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Sleep spindles are a hallmark of NREM sleep. They result from a widespread

thalamo-cortical loop and involve synchronous cortical networks that are still poorly

understood. We investigated whether brain activity during spindles can be characterized

by specific patterns of functional connectivity among cortical generators. For that purpose,

we developed a wavelet-based approach aimed at imaging the synchronous oscillatory

cortical networks from simultaneous MEG-EEG recordings. First, we detected spindles

on the EEG and extracted the corresponding frequency-locked MEG activity under the

form of an analytic ridge signal in the time-frequency plane (Zerouali et al., 2013).

Secondly, we performed source reconstruction of the ridge signal within the Maximum

Entropy on the Mean framework (Amblard et al., 2004), yielding a robust estimate of

the cortical sources producing observed oscillations. Lastly, we quantified functional

connectivity among cortical sources using phase-locking values. The main innovations of

this methodology are (1) to reveal the dynamic behavior of functional networks resolved

in the time-frequency plane and (2) to characterize functional connectivity among MEG

sources through phase interactions. We showed, for the first time, that the switch from

fast to slow oscillatory mode during sleep spindles is required for the emergence of

specific patterns of connectivity. Moreover, we show that earlier synchrony during spindles

was associated with mainly intra-hemispheric connectivity whereas later synchrony was

associated with global long-range connectivity. We propose that our methodology can be

a valuable tool for studying the connectivity underlying neural processes involving sleep

spindles, such as memory, plasticity or aging.

Keywords: wavelet ridges, source localization, maximum entropy on the mean, phase synchrony, functional

connectivity, sleep spindles

INTRODUCTION

It is believed that the characteristic patterns of spontaneous bio-

electrical activity that occur during sleep, originating either from

focal cortical regions or large-scale networks, reflect essential neu-

ral processes that modify the long-term functionality of the awake

brain (e.g., brain plasticity, memory enhancement, see Walker

and Stickgold, 2006). Among them, sleep spindles constitute a

hallmark of non-rapid-eye movement (NREM) sleep. A spindle

is a transient high-amplitude oscillation seen in the electroen-

cephalogram (EEG), typically lasting approximately 500–1500 ms

within the sigma band (10–16 Hz). Sleep spindles reflect the

sequential activation of the reticular and dorsal thalamic nuclei,

followed by neocortical targets (Steriade et al., 1985, 1987). Early

animal research pointed at hyperpolarizing potentials in thalamic

reticular (RE) nucleus as the neurophysiological trigger of spindle

sequences (Steriade et al., 1987). Subsequently, it was demon-

strated that cortico-thalamic feedback is also crucial to initiate

and terminate spindle oscillations (Destexhe et al., 1998; Golshani

et al., 2001; Timofeev et al., 2001; Timofeev and Bazhenov, 2005;

Bonjean et al., 2011).

Cortical synchrony is a key factor involved in sustaining spin-

dle oscillations (Timofeev and Bazhenov, 2005). Neural modeling

first suggested that cortical feedback on RE cells could result in

a large-scale synchronous network of spindle oscillations over

the cortex (Destexhe et al., 1998). Thalamo-cortical synchronous

oscillations (12–14 Hz) were subsequently measured in situ in

cats (Timofeev and Bazhenov, 2005). It was observed that ter-

mination of a spindle is characterized by desynchronization of

responses between cortical and thalamocortical neurons (Steriade

et al., 1998; Timofeev et al., 2001).

In EEG recordings, the mean frequency of spindles varies

across the scalp. Spindles are usually slower at more ante-

rior sites (“slower” spindles: 11–13 Hz) and typically faster at

more posterior sites (“faster” spindles: 14–16 Hz; Jankel and

Niedermeyer, 1985; Jobert et al., 1992). Interestingly, Andrillon

et al. (2011) showed that faster spindles observed at electrode Cz
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emerge usually around 500 ms before the onset of slower spin-

dles at frontal sites. The scalp topography of spindle frequency

may reflect distinct neurophysiological processes (Timofeev

and Chauvette, 2013). According to this suggestion, higher-

frequency and earlier spindles would reflect initial thalamocotical

interactions, predominant in central regions; whereas lower-

frequency and later spindles would reflect secondary cortico-

cortical interactions, spreading over frontal regions.

Recent studies also reported that intra-spindle frequency is not

stable in time. For most spindles, the dynamics is characterized

by a progressive frequency slowing, even at posterior EEG elec-

trode sites (Schonwald et al., 2011). When analyzing separately

spindles with high and low frequency, Urakami (2008) showed

the shift in frequency over time is well explained with two dipo-

lar sources located deep in the postcentral and in the precentral

regions, bilaterally. However, the synchronous neural networks

involved in sleep spindles, and the dynamics of their deployment

over time, have never been characterized.

This article presents a new methodology to characterize the

neural generators of EEG spindles from the perspective of cortical

synchrony as measured on MEG. Thus, we considered frequency-

locking among MEG sensors within a time window around

spindles marked on the simultaneous EEG. MEG frequency-

locking consists in transient synchronous events (SEs) during

which activity recorded by a subset of sensors oscillate at the

same frequency. There are two main reasons to consider MEG

frequency-locking to understand cortical activity during EEG

spindles. First, MEG recordings are spatially less corrupted with

spurious correlations than EEG (absence of reference electrode,

no spatial blurring from conduction on the scalp). Second, the

source localization of oscillatory patterns is more tractable in

MEG, where an adequate model of data generation does not

involve current propagation through inhomogeneous tissues.

In the present work, we localized the cortical generators of

the frequency-locked MEG events during EEG spindles. In addi-

tion we characterized for these events the cortical distribution of

power and the cortico-cortical functional connectivity networks.

To do such analyses in a unified framework, dedicated to transient

oscillatory patterns like spindles, we developed a novel approach

based on analytical (i.e., complex) time-frequency representa-

tions of the data from which the information related to synchrony

was extracted. We identified the neural generators related to this

information extracted from the MEG recordings for each spindle.

The complex signal thus inferred on the sources has both infor-

mation about power (amplitude) and phase, from which coupling

between sources could be estimated. In addition, the frequency at

which frequency-locking occurred allowed us to distinguish fast

and slow rhythmic components within spindles.

Using this approach, our main results are: (1) Eighty percent

of EEG spindles showed at least one significant MEG frequency-

locked event; (2) within spindles, the central frequency of early

frequency-locked activity was mainly distributed around 14 Hz

(fast) whereas it is distributed around 12 Hz (slow) for late

frequency-locked activity; (3) early frequency-locking, no mat-

ter its frequency, emerges mainly from parietal regions whereas

late frequency-locking emerges from a much broader set of

regions, localized mainly in frontal, parietal, and occipital areas;

(4) overall long-range synchronization is lower for early than

for late frequency-locking wheareas short-range synchroniza-

tion is higher for early than for late frequency-locking; (5) the

cortical network for late frequency-locking involved larger num-

bers of connections (particularly interhemispheric) than for early

frequency-locking.

MATERIALS AND METHODS

PROTOCOL, MEG RECORDINGS, AND ANATOMICAL MRI

Brain activity of 8 healthy subjects was recorded during sleep,

using simultaneous MEG and EEG for a maximum period of

90 min following a period of 26 h of sleep deprivation (to insure

a good probability of sleeping in the MEG laboratory). From

this group, 5 young subjects were kept in the present study (see

Table 1). Recordings were conducted at the Centre de Recherche

en Neuropsychologie et en Cognition (CERNEC) of Université

de Montréal using a 275 channel CTF-VMS whole-head magne-

tometer. Subjects arrived 1 h prior to their habitual bedtime and

stayed awake until 2 h after their habitual wake time. During this

sleep deprivation (under a research assistant supervision) activity

was limited to reading or surfing on the Internet. The proto-

col was approved by the ETS ethics board and by the Comité

d’Ethique de la Recherche of IUGM. Written informed consent

was obtained from all subjects.

The MEG recordings were split into consecutive runs of

18 min. Sleep EEG was recorded simultaneously using 56 scalp

electrodes referenced to the left mastoid with a CTF EEG sys-

tem integrated with the MEG system. Electrodes were positioned

using the 10–10 system. In addition, the horizontal (HEOG) and

the vertical (VEOG) components of the electro-oculogram were

recorded using two pairs of electrodes, one pair at the outer

canthi and one pair above and below the left eye, respectively.

MEG and EEG were digitized at 1200 Hz with an antialiasing

low-pass filter at 300 Hz (30 dB/Octave) and a high pass filter

of about 0.02 Hz. MEG signals were de-noised using the CTF

[CTF MEG, Coquitlam (BC), Canada] third-order synthetic gra-

diometer algorithm. The EEG was manually scored for sleep

stages according to standard criteria (American Academy of Sleep

Medicine manual, Iber, 2007). EEG spindle detection was per-

formed visually on Cz by an experienced sleep technician. A sleep

Table 1 | Subjects’ information.

Subject Age Duration Nbr. of EEG Nbr. of Comments

(y) (mn) spindles (Cz) MEG SEs

1 25 2 × 18 28 42

2 23 4 × 18 228 N/A Strong dental artifact

(excluded)

3 26 3 × 18 109 195

4 24 5 × 18 13 N/A Too few spindles

(excluded)

5 54 N/A Older subject

(excluded)

6 21 4 × 18 98 190

7 24 3 × 18 37 210

8 22 3 × 18 85 153
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spindle was detected when a burst of oscillatory brain activity

(12–14 Hz) was visible on NREM EEG for at least 0.5 using band-

passed filter (1–30 Hz) (Rechtschaffen and Kales, 1968). A high

resolution anatomical T1-weighted MRI scan was acquired at the

Unité de Neuroimagerie fonctionelle de l’Institut Universitaire

de Gériatrie de Montréal using a T1-weighted 3D MPRAGE

Fast sequence (slab: 160, voxel size: 1.0 ×1.0 × 1.2 mm, TR/TE:

2300/2.94 ms, TI: 900, FOV: 256) acquired in a 3T Siemens

MAGNETOM Trio scanner (Siemens Medical Solutions, Malvern

(PA), USA). A mesh representation of the white/gray matter inter-

face with 8000 vertices (sources) was extracted from the MRI scan

for each subject using Brainvisa (Cointepas et al., 2001). The spa-

tial resolution of the mesh was 5.5 ± 2.8 mm and the orientation

of the sources was constrained to be normal to the surface. The

forward model G (see Section Imaging Cortical Synchrony) that

was used for the source localization was obtained from a spherical

head model computed using Brainstorm (Tadel et al., 2011).

WAVELET ANALYSIS

We consider the continuous wavelet representation of the

multivariate data M (t),

w(m) (a, b) =
∫ +∞

−∞
M (t) �ab (t) dt (1)

with the wavelet defined as usual as

�ab (t) =
1

√
a
�

(

t − b

a

)

(2)

where �(t) is a complex valued analytical wavelet of the Morse

type (see Appendix II). �ab (t) is a short time oscillatory func-

tion scaled by factor a and translated in time by b samples.

Each wavelet coefficient w(m) (a, b), where m refers to the data

space, thus describes the oscillatory behavior of the signals M(t)

at scale a and around time sample b. The scaling factor a

was spaced along 256 scales, thus yielding a spectral resolution

of ≈0.4 Hz in the sigma band. It is noteworthy that this signal

representation is highly redundant and neighboring wavelet coef-

ficients are correlated. The next section describes how we can

retrieve frequency-locking information from such a redundant

representation.

FREQUENCY-LOCKING IN THE SENSORS SPACE

From a signal representation in the time-frequency (t-f) plane,

one can extract the instantaneous frequency by computing

wavelet ridges (Mallat, 2008). The procedure for a univariate

signal is illustrated in Figure 1. At each time sample b, we

locate on the wavelet scalogram (Figure 1A) the local maxima

in amplitude (i.e., the energy). The frequency of such maxima

defines the instantaneous frequency of one oscillator present

in the signal. Contiguous maxima along time are then chained

into “ridge lines” a = r (b). The location of all ridge lines in

FIGURE 1 | Example of a wavelet ridge on a simulated spindle.

(A) Time-frequency plot showing the power estimated from the

output of the wavelet transform of the spindle in (C). (B)

Ridges extracted from the time-frequency plot in (A). (C)

Simulated spindle oscillation. (D) Reconstructed real (blue) and

imaginary (red) signal based on the ridge information in (B). The

real part of extracted ridge signal closely approximates the

original signal shown in (C).

www.frontiersin.org October 2014 | Volume 8 | Article 310 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Zerouali et al. Dynamics of cortical networks of sleep spindles

the t-f plane is called a “ridge map” (Figure 1B) which is a

binary representation of the oscillatory modes present in the

signal (Delprat et al., 1994). As illustrated in Figure 1 with

a simulated spindle, the complex wavelet signal (Figure 1D)

along the ridge line (Figure 1B) mostly reproduces (real part

shown on Supplementary Figure 1), the original oscillatory

signal (Figure 1C).

We extend this approach to multivariate (i.e., multichannel)

MEG signals as illustrated in Figure 2. We first compute the ridge

map of each sensor (Figure 2A), then we sum them to obtain a

“multivariate ridge map” (Figure 2B), the values of which reflect

the number of sensors sharing common local maxima, i.e., instan-

taneous frequencies. On the multivariate ridge map, we track

common oscillatory modes as multivariate ridge curves a =
r(m) (t). Each curve may vary in frequency over time and reflects

an episode of frequency locking among sensors. From now on, the

term ‘ridge’ refers to a multivariate ridge curve a = r(m) (t).

STATISTICALLY SIGNIFICANT FREQUENCY-LOCKING

We now define the strength of a ridge as the time average of the

number of frequency-locked sensors at each time sample of the

ridge. To define the minimal strength for a ridge to be considered

as a spindle specific synchronous event, we define a thresholding

procedure based on the rationale that synchrony must be stronger

during a spindle than during baseline activity. We thus detect

ridges (r(b) (t)) during a baseline window preceding a spindle

(−1.5 to −0.5 s with respect to the marker) and compute their

strength. Using a FDR approach, we build a cumulative distribu-

tion of ridge strength during baseline and set the cutoff such that

p ≤ 0.05. Ridge strength cutoff is determined for each spindle,

and only ridges above the cutoff are considered as “synchronous

events” (SE).

NON-LINEAR FILTERING OF MEG SIGNALS

Spindles typically exhibit a succession of synchronous events SEs,

the first and last of which are termed respectively early and

late SE (see Figure 2C). For each of these events—indexed by

r, we construct an analytic ridge signal w
(m)
r (t)- m stands for

multivariate—that consists in the complex wavelet coefficients of

all Ns sensors at frequencies along the line a = r(m)(t):

w(m)
r (t) = w(m)(t, r(m) (t) ) (3)

This ridge signal over the whole set of sensors is complex-valued

and only exists during periods of frequency-locking between a

subset of sensors. w
(m)
r (t) is an oscillatory component of M(t)

of the form w
(m)
r (t) = A (t) ei φ (t), where φ(t) is the instanta-

neous phase (Zerouali et al., 2013). This approach is analogous

to the Hilbert-Huang Transform (HHT), which computes the

instantaneous phase of empirical modes of the data. However,

although it can successfully separate brain rhythms from EEG

recordings (Bajaj and Pachori, 2012), the HHT is not readily

FIGURE 2 | Real spindle: (A) average wavelet power over all MEG

sensors. The EEG onset is at time equal to 0. For the same spindle, (B) is the

multivariate ridge map obtained by summing the individual ridge maps over

all MEG sensors. The colors indicate the number of sensors frequency-locked

at a particular time-frequency point. (C) Displays multivariate ridge mask

produced after data-driven thresholding of the multivariate ridge plane (B).

The mean power of this spindle is 12 Hz but the multivariate ridges (B) show

synchrony above this value and even before the EEG onset (t = 0). In this

particular case, we observe 3 multivariate ridge lines during the spindle (the

discontinuity along the frequency axis reflects the limit in spectral resolution

of the decomposition), with frequency starting around 12.6 Hz (early event)

and ending at 11.13 Hz (late event).
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usable for extracting synchronous components. It is notewor-

thy that the number of SEs that can be extracted from M(t)

can vary and even be null if underlying neural generators are

all asynchronous. We treat each spindle as a distinct event and

quantify 4 characteristics of the SEs on a spindle-by-spindle basis:

(1) the presence or absence of SEs, (2) the number of SEs, (3)

the summed duration of the SEs, and (4) the onset time of the

first SE.

IMAGING CORTICAL SYNCHRONY

Given a ridge signal w
(m)
r (t) of length Tr , we localize its corti-

cal generators by solving the inverse problem associated with the

following linear but ill-posed generative model:

w(m)
r (t) = G w

(q)
r (t) + εr(t) (4)

where w
(q)
r (t) is the Nq × Tr analytic source signal to be esti-

mated, εr(t) is noise and G is the Ns × Nq forward operator

projecting source activity onto the sensors space. We emphasize

here that although the ridge line is a non-linear filter, the ridge

signal w
(m)
r (t) itself is linear with respect to data M (t) since the

wavelet transform is a Iinear operation. The linear operator G is

thus valid for ridge signals. In the present work, the estimation of

the Nq-dimensional w
(q)
r (t) is obtained through the Maximum

Entropy on the Mean as developed (Amblard et al., 2004) and

validated in (Grova et al., 2006). It is noteworthy that w
(q)
r (t)

is an analytic source signal, which provides access to the true

phase of the sources. All routines used for this article are coded

in Matlab [The MathWorks Inc., Natick (MA), USA] is inter-

faced with Brainstorm and distributed as an open-access toolbox

(http://neuroimage.usc.edu/brainstorm).

GROUP-LEVEL SYNCHRONOUS NETWORKS

In order to perform group analyses, we first projected the time

courses w
(q)
r (t) from the individual anatomy space onto the MNI

brain template using routines implemented in Brainstorm (Tadel

et al., 2011). On this common template, we characterized source

activity inferred from the SEs under two different perspectives:

(1) the power, proportional to the square of the amplitude of

source activity during a SE, and (2) the connectivity, to infer func-

tional networks emerging through phase synchrony. These two

properties on the sources are complementary by definition, since

phase synchrony and power are theoretically independent (but see

Ghuman et al., 2010 for a link between source SNR and synchrony

detectability). We note here that while power during SEs was com-

puted at the source level, phase synchrony addressed connectivity

within and among 88 parcels, each including around 200 sources

(227 ± 136). For that purpose, we performed an initial clustering

of cortical sources into 88 parcels derived from the Tzourio–

Mazoyer anatomical atlas (Supplementary Figure 5). We com-

puted both short-range and long-range connectivity based on

these parcels. Short-range connectivity was computed as pair-

wise source connectivity within each parcel, whereas long-range

connectivity was computed using local average signals within

parcels.

POWER OF SYNCHRONOUS SOURCES

For each source n on the template, we quantified the source power

underlying the SEs r detected for a subject s (hence the notation

n,r;s in next Equation). First, we computed the mean energy E(q):

E
(q)
n,r;s =

1

Tr

Tr
∑

t = 1

|w(q)
n,r;s(t)|2 (5)

where Tr is the number of time samples in the SE r. Given that

wavelet coefficients w
(q)
n,r;s(t) are approximately 0-mean fluctua-

tions, E
(q)
n,r;s can be seen as a measure of source variance. We also

compute the mean energy E
(q)
n,b;s of the sources along ridges b

located during a baseline period (−1.5 to −0.5 s before EEG spin-

dle marker). The null hypothesis (H0) in our statistical test was

that source variance has the same distribution during SEs than

during baseline. We assessed this hypothesis using Fischer’s test

on a group statistic F. For each subject s, we ran 100 iterations

where we selected a subset Ri,s of 12 SEs, and a subset Bi,s of 12

ridges in the baseline periods to compute the F-statistic as follows,

Fn,i,s =

∑

r ∈ Ri,s
E

(q)
n,r

∑

r ∈ Bi,s
E

(q)
n,r

, i = 1, . . . 100 (6)

Given that our subjects displayed at least 42 SEs (see Table 1),

we could generate at least 2.9 × 105 unique subsets Ri,s and Bi,s

(21 SEs for each onset—late/early, 12 choices per combination).

The average F-statistic over the 100 iterations, for each subject

Fn,s was then computed. Finally, we averaged the statistics Fn,s

over subjects in order to obtain the group-level average statis-

tic Fn We then derived the threshold FT
(12, 12) = 21.02 such that

any sources n with Fn > FT
(12, 12) is significantly activated at a

Bonferroni-corrected 5% level (p = 0.05/15028).

SYNCHRONY AMONG SOURCES

At this point, source signals wr
(q) (t) are in a common anatom-

ical space, thus we discard subject index. For each ridge signal

r [we remind here that this signal is multivariate with dimen-

sions (Nsources × Nbins)], we then computed pairwise synchrony

ξ between parcels i and j using:

ξ
(r)
i,j =

∣

∣

∣

∣

∣

∣

∣

1

Tr

Tr
∑

t = 1

w
(q)
r,i (t)w

(q)∗
r,j (t)

∣

∣

∣
w

(q)
r,i (t)

∣

∣

∣

∣

∣

∣
w

(q)
r,j (t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(7)

where Tr is the length of ridge r and w
(q)∗
r,j (t) denotes the complex

conjugation of w
(q)
r,j (t). This definition of synchrony is equivalent

to the phase-locking value (PLV, Lachaux et al., 1999) and pro-

vides added robustness to round-off error. For each pair (i,j), we

thus computed R synchrony values, where R was the total number

of ridges for a particular condition, then we averaged those val-

ues to obtain mean pairwise synchrony. For simplicity, we explain

the synchrony computation and thresholding for a single pair of

regions, but the same computations were performed for all pairs.
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We assessed the statistical significance of synchrony strength

using a non-parametric approach aimed at estimating the dis-

tribution of estimated synchrony under the Null Hypothesis, for

each pair of parcels (i,j). To do this we used a shuffling approach

by randomly permuting the identity of ridges, thus yielding:

ξ
(r,u)
i,j =

∣

∣

∣

∣

∣

∣

∣

1

T

T
∑

t=1

w
(q)
r,i (t)w

(q)∗
u,j (t)

∣

∣

∣
w

(q)
r,i (t)

∣

∣

∣

∣

∣

∣
w

(q)
u,j (t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(8)

where r �= u and T = min(Tr, Tu). By permuting all ridges for a

particular condition, we constructed R shuffled values onξ
(r,u)

i,j .

We repeated this operation 100 times in order to ensure statis-

tical robustness of our null hypothesis. The null hypothesis was

that the distribution of phase-synchrony within a given ridge was

equivalent to that generated from random combinations of the

signals across ridges. The distribution of ξ
(r)
i,j was then compared

to the distribution under the null hypothesis and we derived

a statistical threshold using the false discovery rate technique

(see Supplementary Figure 2 for an illustration). This technique

consists in finding the synchrony value ξT
i,j that ensures an arbi-

trary false positive rate (herein set to 5%). First, PLV scores

ξr,i,j were transformed to zr,i,j using Fischer’s transform zr,i,j =
0.5 [ln

(

1 + ξr,i,j

)

− ln (1 − ξr,i,j)]. Then we computed the aver-

age z-scores zi,j, that were then inverse z-transformed to ξi,j =
exp

(

2zi,j − 1
)

/ exp
(

2zi,j + 1
)

. Finally, we consider regions pair

(i,j) as being significantly synchronous if the average across SEs in

each classes of ξr,i,j is at least ξT
i,j. It is important to note here that

the average PLV values and the PLV thresholds, derived respec-

tively with equations (7) and (8), are computed specifically for

each condition [(early, late) × (slow, fast)].

RESULTS

MEG FREQUENCY-LOCKING DURING SPINDLES (SEs)

Figure 3 shows a number of descriptive statistics for the SEs

observed at the MEG sensor level. More than 80% of EEG spin-

dles for each subject had at least one significant MEG SE and the

average was 92% (see Figure 3A). We note that frequency-locking

was mostly sampled with 2 ridges per spindle for subjects 1, 3, 6,

and 8 (Mean = 1.7 ± 1.1), while subject 7 had an average of about

5 ridges per spindle (Mean = 4.9 ± 3.0) (see Figure 3B). Ridges

had a median duration of about 500 ms, which did not vary much

across subjects, as shown in Figure 3C.

TIMING OF MEG SEs DURING SPINDLES

We examined when MEG ridges were first observed within spin-

dles. Figure 4 shows the relative frequency of onset times. First

SE from all spindles were pooled and using a probability density

function, we computed their onset time with respect to EEG spin-

dle marker at Cz. We observed that frequency-locking is initiated

roughly between 250 ms before and 400 ms after EEG marker,

with a main peak on the distribution at 110 ms after.

CENTRAL FREQUENCY OF SEs IN SPINDLES

Figure 5 shows the distribution of central frequencies of all MEG

SEs within EEG spindles (dashed line). The central frequency is

here defined as the average instantaneous frequency along a SE.

The distribution is bimodal with a main peak centered at 13.9 Hz

and a lower peak around 11.5 Hz. Note that the spectral resolu-

tion of this analysis was limited to ∼0.4 Hz due to the discrete

and inhomogenous (i.e., with exponentially-spaced spectral bins)

wavelet scaling. Taking into the spectral resolution of the analysis,

we can state that the main frequency mode for MEG synchrony

is between 13.4 and 14.3 Hz, and the lower mode is between 11.1

and 11.9 Hz.

Among all SEs, we select subsests of early and late events.

Interestingly, the central frequency of early SEs, which are the

first detected ridges relative to spindle onset, is mainly distributed

around 14 Hz (blue curve). On the other hand, the central fre-

quency of late SEs, which are the last detected ridge, is mainly

distributed around 12 Hz (red curve).

ACTIVATION MAPS

Supplementary Figure 3 illustrates cortical activations associated

with SEs that take place either early, or late relative to spindle

FIGURE 3 | Results for Synchrony Events (SE) in MEG sensor data

during spindles. (A) Percentage of spindles with at least one synchrony

event (SE) for each subject. The horizontal red dashed line is the mean

percentage over all subjects. (B) Number of SEs per spindle, for each

subject. The box plots show the median number of SEs per ridge, in

red, the 25th and 75th percentiles at the end of the box, and the

“whiskers” indicate the minimum and maximum scores in the sample.

The + in (B) indicate outliers. (C) Median total duration of SEs per

spindle for each subject, along with the 25th and 75th percentiles. The

+ in (C) indicate outliers.
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FIGURE 4 | Probability density plot of the onset time of the first

synchrony event (SE) in MEG relative to the spindle onset time at Cz in

the EEG, for each participant. Each point on the graph shows the density

of early SEs for a given onset time and subject. The black line is the spline

interpolation of the empirical probability distribution. The blue dashed line

indicates the first “plateau” and the red dashed line marks the mode of the

distribution.

FIGURE 5 | Distribution of the central frequency of all SEs (dashed

line), early SEs (blue line), and late SEs (red line). The distributions of

frequencies of early and late SEs peak respectively at 13.9 and 12.4 Hz;

these two distributions intersect at 13.1 Hz, which can be seen as an

empirical frontier between slow (red) and fast (blue) SEs.

onset. These maps are displayed using Otsu’s visualization thresh-

old and allow a qualitative description of cortical activity linked to

synchrony (Otsu, 1979). We can see that cortical energy is mainly

distributed over the perirolandic cortex, bilaterally, for early syn-

chrony. On the other hand, cortical energy is more broadly

distributed for late synchrony and spans frontal, perirolandic,

temporal, and occipital regions. It thus seems that cortical syn-

chrony during spindles is initiated in fairly focal perirolandic

regions and extends progressively to further regions.

As was shown in Figure 5, the central frequency of early SEs

is mainly high but it can be low, and the reverse is true for late

synchrony (mainly low, but can be high). Thus, the observed dif-

ferences in cortical activation could either be due to the timing

(early vs. late) or the frequency of synchrony (low vs. high) of

synchrony. In order to disentangle the effects of these two fac-

tors, we pooled SEs with respect to each combination of timing

and frequency. We first verify that, based only on the chronol-

ogy of the synchronous events for each spindle, the distribution

of the early and late events will sample unambiguously the early

and late part of the spindles. This is shown in Figure 6. Using

this approach, results in Figure 7 suggest that early SEs, no mat-

ter their frequency, emerge mainly from perirolandic regions. In

addition, late synchrony emerges from a much broader set of

regions, localized mainly in frontal, parietal, and occipital areas.

SIGNIFICANT REGIONS OF CORTICAL SYNCHRONY DURING SLEEP

SPINDLES

Figure 8 displays regions of significant projected power on corti-

cal sources during SEs when the results were corrected for mul-

tiple comparisons using non-parametric statistical thresholding

to Bonferroni-corrected p < 0.05. For early fast SEs, significant

activations were found bilaterally, although stronger over the left

hemisphere, in the postcentral gyrus, extending to the caudal part

of the superior frontal gyrus, and in the left superior parietal lob-

ule. In turn, for late slow SEs, activations were found, bilaterally,

in the medial frontal gyrus, in the superior frontal gyrus, in the

inferior parietal lobule and in the precuneus.

SHORT- AND LONG-RANGE SYNCHRONY DURING SLEEP SPINDLES

We examined separately short- and long-range synchronization

during the early and late parts of spindles using measures of

phase-locking value. Descriptive statistics for this analysis are dis-

played in Figure 6B. Overall short range synchronization, that

is the averaged phase-locking values between pairs of sources

within the same region, was significantly lower for late (0.63)

than for early (0.77) synchrony [two-sample t-test, t(3009) = 7.64,

p < 0.0001]. On the other hand, long-range synchronization,

that is the mean phase-locking value between all pairs of sources

across distinct regions, was significantly higher for late (0.48) than

for early (0.41) synchrony [two-sample t-test, t(7654) = −38.87,

p < 0.0001]. In particular, interhemispheric connections were

denser in late synchrony, as the median PLV was increased by

0.085 in the latter condition [two-sample t-test, t(3870) = 17.42,

p < 0.0001, data not plotted]. Also, intrahemispheric increase of

median long-range PLV value was much more marked in the

right [�PLV = 0.12, t(1890) = 14.17, p < 0.0001, data not plot-

ted] than in the left [�PLV = 0.01, t(1890) = 4.61, p < 0.0001,

data not plotted] hemisphere.

SYNCHRONOUS NETWORKS DURING SPINDLES

Recall from Section Group-Level Synchronous Network that we

divided cortical regions into 88 distinct parcels. Phase-locking

values (PLVs) were computed between all possible pairs of

sources within each parcel to obtain short-scale synchrony val-

ues. In addition, we computed the average signal in parcel and

computed PLVs between all possible pairs of parcels. Parcels
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FIGURE 6 | (A) Onset time descriptive statistics (median, quartiles, and

extrema) for early or late events, with fast or slow oscillations, relative to

the time of spindle onset defined on the EEG at Cz. (B) Phase-locking

value descriptive statistics for long-range and short-range synchrony

displayed for both early (columns 1, 2) and late (columns 3, 4)

synchronous events. The horizontal bar and asterisks indicate a

statistically-significant difference with p < 0.001 (see text for details). The

number of points in the distributions of short-range PLV (source pairs)

and long-range PLV (region pairs) are respectively 3,053,790 and 3828.

See text for how events were classified.

FIGURE 7 | Activation maps associated with each of the 4 categories of

SEs. The maps are normalized to a common scale (maximum power in red)

and displayed using Otsu’s threshold (Otsu, 1979). Based on the histogram

of an object (vector or image), Otsu’s threshold consists in classifying the

object in two classes with minimal intra-class variances, then binarizing the

object by setting the intensities of the lower class to 0 and that of the

higher class to 1. Unthresholded activation maps are presented in

Supplementary Figure 4.

were manually labeled to either the frontal, parietal, tempo-

ral, mesial or occipital regions. Supplementary Figure 6 shows a

schematic representation of connectivity among and within cor-

tical parcels, each being represented with a node. Long-range

pairwise PLVs values greater than 0.8 are depicted, and links

that are significant statistically are in bold. Statistical signifi-

cance of the PLV value for a pair was determined using the

approach described in Section Synchrony Among Sources. We

computed, within each condition [(early, late) × (fast, slow)]

the null distribution of large-scale synchrony in absence of SEs,

i.e., using ridge signals from the baseline. From that distribu-

tion, we derive the FDR threshold above which synchrony is

FIGURE 8 | Non-parametric statistical threshold on activation maps for

the early fast SEs (left) and the late slow SEs (right). Upper rows

displays cortices from a lateral view while lower row displays cortices from

a medial view. Non-parametric statistical threshold was set to 0.05,

Bonferroni-corrected. Color code here indicates the group-level average

F -value (see Section Power of Synchronous Sources) of the significantly

activated sources, insignificant ones are set to 0.

significant with p value of 5%. Short-range, within parcels syn-

chrony, is coded with the node color and is not thresholded

statistically.

Cortical networks involved a larger number of significant pair-

wise connections for late synchrony (99) than for early synchrony

(31). In particular, interhemispheric connections were denser in

late (8) than in early (1) synchrony (Supplementary Figure 6).

In order to disentangle effects of timing versus frequency,

we analyzed separately the 4 combinations of these two fac-

tors. We show the statistically-significant PLV links in Figure 9

for late slow and early fast synchrony where we observed sig-

nificant pairwise connections. There were no significant con-

nections in the other two conditions (early slow, late fast).

Interstingly, late slow synchrony involved a larger number of con-

nections (137) than early fast synchrony (31). Finally, significant
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FIGURE 9 | Connectivity profile associated with early fast (upper left),

early slow (bottom left), late fast (upper right) and late slow (bottom

right) SEs. Non-parametric FDR thresholding was applied to inter-regions

PLV values and significant PLVs are displayed with thick lines. Visualization

threshold was set to 0.8 and non-significant links are displayed with thin gray

lines. Left and right halves of each plot reflect separate hemispheres, each

consisting of 5 main divisions (F, frontal; P, parietal; M, mesial; T, temporal; O,

occipital). Node colors reflect intra-region synchrony (no threshold applied).

interhemispheric synchrony was observed only in late slow syn-

chrony. As a confirmatory analysis, we verified that this pattern

was also observable on individual subjects’ connectivity profiles

(see Supplementary Figure 7). We found this effect was observ-

able on 4 out 5 subjects, whereas the last subject showed an overall

low number of interhemispheric links.

DISCUSSION

In this work, we addressed the dynamics of neuronal networks

during sleep spindles under the angle of phase synchrony. We

proposed an original source imaging approach to reveal the

cortico-cortical functional connectivity associated with transient

synchronous events occurring during sleep spindles. We discuss

the present work in two steps: (1) the validation of the proposed

ridge-based methodology against consensual knowledge on spin-

dles and (2) the interpretation of new findings in relation to

hypothesized functional roles of spindles.

VALIDATION OF RIDGES FOR THE STUDY OF SPINDLES

The following sections are intended to validate the use of

frequency-locking for characterizing the dynamics of cortical

activity during sleep spindles. We argue and provide supporting

evidence that frequency-locking during spindles reveals spectral

and topographical properties that were previously reported by

studies on the signal amplitude during spindles. In addition,

we show that imaging the power of cortical sources underly-

ing frequency-locking during spindles yields activations within

regions that were previously shown to be involved in spindles

using a variety of imaging techniques. The results discussed

in this first section will allow us to argue that amplitude-

based and synchrony-based features of spindles reflect similar

neurophysiological processes.

Detectability of frequency-locking spindles

We used a wavelet-ridge framework to detect and quantify

frequency-locking during spindles. Using this framework, we

observe significant MEG SEs in the vast majority of spindles and

subjects, and the method allowed us to measure the duration of

spindle-related frequency-locked activity with remarkable consis-

tency across subjects. We see two main reasons why wavelet ridges

should be favored for studying frequency-locking during spindles.

(1) We observed that the central frequency of SEs detected on
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MEG sensors is higher earlier compared to later within spindles.

(2) It was shown that cortical sources vary during the time course

of spindles recorded in MEG (Dehghani et al., 2011), which is

consistent with the observation that spindles are observed differ-

ent MEG sensors along time (Hao et al., 1992; Zierewicz et al.,

1999). Frequency-locking recorded with MEG thus reflects a

non-stationary process.

Therefore, global measures computed over the entire dura-

tion of spindles, such as magnitude-squared coherence, cannot

capture the complexity of the dynamics underlying synchrony

during spindles, which may explain why they yield low (0.22)

synchrony values (Dehghani et al., 2010; Bonjean et al., 2012).

Another approach based on autoregressive modeling and par-

tial cross-coherence also yielded low values (−0.29 to 0.38)

for average MEG synchrony (Langheim et al., 2006). However,

instead of capturing the complexity of MEG synchrony, this lat-

ter approaches filters out non-stationary components of MEG

signals and estimates coherence on the residue. In contrast,

wavelet ridges are particularly well suited to reveal patterns of

frequency-locking that change over time and space, because their

detection is more robust to spectral or spatial perturbations

(Amor et al., 2005).

MEG spindle dynamics

Our results showed that frequency-locking has a higher frequency

when it appears at the beginning of a spindle and lower fre-

quency when it appears at the end, with a clear boundary at 13 Hz.

This corroborates previous studies reporting that intra-spindle

frequency is frequently characterized by a progressive slowing of

oscillatory activity (Schonwald et al., 2011). We also observed

a typical 500 ms delay between early and late synchrony. Using

automatic spindles detection based on signal energy, Dehghani

et al. (2011) showed that spindles in MEG could arise up to

200 ms before their EEG counterpart. Interestingly, from the per-

spective of synchrony, a similar delay can be observed between the

onset of spindles visible on the EEG and MEG synchrony (MEG

often earlier). On average, however, MEG synchrony arises 110 ms

after EEG spindles onset.

By localizing the ridge complex signal, we efficiently target

the sources that generate frequency-locking during MEG spin-

dles. The ridge signal is thus more appropriate for the study of

functional connectivity, as will be discussed in the next section.

From the perspective of average power, we find different corti-

cal activation maps for ridges with higher versus lower central

frequency. Earlier and faster SEs emerged mainly from centro-

parietal regions bilaterally, but only the postcentral gyrus and the

superior parietal lobule survived statistical thresholding. Other

groups also linked fast spindles to centro-parietal sources using

dipolar source modeling (Manshanden et al., 2002; Urakami,

2008), distributed source modeling (Anderer et al., 2001), spatial

filtering (Gumenyuk et al., 2009), and fMRI (Schabus et al., 2007).

On the other hand, later and slower SEs emerged, bilaterally, from

frontal (medial and superior gyri), and parietal (precuneus, infe-

rior parietal lobule). Activation of the medial frontal lobe for

slow spindles was also observed using distributed source mod-

eling (Anderer et al., 2001) and fMRI (Schabus et al., 2007).

We note here that despite the small sample size in our study (5

subjects), our source localization yields highly significant activity

with remarkable concordance with the literature.

In addition, it was reported that frontal activity linked to

slow spindles shows fair inter-subject variability both at the

sensors (Doran, 2003) and the sources level (Anderer et al.,

2001), thus group analyses would tend to dampen activity in this

region. Inter-subject variability could also be explained by lower

Signal to Noise Ratio (SNR) for signals generated by deep/mesial

sources, which impacts on the performance of any sources local-

izer (Hämäläinen and Ilmoniemi, 1994). The significant group

activation in medial frontal gyrus could thus be explained by

higher resistance of ridge-based source localization to lower SNR

(Zerouali et al., 2013).

NEW INSIGHTS FROM FUNCTIONAL CONNECTIVITY

Sources of synchrony: connectivity

As discussed in Section Group-Level Synchronous Networks,

short-range connectivity is assessed using pair-wise synchrony

within parcels (3,053,790 pairs in total) while long-range connec-

tivity was defined as pair-wise synchrony among regions (3828

pairs). We observe that short-range spindle synchrony (99.9%

of all cortical pairwise associations) was significantly higher for

earlier than for later SEs, while the reverse was true for long-

range synchrony (higher for later SEs). This observation supports

the view that short- and long-range synchronies are somewhat

antagonistic. Indeed, short-range synchrony must be weak for a

network to synchronize massively among long-range distances

(Langheim et al., 2006) and strong short-range synchrony, such

as during slow wave sleep, prevents TMS-induced electrical waves

from propagating and reaching far cortical targets (Massimini

et al., 2005). We however note here that our values of short-

range synchrony are corrupted by current leakage during source

reconstruction. Indeed, due to the ill-posed nature of the sources

imaging inverse problem, source extension is usually overesti-

mated, thus creating artificially high PLV values (Schoffelen and

Gross, 2009; Hillebrand et al., 2012).

Our most important result is that, regardless of the timing of

frequency-locking (early vs. late SEs), we observed strong fronto-

temporal connectivity, bilaterally. However, inter-hemispheric

connectivity was weak during early SEs but was significantly

strengthened during later SEs. Also, although highly significant,

the quantitative variations in long-range functional connectivity

are weak (�PLV = 0.03). In our work, a 6% (�PLV/PLVearly)

increase in global synchronization level of the cortex yielded a

200% [(99 − 31)/31] increase in the number of significant long-

range connections. This is an interesting observation since it

supports the view that the reinforcement of long-range connec-

tions of the functional networks during spindles is a low-cost

mechanism. Cost-efficiency is an important feature of small-

world networks, such as brain networks, which optimize the

balance between local and long-range connectivity in order to

minimize wiring cost while preserving efficient information flow

(Bassett and Bullmore, 2006). It is worth to mention that the

null-hypothesis models the synchrony among uncoupled oscil-

lators with similar frequency contents (due to the narrow-band

spectrum as displayed in Figure 5). It has been computed by shuf-

fling the time series in sources space, separately in each condition.
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Alternatively, we could have modeled the null hypothesis as asyn-

chronous events at the sensors level. This could have been done by

shuffling the ridge masks among spindles in the data space. On a

qualitative basis, we observe that both approaches yield equivalent

thresholds, thus similar connectivity graphs. In addition, it would

be of interest to compare the connectivity changes highlighted

by our statistical thresholding of connectivity matrices to other

dimension-reduction strategies, such as minimum spanning trees

(Tewarie et al., 2014).

Taken together, our results suggest that functional connectiv-

ity undergoes important changes during spindles, evolving from

a pattern of short-range and intra-hemispheric connections to

more long-range and inter-hemispheric connections. This tran-

sition from local to global networks during spindles is one of the

most important new discoveries from our work.

Sources of synchrony: dynamics

Most spindles started with a faster oscillation that decelerated to a

slower oscillation at the end of the spindle. This suggests that fast

and slow stages of spindles are two manifestations of the same

oscillator, which we view as a neural system endowed with func-

tional capabilities, that varies in frequency over a dynamic range.

The fast/slow spindle classification thus may result solely from the

relative durations of the fast and slow regimes.

One puzzling observation is that early SEs can be either fast

or, although infrequently, slow and the reverse is true for late SEs.

We thus asked what is the fundamental property underlying the

two classes of spindles, timing or frequency? We found that, for

both early and late synchrony, cortical power has a consistent

distribution regardless of frequency. On the other hand, func-

tional connectivity patterns are inconsistent with respect to either

timing or frequency alone, early slow and late fast synchrony

being much reduced compared to the early fast and late slow

synchrony.

It is noteworthy that we observe a link between the fre-

quency at which the functional network oscillates and its spatial

extent. Indeed, we showed that early SEs, which are charac-

terized by a high frequency (>13 Hz), involve lower large-scale

connectivity than late SEs, which are characterized by a lower

frequency (<13 Hz). Despite a small frequency range, this result

is consistent with evidence suggesting that fast rhythms (i.e.,

gamma) support local synchrony among neurons within a cor-

tical patch while slower rhythms (i.e., beta, alpha, theta) support

distant synchrony (von Stein and Sarnthein, 2000). The coupling

mechanism between frequency and spatial extent was shown to

rely on the firing properties of interneurons in a mathemati-

cal model of coupled networks. Indeed, a qualitative change in

interneuron firing (spike doublet) was shown to cause a switch

in oscillating frequency from gamma to beta range (Ermentrout

and Kopell, 1998). Interestingly, using similar model, it was

shown that quantitative changes in the level of self-inhibition

of interneurons could tune the oscillating frequency within the

lower beta range (12–20 Hz, Kopell et al., 2000). Accordingly,

we can hypothesize that, during the time course of a spindle,

the levels of self-inhibition of interneurons of the thalamo-

cortical network increase, thus causing the oscillation frequency

to slow down.

In the light of previous findings, our results show that,

although frequency does not impact on the sources involved

in synchrony, the connectivity of the network is certainly

dependent on appropriate time-frequency dynamics that

might be modulated through self-inhibitory properties of

interneurons.

Implications for studies on the functional role of spindles

The implication of spindles in the consolidation of memory

has been suggested by a wealth of studies and is now widely

accepted as unequivocal (Walker and Stickgold, 2006). Procedural

learning and declarative memory are associated to spindle den-

sity and sigma power (Morin et al., 2008; Schabus et al., 2007;

Tamaki et al., 2009; Barakat et al., 2011; Fogel et al., 2012).

Generators of the oscillatory regime and functional connectiv-

ity underlying early and late synchrony may underlie the role

of spindles in brain plasticity. Future research should investi-

gate how overnight procedural and declarative memory consol-

idation would influence generators and functional connectivity

of early and late spindle synchrony. This research should also

be performed in an older population, which not only shows

reduced spindle density, but also reduced spindle amplitude,

duration, and a trend for faster spindle mean frequency. Age-

related difference in overnight memory consolidation (Spencer

et al., 2007; Aly and Moscovitch, 2010; Wilson et al., 2012) may

be linked to modifications in functional connectivity of spindle

synchrony.

CONCLUSION

In this paper, we studied sleep spindles as a sequence of transient

synchronous events using MEG recordings. The methodology we

developed targets specifically cortical synchronous oscillations.

It involves a non-linear filtering of MEG signals using wavelet

ridges, yielding ridge signals on the sensors that embed the syn-

chronous component buried in MEG recordings. Our approach

is endowed with a high sensitivity to spindle activity, since syn-

chrony can be detected regardless of energy, and high specificity

due to a controlled selection of synchronous events. We were thus

able to extract statistically robust patterns of functional connec-

tivity despite having tested only five participants. We were able to

show that functional connectivity undergoes dynamical changes

with respect to time-frequency features of the spindles. Future

research will focus on the effect of aging and learning on such

functional connectivity.
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Supplementary Figure 1 | Superimposition of the real part of the ridge

signal with the original signal of the Figure 1.

Supplementary Figure 2 | Example of FDR statistical thresholding of PLVs

distribution. The blue and red curves represent the distributions of PLVS

during a SE and during a baseline period, respectively. The threshold

(vertical dashed line) is set such that the ratio between the suprathreshold

area under the red curve and the suprathreshold area under the blue

curve is equal to an arbitrary value. We chose to set the FDR threshold at

5%, which amounts to tolerate 5% false positives.

Supplementary Figure 3 | Activation maps associated with early (upper

left) and late (upper right) SEs. The maps are displayed with Otsu’s

threshold for easier visual comparison.

Supplementary Figure 4 | Unthresholded activation maps associated with

each of the 4 categories of SEs. Normalization and color code are the same

as Figure 7.

Supplementary Figure 5 | Cortical parcels used in the computation of

large-scale functional connectivity. Parcels are grossly derived from the

Tzourio-Mazoyer atlas and registered with the MNI template. Color-coding

indicates brain lobes: frontal (red), parietal (blue), temporal (cyan), medial

(green), and occipital (orange).

Supplementary Figure 6 | Connectivity profile associated with early (left)

and late (right) SEs. Inter-region synchrony is depicted with curved lines

linking two nodes. Color coding and statistical thresholds are the same as

in Figure 9.

Supplementary Figure 7 | Connectivity profiles associated with early

(upper row) and late (bottom row) SEs for each subject. No statistical

threshold was computed on these profiles since subject-based analysis

suffers low degrees of freedom; all links displayed reflect PLV values

overs 0.9.

Supplementary Figure 8 | Morse wavelet parameterized with β = 4 and

γ = 4 . (A) Wavelet representation in the time domain. The thin black and

dashed lines represent respectively the real and imaginary parts of the

complex wavelet and the thick line represents its envelope. (B)

Representation of the wavelet in the Fourier domain over the positive part

of its spectrum.
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