
37

A Time Driven Adder Generator

Architecture

M. Aberbour, A. Houelle, H. Mehrez, N. Vaucher; A. Guyot*

Laboratoire MASI/CAO-VLSI

Universite Pierre et Marie Curie (PARIS VI)

4, Place Jussieu, 75252 Paris Cedex 05 France

*Integrated Systems design Group, TIMAIINPG,

46, Av. Felix Viallet, 38031 Grenoble Cedex, France

e-mail: mourad.ABERBOUR@masi.ibp.fr

Abstract

This paper presents the design and implementation of a time driven adder generator

architecture. There exists a large variety of adders designed to satisfy different

computation requirements, in particular we list the Carry Look Ahead (CLA) adder,

the skip adder, the ripple adder, the carry select adder (CSA), etc. These different

architectures will offer different delays and it is up to the user to chose among

them. The design we present here allows the parametrization of the architecture to

fit ones design constraints. From the word length and the wanted delay the

generator outputs a suitable architecture.

Keywords

Addition VLSI architectures, generators, macro blocks, variable architecture.

INTRODUCTION

The exists a so large set of different adders generators (Sldansky, 1990), (Bedrij,

1962), (Brent, 1982), (Cavanagh, 1984), (Hwang, 1979), (Muller, 1989), each one

implementing a particular architecture, that the choice of an adder may be tough.

We present here an alternative which will replace all the others. We impose the

time delay criteria to the generator and this one will output the right adder (the

architecture of the adder is thus variable).

VLSI: Integrated Systems on Silicon R. Rel~ & L. Claesen (Eds.)
Cl IFIP 1997 Published by Chapman & Hall

454 Part Eleven Architectural Design and Synthesis

Moreover, the need for such a generator is justified by the optimization of

electrical power consumption and area. In fact, we find addition units in almost all

complex circuits. For example, in a general purpose processor, certain adders are

allocated for address computation, others are integrated in floating point units and

most of the time linked to multipliers. The applications are various and the

constraints (computation time, area, power consumption) vary from application to

another. However, we find almost the same type of adders (the fastest) in such

designs, even though this is not always necessary. For example, in the address

computations, we need one clock cycle to carry out the operation, we can thus relax

the computation delay requirement and use a slower adder. This will allow a certain

gain in power consumption and Silicon area. The generators we designed allow us

to fit exactly our performance requirements with the best optimizations possible.

From the word lengths of the two operands and the computation time the

generator outputs an adder in four different views (structural, behavioral, physical

and placement) it also outputs a certain number of functional patterns. This is

illustrated in figure I .

Size of the adder

GENERATOR

Figure 1 Generator output

The generator is designed following a methodology developed at the MASI

laboratory (Aberbour, 1995), (Houelle, 1994), and directly inherited from the

silicon compiler approach (Johansen, 1979).

This paper is composed of three parts. First of all, we review the different types of

addition architectures (ripple, CLA, skip adder, ...). Then we select an architecture

suitable for the desired delay. Finally we sum up with different VLSI results for a

32 bits adder.

A time driven adder generator architecture 455

PRINCIPLE OF THE VARIABLE ARCHITECTURE ADDER

All known adders are constituted of a tree of cells computing the generation (G)

and propagation (P) signals in order to determine the values of the intermediate

carries. The variable architecture only affects the way this tree is constructed.

The architecture of the tree can in fact be in several forms, more or less parallel.

To illustrate this we propose an example of an 8 bits adder in three configurations,

as depicted in figures 2(a), 2(b), 2(c).

(a) Ripple Adder

ILsB

(b) CLA Adder (c) Variable architecture adder

Figure 2 Alternative adder architectures

The first configuration, figure 2(a), computes the propagation and generation

values in a serial fashion and represents a full sequential adder.

This adder contains eight cells and its computation delay in the one of eight

combinational stages.

The carry anticipation adder, figure 2(b), uses a binary tree to compute the P and

G signals. Its delay evolves logarithmically (Sklansky, 1990), three stages in our

case.

456 Part Eleven Architectural Design and Synthesis

The last configuration, figure 2(c), represents an intermediate adder between the

full serial adder and the carry anticipation adder. It is built up of ten logic cells and
presents a delay of four stages.

The variable architecture adder generator is thus capable of generating a tree

containing at the same time a parallel section and a serial section.

For an N bits adder the generator outputs an operator with a number of stages
varying from log(N) toN.

THE MAIN ADDERS ARCHITECTURES

We start the discussion with the ripple adder. It is the slowest (delay in O(N)), but

it occupies the smallest area (in O(N)). It is used where a very small area and power

consumption in needed.

Opposite to the ripple adder, is the Carry Look Ahead adder. It has a

computation time of the order of O(log2,(N)), the area is in 0(N*log2,(N)), the fact

which makes this adder largest in terms of size. It is readily built in a recursive

fashion and this makes it suitable for an implementation as a generator

There exists a large set of architectures with intermediate characteristics. A skip

adder architecture offers still better performances.

We find also in the literature the adder with carry selection (Bedrij, 1962). It is

broken down into several blocks. Each block carries out two additions in parallel,

one anticipating a null carry in and another a 1. The result is then determined
depending on the true value of the carry in. The delay is in o(.J2N) and the area

is also in 0 (N - .JlN)

THE CHOSEN ARCHITECTURE

The addition architecture used is introduced by (Slansky, 1990). This operator

allows the simple computation of the carry propagation and generation functions

pij , oij• starting from position i up to position j. The properties of this operator are

listed below

• Associativity

• ldempotence

A time driven adder generator architecture 457

(2)

• Non Commutativity

(3)

The most important property is the way the intermediate propagation and

generation functions are computed

PG} = PG J..1,PGi-I

which corresponds to

MSB

x-1

n-1 n-2 n+l-x n-x n-1-x

/

/

xcells

n-1 cella

CLASection

/

Figure 3 The configurable adder architecture

/

/

/

k-1 cella

Ripple Section

LSB

(4)

z

k-Z

k-1

k

458 Part Eleven Architectural Design and Synthesis

The chosen architecture must be modulable depending on the imposed computation

time. This means that the length of the critical path must vary from a configuration
to another. Moreover, since the generator must be able to generate adders with a

propagation delay comprised between a CLA delay time and a ripple delay time,

the implemented architecture is hybrid, in between the CLA (the fastest) and

RIPPLE (the lowest) architecttires. Now suppose that the delay constraint forces us

to build an adder in which the critical path is constituted of k L1 cells; the adder

will then be as shown in figure 3.
We notice three distinct parts : Let n be the number width of the adder and k the

number of stages (k represents also the number of cells of the Ripple part of the

adder).

The first group of x cells in parallel is placed between the position (n-x,k) and (n-

1 ,k); x will be determined later on. The inputs to these cells are

PGf-X('<::fi,n -1;::: i;::: n- x) and G2-x-J (6)

The first values p G r -X are generated by the group of L1 cells situated at the

top of the previous group, precisely from the point (n+1-x,k-x+1) to the point (n-

1,k-1).

It is then sufficient to specify the value of x and we get a basis to build the adder.
We have seen that cells are placed from the point (1,1) to the point (n-x-1,k-1)

included. Since these cells are cascaded, i.e. they are on a diagonal then

k-1=n-x-1 which yields x=n-k (7)

Unfortunately, there exists a limiting case which restricts the application domain of
the algorithm. Since the cells of the second group .start from position (n+1-x,k­
x+1), where k-x+1 is the reference number of the stage, and the highest stage

number is 1. Then we conclude that

k-x+ 1 :?!1 with x=n-k we get k;:n/2 or n52k (8)

However, it can happen that this inequality be violated. In this case we apply the

same process as to build a CLA adder. This means that we instanciate n/2 cells

from (n/2+ 1 ,k) to (n-1 ,k), then we elaborate two adders of n/2 bits starting from the

stage referenced by the number k-1.

A time driven adder generator architecture 459

RESULTS

Three different VLSI comparisons have been carried out on a 32 bits adder and

this for each configuration, meaning for every value of k varying from 5 to 31. For

these tests we used the cells library ECPD07 of the ATMEL-ES2 company.

First of all, we focused our comparisons on the routed circuit area. The automatic

placement and routing have been done with the CADENCE tools.

280000

240000
...
s 200000
::s..

160000

120000
1.0 m (I') ,.... 1.0 m ,.... ,.... N N N

N um bet of stages

Figure 4 Area of the routed circuit

As shown in figure 4, and at a first glance, the curve seems not meaningful.

However, we can distinguish two intervals. The first, for a number of stages less

than 16 (=n/2), the area gain is very interesting, the curve is sharp. Elsewhere, the

curve is flat and doesn't constitute an advantageous zone to find the best area-delay

compromise for the adder. The curve indicates that the area decays exponentially

when the architecture tends to become fully serial.

Now lets focus on the propagation time results for the used technology, illustrated

in figure 5.

The curve is quasi-ideal because the delay grows linearly with respect to the

number of stages. This proves that the delay grows as expected with respect to the

number of stages. The messured delays for a 32 bits adder varies from 9 to 30 nano

seconds.

460 Part Eleven Architectural Design and Synthesis

30
en
'tl
c 20 0
u
4)
en

10 0
c
ca
z

0
1.0 CD

Number of Stages

Figure 5 Propagation delay comparisons

Using the power consumption values of each cell, provided by ES2, we establish

the maximal adder's power consumption which corresponds to the case where all

input cells toggle at the same time, which is in fact almost impossible. This is

illustrated in figure 6.

-~
:I. -= Q
.:
=-
§
fll

= Q

u

1400

1200

1 00-0

800

600
1.0 CD 0 C')

C\1 C\1

N urn ber of stages

Figure 6 Electrical power consumption

c.o 0>
C\1 C\1

The obtained curve is smooth and grows exponentially. Once more we can

extract two distinct intervals:
A sharp and fast growth part for a number of stages less than 16 (=n/2).
And an almost straight line, representing a not really interesting power

consumption-delay compromise.

A time driven adder generator architecture 461

CONCLUSION

The main goal achieved in this work is the replacement of all possible adders

generators by a generator with a parametrized time driven addition architecture.

This is not possible only if we impose the addition computation time to the

generator. In fact, the generator provides very good results since we can adjust very

precisely the computation time, by using different numbers of intermediate

combinatorial stages.

The study of the curves representing the performances of the adders comes up with

a conclusion that the compromise is optimal for a number of stages less than n/2,

where n is the precision of the adder. In fact, the area and power consumption

decrease very rapidly in this interval, whereas the delay grows slowly. This means

that if we can tolerate increasing the computation time of the addition by about

10%, this will be equivalent to increasing the number of stages by a few units, then

we can achieve a power consumption and area gain of about 15%. Outside this

interval (~n/2), the area and power decrease slowly, and this presents a negligible

profit.

REFERENCES

Aberbour, M., Gounoud, S., Houelle, A., Mehrez, H., Vaucher, N, (1995) A Fully

Parametrized IEEE Floating Point Operators Library For Use In Digital Signal

Processing. Proc. ICSPAT 95, Boston MA USA.

Bedrij, 0. J., (1962) Carry Select Adders, IRE Transactions, EC-11 No.3, pp340-

346.

Brent, R., Kung, H. T., (1982) A regular Layout for Parallel Adders. IEEE

Transactions on Computers, vol C-31.

Brent, R., (1970) On the Addition of Binary Numbers, IEEE Transactions on

Computers, vol C-19, pp 758-759.

Cavanagh, J.J.F., (1984) Digital Computer Arithmetic, Design and Implementation,

McGraw-Hill, computer science series.

Houelle, A., Mehrez, H., Vaucher, N., (1993) Mehodologie de conception de

generateurs portables de macro-blocs fonctionnels optimises en surface et en

performance, MAS/ report.

Houelle, A., Mehrez, H., Vaucher, N. (1994) On portable Macro-cell generators

using the fully 754-IEEE standard, proc. ICSPAT 94, Dallas Texas USA, Oct.

18-21, V2 pp1749-1754.

Hwang, K., (1979) Computer Arithmetic Principles, Architecture and Design,

Wiley, New York.

Johansen, D., (1979) Bristle blocks: a silicon compiler, proc 16th ACM IEEE

DAC, San Diego.

462 Part Eleven Architectural Design and Synthesis

Muller, J-M., (1989) Arithmetique des ordinateurs, operations et fonctions

elementaires, Masson.

Sklansky, J., (1990) Conditional Sum Addition Logic, Computer Arithmetic, vol. 1,

pp57-62.

BIOGRAPHY

Mourad ABERBOUR is a Ph.D. student at the LIP6 laboratory in

the CAD-VLSI team of the Pierre and Marie Curie University of

Paris. His research interests concern the mapping of Computer

Vision algorithms onto VLSI architectures and neural network

architectures and their hardware implementations.

Alain HOUELLE is a computer science researcher at the LIP6

Laboratory of PARIS VI. He obtained the PhD. degree from the

Pierre and Marie Curie University in 1997. His research work

deals with the development of GenOptim: an environment for the

design of portable VLSI blocks optimised in both performance

and area.

Habib MEHREZ is currently a computer science researcher and

teacher at the Paris VI University. He obtained the "Doctoral

d'Etat" degree from the Same university in 1991. His research

concerned mainly the elaboration of a unified approach of FFf

algorithms and their efficient VLSI implementation. Dr.

MEHREZ is leading the computer arithmetic and pattern

recognition VLSI architectures groups within the CAD&VLSI

team of the LIP6 Lab.

Nicolas VAUCHER is a computer science researcher at the LIP6

Laboratory of PARIS VI. He obtained PhD. degree from the

Pierre and Marie Curie University in 1997. He is mainly

interested in the development of design methodologies for the

VLSI generic architectures targeted to signal processing.

A time driven adder generator architecture 463

Alain Guyot received his MS, Ph.D. and Habilitation from INPG
(lnstitut National Polytechnique) in Grenoble, France. He his
currently an associate professor within the same university where
he teaches computer architecture, computer arithmetic and VLSI
design. He is responsible of the "Integrated System Design"

group in the TIMA Laboratory. Prof. Guyot is the author
co-author of over I 00 papers in conference proceedings or

