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Abstract 

This paper presents the design and implementation of a time driven adder generator 

architecture. There exists a large variety of adders designed to satisfy different 

computation requirements, in particular we list the Carry Look Ahead (CLA) adder, 

the skip adder, the ripple adder, the carry select adder (CSA), etc. These different 

architectures will offer different delays and it is up to the user to chose among 

them. The design we present here allows the parametrization of the architecture to 

fit ones design constraints. From the word length and the wanted delay the 

generator outputs a suitable architecture. 
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INTRODUCTION 

The exists a so large set of different adders generators (Sldansky, 1990), (Bedrij, 

1962), (Brent, 1982), (Cavanagh, 1984), (Hwang, 1979), (Muller, 1989), each one 

implementing a particular architecture, that the choice of an adder may be tough. 

We present here an alternative which will replace all the others. We impose the 

time delay criteria to the generator and this one will output the right adder (the 

architecture of the adder is thus variable). 
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Moreover, the need for such a generator is justified by the optimization of 

electrical power consumption and area. In fact, we find addition units in almost all 

complex circuits. For example, in a general purpose processor, certain adders are 

allocated for address computation, others are integrated in floating point units and 

most of the time linked to multipliers. The applications are various and the 

constraints (computation time, area, power consumption) vary from application to 

another. However, we find almost the same type of adders (the fastest) in such 

designs, even though this is not always necessary. For example, in the address 

computations, we need one clock cycle to carry out the operation, we can thus relax 

the computation delay requirement and use a slower adder. This will allow a certain 

gain in power consumption and Silicon area. The generators we designed allow us 

to fit exactly our performance requirements with the best optimizations possible. 

From the word lengths of the two operands and the computation time the 

generator outputs an adder in four different views (structural, behavioral, physical 

and placement) it also outputs a certain number of functional patterns. This is 

illustrated in figure I . 

Size of the adder 

GENERATOR 

Figure 1 Generator output 

The generator is designed following a methodology developed at the MASI 

laboratory (Aberbour, 1995), (Houelle, 1994), and directly inherited from the 

silicon compiler approach (Johansen, 1979). 

This paper is composed of three parts. First of all, we review the different types of 

addition architectures (ripple, CLA, skip adder, ... ). Then we select an architecture 

suitable for the desired delay. Finally we sum up with different VLSI results for a 

32 bits adder. 
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PRINCIPLE OF THE VARIABLE ARCHITECTURE ADDER 

All known adders are constituted of a tree of cells computing the generation (G) 

and propagation (P) signals in order to determine the values of the intermediate 

carries. The variable architecture only affects the way this tree is constructed. 

The architecture of the tree can in fact be in several forms, more or less parallel. 

To illustrate this we propose an example of an 8 bits adder in three configurations, 

as depicted in figures 2(a), 2(b), 2(c). 

(a) Ripple Adder 

ILsB 

(b) CLA Adder (c) Variable architecture adder 

Figure 2 Alternative adder architectures 

The first configuration, figure 2(a), computes the propagation and generation 

values in a serial fashion and represents a full sequential adder. 

This adder contains eight cells and its computation delay in the one of eight 

combinational stages. 

The carry anticipation adder, figure 2(b), uses a binary tree to compute the P and 

G signals. Its delay evolves logarithmically (Sklansky, 1990), three stages in our 

case. 
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The last configuration, figure 2( c), represents an intermediate adder between the 

full serial adder and the carry anticipation adder. It is built up of ten logic cells and 
presents a delay of four stages. 

The variable architecture adder generator is thus capable of generating a tree 

containing at the same time a parallel section and a serial section. 

For an N bits adder the generator outputs an operator with a number of stages 
varying from log(N) toN. 

THE MAIN ADDERS ARCHITECTURES 

We start the discussion with the ripple adder. It is the slowest (delay in O(N)), but 

it occupies the smallest area (in O(N)). It is used where a very small area and power 

consumption in needed. 

Opposite to the ripple adder, is the Carry Look Ahead adder. It has a 

computation time of the order of O(log2,(N)), the area is in 0(N*log2,(N)), the fact 

which makes this adder largest in terms of size. It is readily built in a recursive 

fashion and this makes it suitable for an implementation as a generator 

There exists a large set of architectures with intermediate characteristics. A skip 

adder architecture offers still better performances. 

We find also in the literature the adder with carry selection (Bedrij, 1962). It is 

broken down into several blocks. Each block carries out two additions in parallel, 

one anticipating a null carry in and another a 1. The result is then determined 
depending on the true value of the carry in. The delay is in o( .J2N) and the area 

is also in 0 ( N - .JlN) 

THE CHOSEN ARCHITECTURE 

The addition architecture used is introduced by (Slansky, 1990). This operator 

allows the simple computation of the carry propagation and generation functions 

pij , oij• starting from position i up to position j. The properties of this operator are 

listed below 

• Associativity 

• ldempotence 
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(2) 

• Non Commutativity 

(3) 

The most important property is the way the intermediate propagation and 

generation functions are computed 

PG} = PG J..1,PGi-I 

which corresponds to 
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Figure 3 The configurable adder architecture 
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The chosen architecture must be modulable depending on the imposed computation 

time. This means that the length of the critical path must vary from a configuration 
to another. Moreover, since the generator must be able to generate adders with a 

propagation delay comprised between a CLA delay time and a ripple delay time, 

the implemented architecture is hybrid, in between the CLA (the fastest) and 

RIPPLE (the lowest) architecttires. Now suppose that the delay constraint forces us 

to build an adder in which the critical path is constituted of k L1 cells; the adder 

will then be as shown in figure 3. 
We notice three distinct parts : Let n be the number width of the adder and k the 

number of stages (k represents also the number of cells of the Ripple part of the 

adder). 

The first group of x cells in parallel is placed between the position (n-x,k) and (n-

1 ,k); x will be determined later on. The inputs to these cells are 

PGf-X('<::fi,n -1;::: i;::: n- x) and G2-x-J (6) 

The first values p G r -X are generated by the group of L1 cells situated at the 

top of the previous group, precisely from the point (n+1-x,k-x+1) to the point (n-

1,k-1). 

It is then sufficient to specify the value of x and we get a basis to build the adder. 
We have seen that cells are placed from the point (1,1) to the point (n-x-1,k-1) 

included. Since these cells are cascaded, i.e. they are on a diagonal then 

k-1=n-x-1 which yields x=n-k (7) 

Unfortunately, there exists a limiting case which restricts the application domain of 
the algorithm. Since the cells of the second group .start from position (n+1-x,k­
x+1), where k-x+1 is the reference number of the stage, and the highest stage 

number is 1. Then we conclude that 

k-x+ 1 :?!1 with x=n-k we get k;:n/2 or n52k (8) 

However, it can happen that this inequality be violated. In this case we apply the 

same process as to build a CLA adder. This means that we instanciate n/2 cells 

from (n/2+ 1 ,k) to (n-1 ,k), then we elaborate two adders of n/2 bits starting from the 

stage referenced by the number k-1. 
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RESULTS 

Three different VLSI comparisons have been carried out on a 32 bits adder and 

this for each configuration, meaning for every value of k varying from 5 to 31. For 

these tests we used the cells library ECPD07 of the ATMEL-ES2 company. 

First of all, we focused our comparisons on the routed circuit area. The automatic 

placement and routing have been done with the CADENCE tools. 
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Figure 4 Area of the routed circuit 

As shown in figure 4, and at a first glance, the curve seems not meaningful. 

However, we can distinguish two intervals. The first, for a number of stages less 

than 16 (=n/2), the area gain is very interesting, the curve is sharp. Elsewhere, the 

curve is flat and doesn't constitute an advantageous zone to find the best area-delay 

compromise for the adder. The curve indicates that the area decays exponentially 

when the architecture tends to become fully serial. 

Now lets focus on the propagation time results for the used technology, illustrated 

in figure 5. 

The curve is quasi-ideal because the delay grows linearly with respect to the 

number of stages. This proves that the delay grows as expected with respect to the 

number of stages. The messured delays for a 32 bits adder varies from 9 to 30 nano 

seconds. 
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Figure 5 Propagation delay comparisons 

Using the power consumption values of each cell, provided by ES2, we establish 

the maximal adder's power consumption which corresponds to the case where all 

input cells toggle at the same time, which is in fact almost impossible. This is 

illustrated in figure 6. 
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Figure 6 Electrical power consumption 
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The obtained curve is smooth and grows exponentially. Once more we can 

extract two distinct intervals: 
A sharp and fast growth part for a number of stages less than 16 (=n/2). 
And an almost straight line, representing a not really interesting power 

consumption-delay compromise. 
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CONCLUSION 

The main goal achieved in this work is the replacement of all possible adders 

generators by a generator with a parametrized time driven addition architecture. 

This is not possible only if we impose the addition computation time to the 

generator. In fact, the generator provides very good results since we can adjust very 

precisely the computation time, by using different numbers of intermediate 

combinatorial stages. 

The study of the curves representing the performances of the adders comes up with 

a conclusion that the compromise is optimal for a number of stages less than n/2, 

where n is the precision of the adder. In fact, the area and power consumption 

decrease very rapidly in this interval, whereas the delay grows slowly. This means 

that if we can tolerate increasing the computation time of the addition by about 

10%, this will be equivalent to increasing the number of stages by a few units, then 

we can achieve a power consumption and area gain of about 15%. Outside this 

interval (~n/2), the area and power decrease slowly, and this presents a negligible 

profit. 
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