudocode.

- Detect local maxima in the entire PQRST-complex
(@1,81),(x2,t2) -+ (Tn,tn)
Calculate the steepness of each maxima x1 — dxi,--- ,xn —
dz,
- Find maxima with highest steepness: max(dx1, - - - ,dxy)
- Designate this as the R-peak at time 7,
- Estimate QRS boundaries (qrSon, grsoyy) from feature signal
if grson < r¢ < qrsops then
Correct R-peak
else
Designate the highest maxima within [grson qrsory] as the
R-peak
end if
Proceed to the QRS boundaries refinement

may exhibit fragmented segments. Fragmented QRS shows
irregular shapes on the ECG waveform. Examples include,
notches, double peaks, and “plateaus”. These discontinuities
may result in the feature signal having a very small value in
these fragmented segments. This value might be erroneously
detected as the onset/offset of the QRS-complex. The amend-
ment that is introduced at this stage simply looks at the
vicinity of the originally extracted boundaries for values of the
feature signal which are 20 times higher than the value of the
threshold used to calculate the boundaries. If this is found to
be true, this translates to the initial boundaries being erroneous
since such high values of the feature signal only exist within
the QRS complex. The new boundaries are searched in a
smaller window on the left side and right side of the initial
boundary for the QRS-onset and QRS-offset respectively. This
amending step efficiently deals with any erroneous detections
caused from fragmentations or in some cases inadequate signal
sampling. An example of this amendment on a fragmented
QRS-complex is given in Fig. 6. The “notch” on the S-wave
causes the erroneous estimation of the QRS-offset in the first
phase and the proposed amendment effectively identifies this
and corrects it. The final part of the QRS segment features
extraction is devoted to the detection of the Q- and S-peak
instances. These are extracted as the local minimum between
the QRS-onset and the R-peak and the R-peak and the QRS-
offset for the Q-peak and the S-peak respectively.
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Fig. 6. An example of amending the QRS boundaries due to the presence
of a fragmented segment.

3) P and T-wave: The P and T-waves are curved shaped
deflections occurring before and after the QRS-complex. P
and T waves can exhibit either convexity or concavity with
respect to the isoelectric line. This is dependent on the lead
that captures the ECG signal as well as the heart condition of
the subject. In the following, we describe the details of the
TDMG algorithm in respect to the P-wave features extraction.

The P-peak is considered to be a local extrema (maximum
or minimum) in the portion of the signal that precedes the
detected QRS-complex. Since the P-peak can either be a local
maximum or minimum point, a peak detection algorithm is
tasked with returning the time instances of the local maximum
and minimum samples. The decision on which one of these
two points is the P-peak is taken by comparing the absolute
difference of the two extreme values with the isoelectric line.
The value of the isoelectric line is taken as the value of the
signal at the QRS-onset which is supposed to be lying on
the baseline. The local extrema which demonstrates higher
separation from the isoelectric line is considered as the P-
wave peak. The time instances of the onset and offset of the
P-wave are extracted as the inflection points on the left (P-
onset) and right (P-offset) of the P-peak. For the P-onset the
portion of the gradient signal (grad; [r]) from the beginning up
to 35ms before the P-peak is checked and the last time instance
which has a gradient value smaller than a predefined threshold
is identified as the P-onset (see Fig. 7). Similarly, for the P-
offset, this investigation starts 25ms after the P-peak point and
up to 15ms before the QRS-onset and the first time point of
the gradient, found to be smaller that the same threshold, is
extracted as the P-offset.

For the extraction of the T-wave fiducial points, a similar
procedure is executed on the portion of the signal that succeeds
the detected QRS complex. Because the T-wave typically has
a longer duration than the P-wave, longer windows are used
around the T-peak instance to partition the signal in the two
parts where the algorithm looks for the onset and offset points
(see Fig. 7). Moreover, the QRS-offset value is used as the
isoelectric reference.
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In situations, the P and/or T-wave may exhibit biphasic



(both positive and negative deflections) patterns or “double
humps” patterns (two sequential convex/concave deflections).
Such morphologies are known to be associated with a number
of diseases. These peculiar waves may lead the algorithm to
erroneous results in the calculation of the onset and offset.
To accommodate this, an extra step is carried out for both
the P and T-wave where the value of the ECG signal at
the onset and offset points is compared to the value of the
signal at the isoelectric line, taken at QRS-onset and QRS-
offset for the P-wave and T-wave respectively. These three
values must all fall within a certain limit since the three
points are supposed to be lying on the isoelectric line. If
the difference between these values exceeds a threshold then
the onset/offset point is considered to be wrong, thus an
amendment takes place where the new onset/offset point is
again found using the gradient signal threshold at the part of
the signal that precedes/succeeds the initially extracted time
point. An example of the refining process being applied on a
P-wave which exhibits a “double hump” pattern is illustrated in
Fig. 8. Complete results from applying the TDMG algorithm
on a PQRST-complex is illustrated in Fig. 9

650) Initial P offset 650}

2
8

P-onset P-onset

Voltage (mV)
Voltage (mV)

]
g

Final P-offse|

6050 6100 6150 6200 6250 6300 6350 6050 6100 6150 6200 6250 6300 6350
time (msec) time (msec)

g
g
g

(a) Initial P-wave boundaries (b) Amended P-wave boundaries

Fig. 8. An example of the P-wave amendment on a “double humped” P-wave.
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C. Adaptive Threshold Selection

The TDMG algorithm utilizes a number of thresholds for
its various operations. One threshold is used to identify the
onset and offset of the QRS from the feature signal. Another
threshold is used for the P and T-wave onset and offset
extraction. The amendments of the waves boundaries are also
based on separate thresholds. These thresholds are introduced
in order to ensure the generic applicability of the algorithm,

irrespective of the lead that is used and the characteristic ECG
morphologies. All the thresholds are defined in a parameterised
way, typically being a small percentage of the amplitude range
(max —man) of the ECG and the featured signal. In addition,
the bandpass filter order, the moving average filter window
and the time constants used to define the windows, in which
the fiducial points are searched, are all defined with respect to
the sampling frequency of the ECG signal.

III. EXPERIMENTATION RESULTS

The experimental evaluation of the TDMG feature extrac-
tion algorithm was carried out using annotated ECG signals
from the QT database (QTDB) available at Physionet [14].
From the 105 records of the QTDB, we chose 50 records from
the available subgroups and validated our algorithm’s with
respect to the existing annotations. In addition, ECG signals
were extracted from the PTB database (PTBDB) and given
to cardiologists for manual annotation. The PTBDB contains
standard 15-lead ECG recordings at 1KHz from 290 subjects
from different disease categories. The experts annotated the
relevant fiducial points for a single heartbeat from the standard
12-leads for a total of 10 patients covering all the available
disease categories, resulting in a pool of 120 ECG heartbeats
which was used to evaluate the TDMG algorithm.

The reason for choosing signals from the PTBDB in
addition to the extensively used QTDB is to evaluate the
performance of the TDMG algorithm on ECG signals from
the standard 12-lead system as well as on ECG signals
from different disease categories. Our intention is to ascertain
the applicability of the TDMG on the standard ECG leads
as well as on the various intricate ECG morphologies. In
situations where the experts could not identify the presence
of a particular wave, predominantly due to the fact that the
particular lead does not capture the wave appropriately, the
algorithm’s results were disregarded.

Table. I, lists results in terms of mean and standard deviation
of the error observed between the algorithm’s estimation and
the medical annotation, from both QTDB and PTBDB signals,
as well as the accepted tolerance as it was standardized by the
CSE committee [12]. Results from the single-lead threshold
detector (TD) method, developed by Jane e al. and applied
on the QTDB are also provided here for comparison purposes
[15].

The error distribution for each extracted parameter, based
on the QTDB experimentation, is illustrated in Fig. 10. It
is clear that the error is centered around zero almost for
all parameters. The improvement on the performance at the
PTBDB is due to the 1KHz sampling frequency which offers
increased temporal resolution compared to the 250Hz used in
QTDB. This allows for a more accurate estimation, particularly
of the onset/offset time instances. Finally, by comparing the
results from the TDMG algorithm to the TD, we observe
that TDMG outperforms the TD detector in terms of bias in
the estimation of the T-wave fiducial points. In the remaining
parameters the two methods achieve comparable results in the



Feature Pon Ppeak Poff QRSon Rpeak QRSoff Ton Tpeak Toff
1o of beats | 1410 | 1413 | 1413 | 1528 1528 | 1528 364 | 1528 | 1387
QTDB mean (ms) | 033 | 76 T2 |41 52 (50 2.0 [ 28 56
sdms) 201 [ 15 208 [ 87 56 | 124 246 [ 253 | 286
noof beats | 114 | 114 | 114 | 120 175 120 18 [ 118 | 118
PTBDB mean (ms) [ 02 | -T2 =15 | 41 T4 3 a1 11 119
std (ms) 87 [ 192 | 224 |61 35 87 88 [ 113 | 1938
mean (ms) | 102 | 04 | 57 | 78 93 [ 36 6 | 232 | 186
TD (QTDB) [15] 54 my) 4 [ 109 135 [ 108 34 107 298 [ 282 | 29.7
CSE [12] Std (ms) 102 |- 27 65 - 6 - - 30.6
TABLE I

PERFORMANCE RESULTS OF THE TDMG ALGORITHM ON SIGNALS FROM THE QTDB AND PTBDB AND ACCEPTABLE TOLERANCE LIMITS

sense that the difference in the standard deviation the two
algorithms report, is under two samples (i.e. 8ms).
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Fig. 10. Error distributions of the extracted parameters from the experimen-
tation on the QTDB.

IV. CONCLUDING REMARKS

This paper reported the design of the TDMG algorithm
for the extraction of all the fiducial points from the ECG
waveform. The proposed algorithm is based on the morpho-
logical characteristics that the composite waves of the PQRST
complex demonstrate. After removing the corrupting noise and
artefacts from the ECG signal, the TDMG algorithm initially
detects the boundaries of the QRS complex by employing an
extended version of the Pan-Tompkins detection method. The
proposed extension accounts for fragmented QRS segments,
occurring typically in a number of heart conditions. In the
sequel the algorithm extracts all the fiducial points from the
remaining P and T waves by taking advantage of the curva-
ture that these two waves exhibit and considering the onset
and offset of these points as inflection points. The TDMG
algorithm is evaluated with ECG samples from two databases
(QTDB, PTBDB) and the obtained results, apart from the P-
wave fiducial points, are either within or very close to the
acceptable tolerance limits, particularly in the high resolution
signals from PTBDB. Finally, this investigation reveals that the

proposed algorithm can be successfully applied in all standard
12 leads, accurately handle intricate ECG morphologies and
also perform equally well under signals sampled at different
frequencies thanks to an adaptive threshold definition.

Future work involves the investigation of schemes to en-
hance the robustness of the TDMG algorithm against baseline
wandering. This will particularly improve the detection of the
P and T-peaks as this is dependent on the baseline value. We
are also working towards the incorporation of a partitioning
technique in order to separate a train of ECG heartbeats into
individual PQRST-complexes. This will allow the automated
analysis of the ECG signal in real-time.
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