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ABSTRACT The aim of this study is to obtain the closed form solutions for the laminar and unsteady couple

stress fluid flow. The fluid is allowed to flow between two infinite parallel plates separated by distance ℓ.

Moreover, we have considered that the lower plate is moving with uniform velocity U0 and upper plate is

stationary. For this purpose, engine oil is taken as a base fluid and to enhance the efficiency of lubricating

oil, Molybdenum disulphide nanoparticles are dispersed uniformly in the engine oil. The flow is formulated

mathematically in terms of partial differential equations of order four. Furthermore, the derived system

of partial differential equations are fractionalized by using the mostly used definition of Caputo-Fabrizio

time fractional derivative. The more general exact solutions for velocity, temperature and concentration

distributions are obtained by using the joint applications of Fourier and the Laplace transforms. The effect

of different parameters of interest of the obtained general solutions are discussed by sketching graphs.

Furthermore, substituting favorable limits of different parameters, four different limiting cases are recovered

from our obtained general solutions i.e. (a) Couette flow (b) Classical couple stress fluid (c) Newtonian

viscous fluid and (d) in the absence of thermal and concentration. Moreover, the effect of different physical

parameters on the velocity, temperature and concentration distributions are discussed graphically. It is worth

noting that couple stress parameter corresponds to a decrease in the velocity profile. In order to observe

the differences clearly, all the figures are compared for integer order and fractional order which provide a

more realistic approach as compared to the classical model. Additionally, skin friction is calculated at lower

as well as upper plate. Nusselt number and Sherwood number are also tabulated. It is noticed that the rate

of heat transfer of engine oil can be enhanced up to 12.38% and decrease in mass transfer up to 2.14% by

adding Molybdenum disulphide nanoparticles in regular engine oil.

INDEX TERMS Couple stress nanofluid (CSNF), Caputo-Fabrizo (CF), Fourier transform (FT), generalized

Couette flow, Laplace transform (LT), Molybdenum disulphide (MoS2).

I. INTRODUCTION

There are many fluids exists in the universe. These fluids are

categorized within two main types based on their rheologies.

The fluid which obey the Newton law of viscosity are Newto-

nian fluids while the others are non-Newtonian fluids. These

fluids have many physical and real world applications such

as industrial, medical and engineering processes. There are

The associate editor coordinating the review of this manuscript and
approving it for publication was Lei Wang.

various physical phenomenon which cannot be explained by

simple Newtonian viscous fluids. Non-Newtonian fluids are

broadly used in different engineering and industrial problems.

Furthermore, non-Newtonian fluids are further sub-classified

into various types. Some real fluids such as polymeric fluids,

colloidal suspensions, fluids containing additives and ran-

domly oriented particles that cannot be described accurately

by the classical Navier-Stokes’ theory. To study the character-

istics of these fluids, researchers proposed different models.

For the first time, Stokes’ [1] presented the idea of couple
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stress theory for the fluids which have different features from

the classical Newtonian viscous fluids such as, existence

of body couples and couple stresses. According to Stokes’,

couple stress fluid (CSF) is a simple generalization of the

classical Newtonian viscous fluid theory with body couples,

couple stresses and anti-symmetric stress tensor. These types

of fluids contains random oriented and rigid particles. The

main purpose of couple stresses is to present the size effect

of these type of fluids which cannot be described accurately

by classical viscous fluid theory. As described earlier that

CSF are the fluids which consist of randomly oriented and

rigid particles such as, Liquid crystals, lubrications, blood

and so on. Due to the rotation of freely suspended particles,

the spin field results an antisymmetric stress tensor named

as couple stress, which leads us to the theory of couple

stresses. The CSF model is more competent to clarify the

behavior of various types of polymer suspensions, blood,

lubricants, liquid crystals and so on. Some of the applica-

tions of CSF have been discussed in an another paper of

Stokes’ [2]. CSF model have many applications in modern

world such as hydromagnetics, Pumping phenomenon, hemo-

dynamics, blood diseases and blood in micro-circulatory

systems [3]–[7]. Recently many researchers investigated

CSF in their studies due to significance of these fluids.

Hadjesfandiari and Dargush [8] examined several versions of

CSF in their study. Tripathi [9] investigated CSF through a

permeable medium with peristaltic hemodynamic and slip

effect at the boundary. Devakar et al. [10] derived solutions

of CSF flows with slip conditions. In their study, they dis-

cussed different cases (Poiseuille, Couette and generalized

Couette flow). They concluded that couple stress parameter is

responsible for retardation of fluid velocity. Ramanaiah [11]

studied the squeeze films between a channel lubricated by

CSF. From the results, he concluded that the squeeze time

increases by taking CSF as a lubricant. Ramzan et al. [12]

analyzed the solutions of three-dimensional CSF flow. They

also discussed the CSF flow with the effect of Newtonian

heating. Devi and Mahajan [13] discussed the global nonlin-

ear stability of CSF. They also claimed that CSF is more

stable than the Newtonian viscous fluid. Umavathi et al. [14]

analyzed the solutions of laminar flow through channel occu-

pied with CSF in a permeable medium. They also taken

Darcy dissipation and viscous term in the energy field and

discussed its effects graphically. Chippa and Sarangi [15]

investigated the elastohydrodynamically lubricated finite line

contact with the effect of CSF. They concluded from their

study that CSF parameter increases thickness of the film

which results less wear of direct metal to metal contact. They

also claimed that coefficient of friction decreases by increas-

ing CSF parameter which results to improve the performance

of lubrication. Alsaedi et al. [16] studied the CSF incompress-

ible flow over a porous medium. They also analyzed expres-

sions of different parameters as a function of CSF parameter.

Basha et al. [17] presented the numerical solutions for the

transient two-dimensional natural convective CSF flow past

over a vertical plate. Reddy et al. [18] investigated the

solutions for hydromagnetic peristaltic motion of CSF

through a porous channel. Awais et al. [19] analyzed CSF

flow on a convective sliding surface. They also displayed

the streamlines to differentiate CSF model from the classical

Newtonian viscous fluidmodel.Makinde and Eegunjobi [20]

presented the numerical solution of steady CSF flow in

a vertical parallel plates stuff with porous substances.

Farooq et al. [21] analysed the solutions for CSF flow

through a channel. They discussed four different cases of

the given flow i.e. both the plates are at rest, one plate is

moving, both plates are moving, one plate is moving with

external pressure gradient. Hayat et al. [22] investigated the

melting heat transfer of CSF over a stretching sheet. They

concluded that CSF parameter is accountable for the retarda-

tion of boundary layer thickness and velocity distribution and

an reverse impact is experienced for temperature and surface

heat transfer.

There are many physical problems that cannot be described

through simple classical models. To study such type of prob-

lems, fractional calculus was introduced. The concept of

fractional calculus was established after Leibniz presented

the concept of nth order derivatives. Leibniz asked from Del

Hospital that what will be the results if we consider frac-

tional order. After that, numerous scientists starts thinking

over it and they offered different representations of frac-

tional derivatives [23]. The practical applications of frac-

tional calculus can be seen in the modern technologies such

as electrochemistry, electromagnetism, electric circuits, volt-

age divider, model of neurons, 3-D chaotic systems, chaotic

circuits [24], [25], geotechnical engineering [26], quantum

mechanics [27], Chaotic processes [28]. Some other electro-

chemical and biomedical applications are briefly discussed

by Magin [29].

In the literature, there are many definitions of fractional

model, but in the present study, we will use the newly pre-

sented definition of Caputo-Fabrizio time fractional deriva-

tive. In 2015, twomathematiciansMichele Caputo andMauro

Fabrizio presented a new definition of fractional derivative

with local kernel which was given with two various illus-

trations for the space and time variable [30]. In an another

paper, they discussed some applications of their presented

definition for fractional derivative [31]. Nowadays, most of

the researchers are using CF fractional derivative because

of their memory effect. The cause of using CF fractional

derivative in our model is that as we have considered CSF

in our study which is a viscoelastic non-Newtonian fluid.

CF time fractional derivatives gives us more accurate and

realistic results for viscoelastic fluids as compared to other

fractional operators with the singular kernels. Akhtar [32]

derived the solutions for the channel flow of CSF with C

and CF time fractional derivatives and compare their results.

According to him, the analysis shows that time fractional

derivative is more dominant than the classical derivative.

Arif et al. [33] calculated the exact solutions of CSF for

generalized couette flow using CF fractional derivative. In an

another paper, Arif et al. [34] investigated the solutions for
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the heat transfer of CSF through a channel. Sheikh et al. [35]

derived the closed form solutions for the CF fractional

model of second-grade fluid flow over a fluctuating plate.

Ali et al. [36] reported the solutions of Walters’-B fluid with

the effect of MHD by considering CF time fractional deriva-

tive. Imran et al. [37] reported the solutions for the CF andAB

frational model of MHD free convection flow of incompress-

ible Newtonian viscous fluid passing over an inclined plate.

Ahmad et al. [38] investigated the solutions for the heat and

mass transfer of Jeffrey fluid flow over a vertical plate. They

generalized the classical Jaffery fluid model with C and CF

fractional model and compared the obtained results of both

fractional operators. Khan et al. [39] generalized classical

derivative by CF fractional derivative to investigate the results

for casson fluid flow passing through a channel.

Nanofluid is a combination of solid nanoparticles sus-

pended in the base fluids. Usually base fluids contains engine

oil, ethylene glycol, water, crude oils etc. The solid nanoparti-

cles that are suspended in the base fluids by many researchers

are made of silver, copper, aluminum, graphite, molybdenum

disulphide etc. From the beginning, scientists are trying to

recover the efficiencies of different regular fluid. For this,

in the beginning scientists and researchers used mili and

micro-sized particles. Maxwell [40] gave the idea of using

micro-sized particles within the base fluids but Maxwell’s

idea have some limitations. Later on, Choi and Eastman [41]

was the first who utilized nano-sized particles in the base

fluids. Choi’s idea have some improvements, like less surface

erosion, slow settling down, less clogging and sedimenta-

tion as compared to micro-sized particles. Many researchers

found that using nanoparticles in the base fluids can boost

up the thermal conductivity and heat transfer rate. For exam-

ple, Reddy et al. [42] examined the dusty flow along a

paraboloid revolution with the effect of silver, gold and plat-

inum nanoparticles in the water base fluid. Arif et al. [43]

investigate the heat transfer rate by adding graphene and

molybdenum disulphide in the base fluid. They noticed

that by adding these nanoparticles within the base fluids

improved the characteristics of EO. Similarly, Ali et al. [44]

suspended silver nanoparticles in the engine oil base fluid.

They noticed that by increasing the amount of nanoparticles,

the collision of nanoparticles rises which results to boost

up the heat transfer rate up to 15%. Mahian et al. [45]

explained some applications of nanofluids in solar energy

such as solar radiators, pools, thermoelectric cells etc. Some

applications of nanofluids in nuclear reactors, electronics,

transportation, biomedicines and smart fluid devices such

as laptops, computers and smart phones are examined by

Wong and De Leon [46]. Some other practical applications

of nanofluids in modern technologies are in automobiles [47],

transformer oil [48], production of antibacterial [49], cooling

systems [50] etc.

Nowadays, different nanoparticles are using with in dif-

ferent base fluids [51]–[53]. In the present work, we have

considered Engine oil (EO) as a base fluid and spherical

shapedMolybednumDisulphide (MoS2) as nanoparticles due

to low friction properties and higher thermal conductivity

are dispersed in it, which will boost the heat transfer rate

and increase lubricity of the EO. There are two main causes

of choosing EO and MoS2. The first cause of choosing

MoS2 and EO is that this type of experiment will be less

expensive. Because by taking platinum, gold or other type

of nanoparticle are more expensive as compared to the con-

sidered nanoparticles. The other cause is that, MoS2 is used

as a dry lubricant. Therefore MoS2 will decrease the friction

of the EO which results to increase the lubricity of regular

engine oil with less erosion of surfaces and channels [54].

Jan et al. [55] obtained the exact solutions of EO based

Brinkman-type fluid over a moving porous plate with spher-

ical shape MoS2 nanoparticles. They noticed an increase in

rate of heat transfer of the nanofluid by increasing amount

of nanoparticles. Ali et al. [56] investigated the influence of

various shapes of MoS2 nanoparticles on the flow of EO

based brinkman-type fluid. In their study, they examined

the impact of four different shaped nanoparticles i.e. blade,

platelet, brick and cylinder shape. They noticed that blade and

platelet shaped nanoparticles has more thermal conductivity

than that of cylindrical and brick shaped nanoparticles and

can improve the rate of heat transfer up to 13.51%.

The mutual study of mass and heat transfer have

taken a great attention of the scientists. The joint exis-

tence of heat and mass transfer appear due to the joint

effect of thermal bouncy diffusion. Different applications

of this phenomenon can be seen in modern technolo-

gies and industries such as food processing, solar collec-

tors, cooling processes, different lubricants such as engine

oil etc. [57]–[59]. Reddy and Firdows [60] investigated the

heat and mass transfer phenomena of micropolar dusty

fluid across a paraboloid revolution. In an another paper,

Reddy et al. [61] analysed the solutions for the heat and mass

transfer of three dimensional flow of hydromagnetic Carreau

nanofluid transport over a stretching sheet.

The flow inside two parallel plates is a type of open channel

flow. Open channel flow has wide applications in the natural

and artificial phenomenon. The flow of canal, river etc. with

a free surface are the examples of open channel flow. The

flow between two parallel plates which are both stationary

is called is known as poiseuille flow. The flow in which one

or both of the plates sliding with some constant velocity is

named as couette flow. The couette flow with the effect of

external pressure gradient becomes generalized couette flow.

Generalized couette flow have wide applications in industrial

as well as in modern sciences. Arif et al. [33] derived the

solutions of CSFflow for generalized couette flow. From their

results, they noticed that CSF velocity is less as compared to

classical Newtonian viscous fluid velocity. Devakar et al. [62]

analyzed generalized couette flow of CSF through a channel.

They claimed that CSF parameter decreases the magnitude of

velocity profile.

Motivated from the above mentioned literature, in this

study, we discuss the unsteady flow of CSNF through an

open channel. The flow of CSNF is considered through a
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horizontal channel. The lower plate is sliding with constant

velocity U0 while the upper plate is taken at rest. Exter-

nal pressure gradient is considered in the axis of the fluid

flow. Furthermore, the base fluid is selected as a EO and

MoS2 nanoparticles are equally dispersed within the EO to

enhance the thermal conductivity and heat transfer rate. Clas-

sical derivative is fractionalized by considering CF fractional

derivative. To obtain the exact solutions, integral transforms

are used. The obtained results is presented through figures.

The influence of different parameters of interest on the CSNF

flow are displayed. Finally, the skin friction is evaluated for

momentum equation, Nusselt number is evaluated from the

temperature profile and Sherwood number is evaluated from

the concentration profile. The effect of various embedded

parameters on skin friction, Nusselt number and Sherwood

number is also discussed.

II. PROBLEM FORMULATION

In this article, we have considered the laminar and unsteady

flow of CSNF between two parallel plates separated by a dis-

tance ℓ. The motion of the fluid is considered in x direction.

The system of equations which governs the CSNF flow is

given as [32]–[34]:

∇ ·
⇀

V = 0, (1)

ρnf
D EV

Dt∗1
= −∇p− µnf ∇ × ∇ × EV

−η ∗ ∇ × ∇ × ∇ × ∇ × EV

+Eg (ρβT )nf
(

T ∗
1 − T ∗

1∞

)

+Eg (ρβC )nf
(

C∗
1 − C∗

1∞

)

+ ρEb1, (2)

(

ρcp
)

nf

∂ ET

∂t∗1
= knf ∇ × ∇ × ET , (3)

∂ EC

∂t∗1
= Dnf ∇ × ∇ ×

⇀

C . (4)

Here EV , ET and EC are the velocity, temperature and concentra-

tion vectors of the fluid respectively. p, µnf , η∗, Eg, Eb1, βT ,βC ,
(

ρcp
)

nf
, knf , and Dnf is the constant external pressure,

dynamic viscosity, couple stress parameter, gravitational

acceleration, body forces vector, thermal expansion coeffi-

cient, concentration coefficient, specific heat, thermal con-

ductivity and thermal diffusivity of nanofluid. The velocity,

temperature and concentration fields of the given flow regime

are as under:

EV =
(

u∗
1(y

∗
1, t

∗
1 ), 0, 0

)

,
ET =

(

T ∗
1 (y

∗
1, t

∗
1 ), 0, 0

)

,
EC =

(

C∗
1 (y

∗
1, t

∗
1 ), 0, 0

)

,







. (5)

Using equation (5), equation (1) automatically satisfies and

equations (2-4) in components form takes the shape:

ρnf
∂u∗

1

(

y∗1, t
∗
1

)

∂t∗1

= −
∂p

∂x∗
1

+ µnf
∂2u

(

y∗1, t
∗
1

)

∂y∗21

−η ∗
∂4u∗

1

(

y∗1, t
∗
1

)

∂y∗41
+ gx (ρβT )nf

(

T ∗
1 − T ∗

1∞

)

+gx (ρβC )nf
(

C∗
1 − C∗

1∞

)

+ ρEb1, (6)

(

ρcp
)

nf

∂T ∗
1

(

y∗1, t
∗
1

)

∂t∗1

= knf
∂2T ∗

1

(

y∗1, t
∗
1

)

∂y∗21
, (7)

∂C∗
1

(

y∗1, t
∗
1

)

∂t∗1

= Dnf
∂2C∗

1

(

y∗1, t
∗
1

)

∂y∗21
. (8)

A. GENERALIZED COUETTE FLOW

The fluid flow through a channel in which one plate is at rest

and the other plate moves at a constant velocity with external

pressure gradient along the direction of flow is considered as

generalized Couette flow.

Initially, for t∗1 ≤ 0 the fluid and both the plates are at rest

with ambient temperature T ∗
1∞ and constant concentration

C∗
1∞. At t∗1 = 0+, the lower plate starts moving with constant

velocity U0H
(

t∗1
)

while the upper plate remains static. The

temperature and concentration of the lower plate raised to

T ∗
1w andC∗

1w respectively and then remains constant while the

upper plate remains at ambient temperature T ∗
1∞ and constant

concentration C∗
1∞.

The system of equation which govern the CSNF flow

under the above assumptions along with initial and boundary

conditions are given as [32]–[34]:

ρnf
∂u∗

1

(

y∗1, t
∗
1

)

∂t∗1

= G∗ + µnf
∂2u∗

1

(

y∗1, t
∗
1

)

∂y∗21

−η
∂4u∗

1

(

y∗1, t
∗
1

)

∂y∗41
+ gx (ρβT )nf

(

T ∗
1 − T ∗

1∞

)

+gx (ρβC )nf
(

C∗
1 − C∗

1∞

)

, (9)

(

ρcp
)

nf

∂T ∗
1

(

y∗1, t
∗
1

)

∂t∗1

= knf
∂2T ∗

1

(

y∗1, t
∗
1

)

∂y∗21
, (10)

∂C∗
1

(

y∗1, t
∗
1

)

∂t∗1

= Dnf
∂2C∗

1

(

y∗1, t
∗
1

)

∂y∗21
, (11)

with the physical initial and boundary conditions in

(12), as shown at the bottom of the next page. For

nanofluids, the expressions for ρnf , µnf ,
(

ρcp
)

nf
, (ρβT )nf ,
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(ρβC )nf , knf and Dnf are given by [49]–[51]:

ρnf = ρf

(

(1 − φ)+
φρs
ρf

)

, µnf = µf

(

1

(1−φ)2.5

)

,

(ρβT )nf = (ρβT )f

(

(1 − φ)+
φ(ρβT )s
(ρβT )f

)

,

(ρβC )nf = (ρβC )f

(

(1 − φ)+
φ(ρβC )s
(ρβC )f

)

,

(

ρcp
)

nf
=
(

ρcp
)

f

(

(1 − φ)+
φ(ρcp)s
(ρcp)f

)

,

knf = kf

[

2kf +ks−2φ(kf −ks)
2kf +ks+2φ(kf −ks)

]

,

Dnf = (1 − φ)Df , λnf =
knf
kf
,



























































(13)

where ρf , µf , βf , kf and Df is the density, dynamic viscos-

ity, thermal expansion coefficient, thermal conductivity and

thermal diffusivity of the base fluid respectively. Similarly

ρs, µs, βs and ks is the density, dynamic viscosity, thermal

expansion coefficient, thermal conductivity and thermal dif-

fusivity of the solid nanoparticles respectively.

The following non-dimensional variables will be used for

the dimensional analysis of the governing equations:

ξ =
y∗1
ℓ
, 9 =

u∗
1
U0
, τ =

U0t
∗
1
ℓ
, λ =

η∗

µℓ2
,

P = ℓ2

µnf U0
G∗,2 =

T ∗
1 −T ∗

1∞

T ∗
1w−T ∗

1∞
,8 =

C∗
1−C∗

1∞

C∗
1w−C∗

1∞
,







. (14)

By using these dimensionless quantities, The dimension-

less form of equations (9)-(12) along with initial and bound-

ary conditions is given by:

ψ1
∂9 (ξ, τ )

∂τ
= P+

∂29 (ξ, τ )

∂ξ2

−λ
∂49 (ξ, τ )

∂ξ4
+ A02(ξ, τ)+ A18(ξ, τ) , (15)

ψ2
∂2 (ξ, τ )

∂τ
=
∂22(ξ, τ)

∂ξ2
, (16)

ψ3
∂8 (ξ, τ )

∂τ
=
∂28(ξ, τ)

∂ξ2
, (17)

9 (ξ, 0) = 0,2 (ξ, 0) = 0,8 (ξ, 0) = 0, for 0 ≤ ξ ≤ ℓ

9 (0, τ ) = 1,2 (0, τ ) = 1,8 (0, τ ) = 1, for τ > 0,

9 (ℓ, τ ) = 0,2 (ℓ, τ ) = 0,8 (ℓ, τ ) = 0, for τ > 0,
∂29(0,τ )

∂ξ2
= ∂29(ℓ,τ)

∂ξ2
= 0, for τ > 0,



















(18)

here

ψ1 = ϕ0ϕ1Re, ψ2 =
Re Prϕ5

ϕ4
, ψ3 =

ϕ0

ScRe
,

ϕ0 = (1 − φ)2.5 , ϕ1 = (1 − φ)+
φρs

ρf
,

ϕ2 = (1 − φ)+
φ (ρβT )s

(ρβT )f
, ϕ3 = (1 − φ)+

φ (ρβC )s

(ρβC )f
,

ϕ4 = (1 − φ)+
φ
(

ρcp
)

s
(

ρcp
)

f

, ϕ5 =
2kf + ks − 2φ

(

kf − ks
)

2kf + ks + 2φ
(

kf − ks
)

A0 = Grϕ0ϕ2,Gr =
gx (βT )f ℓ

2
(

T ∗
1w − T ∗

1∞

)

U0µf
,

A1 = Gmϕ0ϕ3,Gm =
gx (βC )f ℓ

2
(

C∗
1w − C∗

1∞

)

U0µf
,

Pr =

(

µcp
)

f

kf
, Re =

U0ℓ

υf
, Sc =

υf

Df
,

where Pr,Re, Sc,Gr,Gm, λ and P represents Prandtl num-

ber, Reynolds number, Schmidt number, thermal and mass

Grashof numbers, dimensionless couple stress parameter and

constant external pressure gradient.

III. EXACT SOLUTIONS USING CAPUTO-FABRIZIO

FRACTIONAL DERIVATIVES

Applying the definition of Caputo-Fabrizio fractional deriva-

tive to the governing equations, the following time fractional

CSNF model with fractional operator α will be obtained:

CFDατψ19 (ξ, τ ) = P+
∂29 (ξ, τ )

∂ξ2

−λ
∂49 (ξ, τ )

∂ξ4
+ A02(ξ, τ)+ A18(ξ, τ) , (19)

CFDατψ22(ξ, τ) =
∂22(ξ, τ)

∂ξ2
, (20)

CFDατψ38(ξ, τ) =
∂28(ξ, τ)

∂ξ2
, (21)

here CFDατ is the definition of CF fractional derivatives with

fractional parameter α which is defined as [30]:

CFDατ g (τ ) =
N(α)

(1 − α)

t
∫

0

e−
α(τ−t)
1−α g′(τ )dt, (22)

where N (α) is a normalization function such that N(0) =

N(1) = 1 and α ∈ (0, 1).

A. SOLUTIONS OF ENERGY EQUATION

By applying Laplace transform technique (LT) to equa-

tion (20) and incorporating equation (18), we get:

qL1ψ22̄ (ξ, s)

(s+ L2)
=
d22̄ (ξ, s)

dξ2
, (23)

u∗
1(y

∗
1, 0) = 0,T ∗

1 (y
∗
1, 0) = T ∗

1∞,C
∗
1 (y

∗
1, 0) = C∗

1∞, for 0 ≤ y∗1 ≤ ℓ and t∗1 = 0,

u∗
1(0, t

∗
1 ) = H (t∗1 )U0, T

∗
1 (0, t

∗
1 ) = T ∗

1w,C
∗
1 (0, t

∗
1 ) = C∗

1w, for t
∗
1 > 0,

u∗
1(ℓ, t

∗
1 ) = 0,T ∗

1 (ℓ, t
∗
1 ) = T ∗

1∞,C
∗
1 (ℓ, t

∗
1 ) = C∗

1∞, for t
∗
1 > 0,

∂2u∗
1(0,t

∗
1 )

∂y∗21
=

∂2u∗
1(ℓ,t

∗
1 )

∂y∗21
= 0, for t∗1 > 0.



















(12)
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Similarly the transformed form of equation (18):

9̄ (0, s) = 1
s
, 2̄ (0, s) = 1

s
, 8̄ (0, s) = 1

s
, for s > 0,

9̄ (ℓ, s) = 0, 2̄ (ℓ, s) = 0, 8̄ (ℓ, s) = 0, for s > 0,
d29̄(0,s)

dξ2
= d29̄(ℓ,s)

dξ2
= 0, for s > 0,











.

(24)

To apply the finite sine Fourier transform [63], [64], we mul-

tiply both sides of equation (23) by sin
(

kπξ
ℓ

)

and taking

integration with limits from 0 to ℓ w.r.t ξ and using equation

(24), we get:

2̄FT (k, s) =
χk

s

(

ψ2 (s+ L2)

s
(

L1 + ψ2χ
2
k

)

+ ψ2χ
2
k L2

)

, (25)

which implies

2̄FT (k, s) =
L4 (s+ L2)

s (s+ L3)
. (26)

By partial fraction w.r.t s and after some calculations, equa-

tion (26) can be written as:

2̄FT (k, s) =
L2L4

sL3
+

L4L5

s+ L3
. (27)

By inverting LT, Equation (27) takes the following shape:

2FT (k, τ ) =
L2L4

L3
+ L4L5 exp (−L3τ) , (28)

here,

L1 =
1

1 − α
,L2 =

α

1 − α
, χk =

kπξ

ℓ
,

L3 =
ψ2χ

2
k L2

L1 + ψ2χ
2
k

, L4 =
ψ2χk

L1 + ψ2χ
2
k

,L5 = 1 −
L2

L3
. (29)

By applying inverse finite sine-Fourier transform to equa-

tion (29), final results takes the form:

2(ξ, τ) = 1 −
ξ

ℓ
+

2

ℓ

∞
∑

k=1

L4L5 sin

(

kπξ

ℓ

)

exp (−L3τ).

(30)

B. SOLUTIONS OF CONCENTRATION EQUATION

By applying LT to equation (21) and incorporating equa-

tion (18), we get:

sL1ψ38̄ (ξ, s)

(s+ L2)
=
d28̄ (ξ, s)

dξ2
, (31)

By applying the finite sine Fourier transform on equation (31)

and using equation (24), we get:

8̄FT (k, s) =
χk

s

(

ψ3 (s+ L2)

s
(

L1 + ψ3χ
2
k

)

+ ψ3χ
2
k L2

)

, (32)

which implies that

8̄FT (k, s) =
L7 (s+ L2)

s (s+ L6)
. (33)

By partial fraction and after some calculations, we get the

following results:

8̄FT (k, s) =
L2L7

sL6
+

L7L8

s+ L6
, (34)

By inverting LT, equation (34) takes the shape:

8FT (k, τ ) =
L2L7

L6
+ L7L8 exp (−L6τ) , (35)

here,

L6 =
ψ3χ

2
k L2

L1 + ψ3χ
2
k

, L7 =
ψ3χk

L1 + ψ3χ
2
k

,L8 = 1 −
L2

L6
. (36)

By inverting finite sine-Fourier transform, we obtain final

results in the following form:

8(ξ, τ) = 1 −
ξ

ℓ

+
2

ℓ

∞
∑

k=1

L7L8 sin

(

kπξ

ℓ

)

exp (−L6τ). (37)

C. SOLUTIONS OF MOMENTUM EQUATION

Applying LT to equation (19) and incorporating equa-

tion (18), we get:

sL1ψ19̄ (ξ, s)

(s+ L2)

=
P

s
+
d29̄ (ξ, s)

dξ2

−λ
d49̄ (ξ, s)

dξ4
+ A02̄ (ξ, s)+ A18̄ (ξ, s) . (38)

Now applying finite sine Fourier transform on equation (38)

and incorporating equation (24), we get:

sL1ψ19̄FT (k, s)

(s+ L2)

=
P
(

1 − (−1)k
)

sχk

+
χk

s
− χ2

k 9̄FT (k, s)+ λ
χ3
k

s

−λχ4
k 9̄FT (k, s)+ A02̄FT (k, s)+ A18̄s (k, s) . (39)

Alternatively, we can write:

9̄FT (k, s) =







(

P
(

1−(−1)k
)

+χ2
k +λχ4

k

sχk

)

+A02̄FT (k, s)+ A18̄FT (k, s)







×

(

(s+ L2)
(

ψ1L1 + χ2
k + λχ4

k

)

(s+ L9)

)

, (40)

where L9 =
L2
(

χ2
k +λχ4

k

)

(

ψ1L1+χ
2
k +λχ4

k

) .
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Now by incorporating 2̄FT (k, s) and 8̄FT (k, s) from

equation (26) and equation (33), equation (40) becomes:

9̄FT (k, s) =





(

P
(

1−(−1)k
)

+χ2
k +λχ4

k

sχk

)

+A0
L4(s+L2)
s(s+L3)

+ A1
L7(s+L2)
s(s+L6)





×

(

(s+ L2)
(

ψ1L1 + χ2
k + λχ4

k

)

(s+ L9)

)

. (41)

Separation of RHS of equation (41) by using partial fraction

w.r.t. s, we get:

9̄FT (k, s)

=

(

P
(

1 − (−1)k
)

+ χ2
k + λχ4

k

sχk
(

χ2
k + λχ4

k

)

)

+

(

P
(

1 − (−1)k
)

+ χ2
k + λχ4

k

χk
(

ψ1L1 + χ2
k + λχ4

k

)

(s+ L9)

)

−

(

P
(

1 − (−1)k
)

+ χ2
k + λχ4

k

χk
(

χ2
k + λχ4

k

)

(s+ L9)

)

+
A0L4

(

ψ1L1 + χ2
k + λχ4

k

)

×

(

L2

L3s
+

2L5

s+ L3
+

2L5 (L2 − L3)

(s+ L3)
2

)

+
A1L7

(

ψ1L1 + χ2
k + λχ4

k

)

×

(

L2

L6s
+

2L8

s+ L6
+

2L8 (L2 − L6)

(s+ L6)
2

)

. (42)

Inverting the Laplace transform, we get:

9FT (k, τ )

=

(

P
(

1 − (−1)k
)

+ χ2
k + λχ4

k

χk
(

χ2
k + λχ4

k

)

)

+

(

P
(

1 − (−1)k
)

+ χ2
k + λχ4

k

χk
(

ψ1L1 + χ2
k + λχ4

k

) exp (−L9τ)

)

−

(

P
(

1 − (−1)k
)

+ χ2
k + λχ4

k

χk
(

δ2k + λχ4
k

) exp (−L9τ)

)

+
AoL4

(

ψ1L1 + χ2
k + λχ4

k

)

×

( L2
L3

+ 2L5 exp (−L3τ)

+2L5 (L2 − L3) τ exp (−L3τ)

)

+
A1L7

(

ψ1L1 + χ2
k + λχ4

k

)

×

( L2
L6

+ 2L8 exp (−L6τ)

+2L8 (L2 − L6) τ exp (−L6τ)

)

, (43)

or equalently:

9FT (k, τ ) =





(

1−(−1)k
)

χk
+ (−1)k

χk
−

P
(

1−(−1)k
)

χk

+
P
(

1−(−1)k
)

χ3
k

+
P
(

1−(−1)k
)

(

1+χ2
k

)





+ (αk − βk) exp (−L9τ)

+δkA0 exp (−L3τ)+γkA1 exp (−L6τ) . (44)

By Applying inverse Finite Sine-Fourier transform to equa-

tion (44), we obtain the following results:

9 (ξ, τ ) =









1 − P−
(

1
ℓ

− Pℓ
2

)

ξ

−P
2
ξ2 + P

(

cosh
(

ℓ
2−ξ

)

osh
(

ℓ
2

)

)









+

















2
ℓ

∞
∑

k=1

[

(αk − βk) e
−L9τ

]

sin (χkξ)

+ 2
ℓ

∞
∑

k=1

[

δkA0e
−L3τ

]

sin (χkξ)

+ 2
ℓ

∞
∑

k=1

[

γkA1e
−L6τ

]

sin (χkξ)

















, (45)

where

αk =

(

P
(

1 − (−1)k
)

+ χ2
k + λχ4

k

δk
(

ψ1L1 + δ2k + λδ4k

)

)

,

βk =

(

P
(

1 − (−1)k
)

+ χ2
k + λχ4

k

χk
(

δ2k + λχ4
k

)

)

,

δk =
L4

(

ψ1L1 + χ2
k + λχ4

k

)

(

L2

L3
+ 2L5 + 2L5 (L2 − L3) τ

)

,

γk =
L7

(

ψ1L1 + χ2
k + λχ4

k

)

(

L2

L6
+ 2L8 + 2L8 (L2 − L6) τ

)

.

(46)

where equation (45) is the total solution which is the combi-

nation of unsteady and steady state solutions. The steady state

solutions 9S (ξ) is given by:

9S (ξ) = 1 − P−

(

1

ℓ
−
Pℓ

2

)

ξ

−
P

2
ξ2 + G

(

cosh
(

ℓ
2

− ξ
)

cosh
(

ℓ
2

)

)

, (47)

and the unsteady solutions 9τ (ξ, τ ) is given by:

9τ (ξ, τ ) =
2

ℓ

∞
∑

k=1

[

(αk − βk) exp (−L9τ)
]

sin (χkξ)

+
2

ℓ

∞
∑

k=1

[

δkA0 exp (−L3τ)
]

sin (χkξ)

+
2

ℓ

∞
∑

k=1

[

γkA1 exp (−L6τ)
]

sin (χkξ) . (48)

IV. SPECIAL CASES

The present obtained general solutions are reduced to the

following special cases:

A. NEWTONIAN VISCOUS FLUID FLOW

By putting (λ = 0) , (Gr = 0) and (Gm = 0) in equa-

tion (15), we get the dimensionless form of couple stress
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nanofluid in the following form:

B
∂9 (ξ, τ )

∂τ
= P+

∂29 (ξ, τ )

∂ξ2
. (49)

Applying the CF fractional derivative definition to equation

(49), we obtain:

CFDατ B9 (ξ, τ ) = P+
∂29 (ξ, τ )

∂ξ2
. (50)

By applying Laplace transform technique, we get,

sL1B9̄ (ξ, s)

(s+ L2)
=
P

s
+
d29̄ (ξ, s)

dξ2
. (51)

Now Applying finite sine Fourier transform, we get

sL1B9̄FT (k, s)

(s+ L2)
=
P
(

1 − (−1)k
)

sχk
+
χk

s
− χ2

k 9̄FT (k, s) ,

(52)

or equivalently:

9̄FT (k, s) =

(

P
(

1 − (−1)k
)

+ χ2
k

χk
(

BL1 + χ2
k

)

)

×

(

(s+ L2)

s (s+ L10)

)

,

(53)

where B = ϕ0ϕ1Re, and L10 =
H2δ

2
s

B1L1+δ2s
.

Apart equation (53) w.r.t. s, we get:

9̄FT (k, s)=

(

P
(

1−(−1)k
)

+χ2
k

χk
(

BL1+χ
2
k

)

)

×

(

L2

sL10
+

L11

s+ L10

)

.

(54)

Inverting the Laplace transform, we get the following form:

9FT (k, τ ) =

(

P
(

1 − (−1)k
)

+ χ2
k

χk
(

BL1 + χ2
k

)

)

×

( L2
L10

+

L11 exp (−L10τ)

)

. (55)

By partial fraction of equation (55), we get:

9FT (k, τ ) =
1 − (−1)k

χk
+
(−1)k

χk

+
P
(

1 − (−1)k
)

χ3
k

+ κkL11 exp (−L10τ) , (56)

where L11 = 1 −
L2

L10
and κk =

P
(

1 − (−1)k
)

+ χ2
k

χk
(

BL1 + χ2
k

) .

(57)

Inverting finite fine-Fourier transform, we get the final results

takes the shape:

9 (ξ, τ ) = 1 −
ξ

ℓ
−
Pξ2

2

+
2

ℓ

∞
∑

k=1

[

κkL11 exp (−L10τ)
]

sin (χkξ) . (58)

B. CSNF MODEL IN THE ABSENCE OF EXTERNAL

PRESSURE GRADIENT

By taking (P = 0) in equation (19), we get the dimensionless

form of present problem in the following form:

CFDατM9 (ξ, τ )

=
∂29 (ξ, τ )

∂ξ2

−λ
∂49 (ξ, τ )

∂ξ4
+ A02(ξ, τ)+ A18(ξ, τ) . (59)

By applying LT and finite sine Fourier transform, we get:

9̄FT (k, s)

=

(

χ2
k + λχ4

k

sχk
(

χ2
k + λχ4

k

)

)

+

(

χ2
k + λχ4

k

χk
(

ML1 + χ2
k + λχ4

k

)

(s+ L9)

)

−

(

χ2
k + λχ4

k

χk
(

χ2
k + λχ4

k

)

(s+ L9)

)

+
A0L4

(

ML1+χ
2
k + λχ4

k

)

(

L2

L3s
+

2L5

s+ L3
+
2L5 (L2 − L3)

(s+L3)
2

)

+
A1L7

(

ML1+χ
2
k +λχ4

k

)

(

L2

L6s
+

2L8

s+L6
+
2L8 (L2−L6)

(s+L6)
2

)

.

(60)

Inverting the integral transforms, we get the following form:

9 (ξ, τ )

= 1 −
ξ

ℓ
+

2

ℓ

∞
∑

k=1

[

(α1k − β1k) exp (−L9τ)
]

sin (χkξ)

+
2

ℓ

∞
∑

k=1

[

δ1kA0 exp (−L3τ)
]

sin (χkξ)

+
2

ℓ

∞
∑

k=1

[

γ1kA1 exp (−L6τ)
]

sin (χkξ) , (61)

where

M = ϕ0ϕ1Re,

α1k =

(

δ2k + λχ4
k

χk
(

ML1 + χ2
k + λχ4

k

)

)

,

β1k =

(

χ2
k + λχ4

k

χk
(

χ2
k + λχ4

k

)

)

,

δ1k =

(

L2

L3
+ 2L5 + 2L5 (L2 − L3) τ

)

L4
(

ML1 + χ2
k + λχ4

k

) ,

γ1k =

(

L2

L6
+ 2L8 + 2L8 (L2 − L6) τ

)

L7
(

ML1 + χ2
k + λχ4

k

) .
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V. LIMITING CASES

Our obtained general solutions have been reduced to the

already published works by substituting favorable limits of

different parameters.

A. CLASSICAL CSNF MODEL

The solutions obtained in equation (45) is for a fractional

model. To achieve the solutions for classical model for CSF,

taking limit α → 1,Gr → 0 and Gm → 0, we will get:

CF

lim
α→1

Dατ9 (ξ, τ )

= lim
α→1

[

L−1
{

LCFDατ9 (ξ, τ )
}]

= lim
α→1

[

L−1

{

s9̄ (ξ, s)−9 (ξ, 0)

s (1 − α)+ α

}]

= L−1

[

lim
α→1

{

s9̄ (ξ, s)−9 (ξ, 0)

s (1 − α)+ α

}]

= L−1
[

s9̄ (ξ, s)−9 (ξ, 0)
]

= 9 ′ (ξ, τ )

9 (ξ, τ )

=









1 − P−
(

1
ℓ

− Pℓ
2

)

ξ

−P
2
ξ2 + P

(

cosh
(

ℓ
2−ξ

)

cosh
(

ℓ
2

)

)









+
2

h

∞
∑

k=1

[(

P
(

1 − (−1)k
)

χ3
k

(

1 + χ2
k

) +
1

χk

)

exp

(

−
χ2
k + λχ4

k

Re

)]

× sin (χkξ) . (62)

The results achieved in equation (62) is the same as results of

Akhtar and Shah [65], hence this validates the correctness of

the present study.

B. CSNF MODEL WITHOUT THERMAL AND

CONCENTRATION

By taking limitGr → 0 andGm → 0 in the obtained solution

i.e. equation (45), we get,

9 (ξ, τ )

=









1 − P−
(

1
ℓ

− Pℓ
2

)

ξ − P
2
ξ2

+P

(

cosh
(

ℓ
2−ξ

)

osh
(

ℓ
2

)

)









+
2

ℓ

∞
∑

k=1













P
(

1−(−1)k
)

+χ2
k +λχ4

k

χk
(

ψ1L1+χ
2
k +λχ4

k

)

−
P
(

1−(−1)k
)

+χ2
k +λχ4

k

χk
(

χ2
k +λχ4

k

)






e−L9τ






sin (χkξ) .

(63)

Equation (63) is the obtained solution by Arif et al. [33].

Hence it validates our solutions and it verify our obtained

solutions of the present problem.

FIGURE 1. Geometry of the problem.

FIGURE 2. α impact on CSNF velocity distribution when P = 2, Gr = 1.5,

Gm = 1.5, Re = 0.5, Pr = 1000, τ = 2, φ = 0.01, Sc = 2 and λ = 50.

TABLE 1. Thermo-physical properties of EO and MoS2 [54]–[56].

VI. NUSSELT NUMBER, SHERWOOD NUMBER AND SKIN

FRICTION

A. NUSSELT NUMBER

The Mathematical expression for the Nusselt number of

CSNF is given by:

Nu = −
knf

kf

∂2

∂ξ

∣

∣

∣

∣

ξ=0

. (64)

B. SHERWOOD NUMBER

The mathematical expression for the Sherwood number of

CSNF is given by:

Sh = −Dnf
∂8

∂ξ

∣

∣

∣

∣

ξ=0

. (65)
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FIGURE 3. P impact on CSNF velocity distribution when Gr = 1.5, Gm = 1.5, Re = 0.5, Pr = 1000, τ = 2, φ = 0.01, Sc = 2 and λ = 50.

TABLE 2. The skin friction of EO based-MoS2 CSNF at the lower plate.

C. SKIN FRICTION

The mathematical expression of skin friction for CSNF is

given as

Sf (ξ, τ ) =
1

(1 − φ)2.5

(

∂9

∂ξ
−
∂39

∂ξ3

)

. (66)

As in the given problem, we have a bounded domain in which

the flow is between two infinite plates. Therefore the skin

friction at the lower and upper plates are given by:

Sflp (0, τ ) =
1

(1 − φ)2.5

(

∂9

∂ξ
−
∂39

∂ξ3

)

ξ=0

, (67)
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FIGURE 4. τ impact on CSNF velocity distribution when P = 2, Gr = 1.5, Gm = 1.5, Pr = 1000, Re = 0.5, φ = 0.01, Sc = 2 and λ = 50.

TABLE 3. The skin friction of EO based-MoS2 CSNF at the upper plate.

Sfup (1, τ ) =
1

(1 − φ)2.5

(

∂9

∂ξ
−
∂39

∂ξ3

)

ξ=1

, (68)

where Sflp and Sfup denotes the skin friction at lower and

upper plates respectively.

VII. RESULTS AND DISCUSSION

In the present study, we derived the exact solutions for the

generalized couette flow of EO based-MoS2 CSNF with

the joint effect of heat and mass transfer. The closed form
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FIGURE 5. Gr impact on CSNF velocity distribution when P = 2, Gm = 1.5, Pr = 1000, Re = 0.5, τ = 2, φ = 0.01, Sc = 2andλ = 50.

TABLE 4. Nusselt number for EO based-MoS2 CSNF.

solutions have been obtained by using the combine applica-

tions of Fourier and Laplace transforms. Generalized couette

flow of CSNF have been considered by utilizing the most

recently proposed definition of fractional derivative namely

Caputo-Fabrizio fractional derivative. The graphical results

of fractional order derivative are compared with the classical

derivative. The obtained results are reduced to the simple clas-

sical CSNF and Newtonian viscous fluid in limiting sense.

The comparison of the CSNF velocity is compared graphi-

cally with the classical CSNF and Newtonian viscous fluid

velocity. Physical geometry of the present problem is shown

in figure 1. The obtained solutions for velocity distribution

are portrayed in figure 2 to figure 15, results for temperature

distribution are shown in figure 16 to figure 18, the results

for concentration distribution are displayed in figure 19 to

figure 21 and skin friction, Nusselt number and Sherwood

number is portrayed in figure 22 to figure 24 respectively.

The thermophysical properties of nanoparticles are shown in

table 1. The numerical values for skin friction at lower and

upper plate are shown in table 2 and table 3 respectively.
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FIGURE 6. Gm impact on CSNF velocity distribution when P = 2, Gr = 1.5, Pr = 1000, Re = 0.5, τ = 2, φ = 0.01, Sc = 2 and λ = 50.

TABLE 5. Sherwood number for EO based-MoS2 CSNF.

The numerical values for Nusselt and Sherwood numbers are

shown in table 4 and table 5 respectively.

As in the present paper, we are interested to derive the

solutions of CF derivatives. The influence of α on the veloc-

ity distribution is displayed in figure 2. From the figure,

we observed that increasing α results to reduce the CSNF

velocity. In order to observe the differences clearly, all the

figures are compared for integer order α = 1 and fractional

order 0 < α < 1which provide usmany solutions as compare

to α = 1. From all these figures, it can be noticed that the

classical velocity is less in magnitude than that of fractional

velocity. For the case, α = 1, the obtained solutions reduced

to the solutions of Akhtar and Shah [65] which verify our

obtained results. Figure 3 demonstrates the influence of P

on the CSNF velocity. By increasing numerical value of P

from P = 2 to P = 3, the CSNF velocity increases. As it

is obvious that P increases the fluid motion in a channel.

In figure 4, the behavior of CSNF velocity has been shown

146956 VOLUME 8, 2020



F. Ali et al.: Time Fractional Model of Generalized Couette Flow of CSNF With Heat and Mass Transfer: Applications in EO

FIGURE 7. Sc impact on CSNF velocity distribution when P = 2, Gr = 1.5, Gm = 1.5, Pr = 1000, Re = 0.5, τ = 2, φ = 0.01 and λ = 50.

for different values of τ . From the figure, it is clearly noticed

that for small as well as for large values of τ , there is an

increase in fractional as will as classical velocity of CSNF.

As in the given problem, we assume an unsteady flow of

CSNF, so the velocity of CSNF is dependent of τ . The

influence of Gr and Gm has been presented in figure 5 and

figure 6 respectively. It is observed that by increasing the

numerical values of both Gr and Gm accelerates the velocity

of CSNF. Physically, it is true because increasing values

of Gr and Gm, results to increase the buoyancy forces that

decreases the fluid viscosity and increases the CSNF velocity.

Figure 7 displays the velocity profile of CSNF for distinct

values of Sc which produces a decrease in the velocity of

CSNF. It is true because Sc is the ratio of viscous forces to

mass diffusion. By increasing numerical value of Sc results

a rise in the viscous forces and decrease in mass diffusion

which results the reduction of CSNF velocity. The impact ofφ

on velocity profile has been shown in figure 8. By increasing

the numerical value of φ (from 0.01 to 0.04) decreases the

velocity profile. The cause of decreasing velocity is that by

increasing φ, the fluid viscosity increases and as a result,

the retardation of velocity occurs. Figure 9 demonstrates the

influence of λ on the velocity distribution. By increasing

value of λ, decreases the CSNF velocity. The fact behind this

is that, as we have chosen molybdenum disulphide nanopar-

ticles dispersed in EO. Generally, when we disperse some

additives in the fluid, the forces existing in the fluid opposes

the forces caused by additives. The couples force generated

by this opposite force and a couple stress is generated in the

fluid motion. The influence of Pr and Re on the velocity dis-

tribution is presented in figure 10 and figure 11 respectively.

A decrease in the velocity profile can be seen by increasing

value of Pr and Re. As by increasing Pr, fluids possess greater

viscosities and this results to decrease CSNF velocity. Sim-

ilarly, as Re is the ratio between inertial and viscous forces.

By increasing Re, it means that turbulence is generated in the

fluid which increases viscous forces and results to reduce the

CSNF velocity. In the present study, we have discussed two

special cases and two limiting cases of the obtained results.

The first special case is to compare the velocity of CSNF

with and without P and the second case is to compare the

results of CSNF velocity with classical Newtonian viscous

fluid velocity. Similarly, the first limiting case is to reduce

the obtained results to the results obtained by Akhtar and
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FIGURE 8. φ impact on CSNF velocity distribution when P = 2, Gr = 1.5, Gm = 1.5, Pr = 1000, Re = 0.5, τ = 2, Sc = 2 and λ = 50.

Shah [65] and the second limiting case is to reduce the present

reults to Arif et al. [33]. It is worth noting that the limiting

cases of our obtained solutions are in good argument with

the published work. The comparison of the velocity with and

without pressure gradient P is displayed in figure 12. The role

of P is to enhance the fluid velocity. It can be seen in the fig-

ure that P accelerates the motion of CSNF. In figure 13 the

comparison of Newtonian viscous fluid velocity and CSNF

velocity is displayed. It can be seen that the velocity of

Newtonian viscous fluid is higher than CSNF velocity. The

fact behind this is that, as in figure 10, we have already

seen the role of λ on the CSNF velocity. As increasing value

of λ results the retardation of the CSNF velocity. In New-

tonian viscous fluid, we have taken λ = 0. Therefore the

Newtonian viscous fluid velocity is much more as compared

to CSNF velocity. In figure 14, the obtained solutions are

compared to the solutions of Akhtar and Shah [65]. From the

figure we have noticed that by taking α = 1, Gr = 0

and Gm = 0, our solutions reduced to the solutions of

Akhtar and Shah [65] and overlap our results with the already

published results of Akhtar and Shah [65]. The comparison of

present results with the published results of Arif et al. [33]

are portrayed in figure 15. From the figure, we have seen

that our results overlapped with the results of Arif et al. [33]

in the absence of buoyancy effects i.e. by taking Gr = 0

and Gm = 0.

The influence of α on temperature distribution is displayed

in figure 16. From the figure, fall in temperature distribution

is noticed by increasing values of α for small values of time

(τ = 0.2) by keeping other values constant while opposite

impact of α is noticed for large values of time (τ = 2).

In figure 17, the influence of φ on temperature distribution

is displayed. We observed that heat transfer rate rises by

increasing value of φ for small time (τ = 0.2) as will as for

the large time (τ = 2). As by increasing φ, fluid viscosity

increases which results to increase the freezing as will as

boiling point of the fluid, and as a result, heat transfer rate

enhances. Figure 18 presented the Pr impact on the temper-

ature distribution. One can be notice that CSNF temperature

profile declines for large values of Pr. The behavior of Pr is

same for both small time (τ = 0.2) as will as for the large

time (τ = 2) is same. As Pr has a direct variation with the

viscosity. By increasing Pr, increases the viscous forces and

as a result rise in temperature profile. The influence of α on
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FIGURE 9. λ impact on CSNF velocity distribution when P = 2, Gr = 1.5, Gm = 1.5, Pr = 1000, Re = 0.5, τ = 2, φ = 0.01 and Sc = 2.

FIGURE 10. Pr impact on CSNF velocity distribution when P = 2, Gr = 1.5, Gm = 1.5, Re = 0.5, τ = 2, φ = 0.01, Sc = 2, α = 0.5 and λ = 50.

concentration distribution is displayed in figure 19. From the

figure, fall in concentration distribution is noticed by increas-

ing values of α for small values of time (τ = 0.2) by keeping

other values constant while opposite impact of α is noticed for

large values of time (τ = 2). Figure 20 and figure 21 indicate

the influence of φ and Sc on the concentration distribution
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FIGURE 11. Re impact on CSNF velocity distribution when P = 2, Gr = 1.5, Gm = 1.5, Pr = 1000, τ = 2, φ = 0.01, Sc = 2 and λ = 50.

FIGURE 12. Comparison of CSNF velocities with P = 0 and P > 0 when
Gr = 1.5, Gm = 1.5, Pr = 1000, Re = 0.5, τ = 2, φ = 0.01, Sc = 2, α = 0.5 and λ = 50.

FIGURE 13. Comparison of Newtonian viscous fluid velocity with CSNF velocity when
G = 2, Gr = 1.5, Gm = 1.5, Pr = 1000, Re = 0.5, τ = 2, φ = 0.01, Sc = 2 and α = 0.5.

respectively. Fall in concentration profile can be seen clearly

by increasing the value of φ and Sc for small time (τ = 0.2)

as will as for the large time (τ = 2) The fact behind this

is that by increasing φ, viscous forces of the fluid increases

which slowdown the mass distribution in the fluid. Sc is

the ratio of viscous forces to mass diffusion. By increasing
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FIGURE 14. Comparison of obtained results with the results of Akhtar and Shah [65] when
P = 2, Gr = 0, Gm = 0, Pr = 1000, Re = 0.5, τ = 2, φ = 0.01, Sc = 2, α = 1 and λ = 50.

FIGURE 15. Comparison of obtained results with the results of Arif et al. [33] when
P = 2, Gr = 0, Gm = 0, Pr = 1000, Re = 0.5, τ = 2, φ = 0.01, Sc = 2 and α = 0.5.

FIGURE 16. α impact on CSNF temperature distribution when Pr = 1000, φ = 0.01.

numerical value of Sc, it means that we increases viscous

forces or decreases mass diffusion, which results a decrease

in concentration profile.

Figure 22 shows the skin friction variation at lower and

upper plates for different values of φ. It is noticed from the

figure that φ increases skin friction at lower as well as upper
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FIGURE 17. φ impact on CSNF temperature distribution when Pr = 1000, α = 0.5.

FIGURE 18. Pr impact on CSNF temperature distribution when φ = 0.01, α = 0.5.

FIGURE 19. α impact on CSNF concentration distribution when Sc = 2, φ = 0.01.

plate for large as well as for small time. Figure 23 depicts

Nusselt number variation for different values of φ. It is clearly

noticed that by icreasing value of φ form 0 to 0.04 increases

the Nusselt number variation. Furthermore, the heat transfer

rate increases upto 12.38% by adding MoS2 nanoparticles

in EO which shows that more heat can be absorbed from
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FIGURE 20. φ impact on CSNF concentration distribution when Sc = 2, α = 0.5.

FIGURE 21. Sc impact on CSNF temperature distribution when φ = 0.01, α = 0.5.

FIGURE 22. Variation in skin friction at lower plate for different values of φ when P = 2, Gr = 1.5, Gm = 1.5, Pr = 1000, λ = 50, Re = 0.5,
y = 0, Sc = 2 and α = 0.5

the engine and offcourse it will increase the life of engine.

Figure 24 demonstrates the influence of φ on Sherwood num-

ber. From the figure, it can be clearly noticed that φ decreases

the rate ofmass transfer. It is worth noting that all these graphs

depicts a strong argument with the numerical results which

are tabulated in table 2 to table 5.
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FIGURE 23. Variation in Nu for different values of φ when
Pr = 1000, α = 0.5.

FIGURE 24. Variation in Sh for different values of φ when Sc = 2, α = 0.5.

Table 2 and table 3 shows the variation in skin friction

at lower as well as upper plate respectively. These tables

show the results of skin friction for fractional as well as

classical CSNF model. The influence of different embedded

parameters on skin friction is also examined. Table 4 and

table 5 depict the Nusselt and Sherwood numbers variations

respectively for different values of φ. It is detected that

heat transfer rate boosts up to 12.38% and mass distribution

decreases up to 2.14% by increasing value of φ up to 0.04.

As φ increases fluid viscosity which results increase the

freezing and boiling points of the fluid.

VIII. CONCLUDING REMARKS

The aim of this study is to obtain the closed form solu-

tions of CSNF between two parallel plates. The solutions

are obtained for the recently most using fractional deriva-

tive namely Caputo-Fabrizio time fractional derivative. The

obtained results are also displayed in the graphs. Engine oil

is takes as base fluid andMolybednum disulphide is chosen as

nanoparticles. From the present solutions, some special cases

are recovered for the accuracy and validity of the solutions.

The results of CF fractional derivatives are compared with the

classical model through figures. The key points of the present

study are listed below:

• From the graphical results, we noticed that the frac-

tional CSNF model described more realistic feature of

the velocity distribution better than the classical CSNF

model.

• CSNF velocity is less than Newtonian viscous fluid

velocity.

• Increase in the temperature profile and concentration

profile is observed by increasing value of α for the small

values of τ . Opposite effect of α is noticed for the large

values of τ .

• Increasing temperature profile while decreasing concen-

tration profile by increasing φ.

• Heat transfer enhances up to 12.38% by increasing as

compared to regular engine oil.

• Mass transfer decreases up to 2.14% by increasing value

of φ by 0.04.
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