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Abstract

We study the two-sided exit problem of a time-homogeneous diffusion process with
tax payments of loss-carry-forward type and obtain explicit formulae for the Laplace
transforms associated with the two-sided exit problem. The expected present value of
tax payments until default, the two-sided exit probabilities, and, hence, the nondefault
probability with the default threshold equal to the lower bound are solved as immediate
corollaries. A sufficient and necessary condition for the tax identity in ruin theory is
discovered.
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1. Introduction

We are interested in the two-sided exit problem of a time-homogeneous diffusion process
with tax payments. Suppose that the value of a firm before taxation is modeled by a time-
homogeneous diffusion process X = {Xt, t ≥ 0}, defined on a filtered probability space
{�, {Ft , t ≥ 0}, P}, with dynamics

dXt = µ(Xt) dt + σ(Xt ) dWt, t ≥ 0, (1.1)

where X0 = x0 is the initial value, {Wt, t ≥ 0} is a standard Brownian motion, and µ(·)
and σ(·) > 0 are two measurable functions on I , a relevant interval for the firm value. As
usual, assume that µ(·) and σ(·) satisfy the conditions of the existence and uniqueness theorem
for a stochastic differential equation; namely, there exists a constant K > 0 such that, for all
x1, x2 ∈ I ,

|µ(x1)−µ(x2)|+ |σ(x1)−σ(x2)| ≤ K|x1 −x2|, µ2(x1)+σ 2(x1) ≤ K2(1+x2
1 ). (1.2)

Then the unique solution of (1.1) possesses the strong Markov property. See Gı̄hman and
Skorohod (1972, pp. 40, 107).
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Recently, ruin problems with tax have become an appealing research topic. Albrecher and
Hipp (2007) first introduced tax payments at a constant rate at profitable times to the compound
Poisson risk model and established a charming tax identity for the nonruin probability. Later,
Albrecher et al. (2009) found a simple proof using downward excursions and extended the
study to a value-dependent tax rate. Further extensions to the Lévy framework were done by
Albrecher et al. (2008), Kyprianou and Zhou (2009), and Renaud (2009), among others. See
also Hao and Tang (2009) for the study in the Lévy framework but under periodic taxation.
To date, there has been little study beyond the Lévy framework, with difficulty mainly in the
two-sided exit problem.

Following this new trend of ruin theory, we introduce a value-dependent tax rate to the
time-homogeneous diffusion model (1.1). More precisely, whenever the process X coincides
with its running maximum MX, defined by MX

t = sup0≤τ≤t Xτ , t ≥ 0, the firm pays tax at rate
γ (MX

t ), where γ (·) : [x0, ∞) → [0, 1) is a measurable function. This is the so-called loss-
carry-forward taxation. It is easy to understand that the value process after taxation satisfies

dUt = dXt − γ (MX
t ) dMX

t , t ≥ 0, (1.3)

with U0 = X0 = x0.
We study the two-sided exit problem of the value process U . Throughout the paper, let

a < x0 < b. (1.4)

The lower bound a represents the default threshold, so the firm defaults whenever its value is
below a. In particular, the threshold a is set to 0 in ruin theory. For a real number x, introduce
the first hitting times of X and U respectively as

T X(x) = inf{t ≥ 0 : Xt = x} and T U(x) = inf{t ≥ 0 : Ut = x},
where inf ∅ = ∞ by convention. In particular, T U(a) stands for the time of default with tax.
Our main goal is to solve the Laplace transforms associated with the two-sided exit problem:

Ex0 [e−λT U (b); T U(b) < T U(a)] and Ex0 [e−λT U (a); T U(a) < T U(b)].
Here and throughout the paper, for ease of notation, we write Ex0 [·] = E[· | X0 = U0 = x0] for
the conditional expectation, Px0{·} for the corresponding probability, and Ex0 [·; C] = Ex0 [·1C]
with 1C denoting the indicator function of a set C ⊂ �. Our idea of the proof of the main result
stems from the work of Lehoczky (1977). As corollaries, we study the expected present value
of tax payments until default and the two-sided exit probabilities. In particular, we examine
the tax identity in the current situation.

The rest of this paper consists of two sections. In Section 2 we present our main result and
its corollaries, and in Section 3 we prove these results.

2. Main results and related discussions

2.1. Preliminaries on time-homogeneous diffusion processes

The two-sided exit problem for the diffusion process X has been well studied in the literature.
The exit probabilities from the interval [a, b] can be expressed in terms of the function

G(y) = exp

{
−

∫ y 2µ(x)

σ 2(x)
dx

}
, y ∈ I.
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Hereafter, the interval I is specified to I = [a, b] and the lower bound of the integral above
can be specified to any point in the interval [a, b]. More precisely, under (1.2), it is well known
that

Px0{T X(b) < T X(a)} =
∫ x0
a

G(y) dy∫ b

a
G(y) dy

and Px0{T X(a) < T X(b)} =
∫ b

x0
G(y) dy∫ b

a
G(y) dy

; (2.1)

see, e.g. Gı̄hman and Skorohod (1972, p. 110) or Klebaner (2005, Section 6.4). The nondefault
probability of X follows immediately by letting b ↑ ∞ in the first relation in (2.1):

Px0{T X(a) = ∞} =
∫ x0
a

G(y) dy∫ ∞
a

G(y) dy
. (2.2)

Note that if
∫ ∞

G(y) dy = ∞ then Px0{T X(a) = ∞} = 0 for all x0 ≥ a.
The Laplace transforms of T X(a) and T X(b) associated with the two-sided exit problem

for a diffusion process X were first solved by Darling and Siegert (1953). Suppose that g−,λ(·)
and g+,λ(·) are two independent, positive, and convex solutions of the equation

1
2σ 2(x)g′′(x) + µ(x)g′(x) = λg(x), λ ≥ 0, (2.3)

with g−,λ(·) decreasing and g+,λ(·) increasing. For many particular diffusions of interest, the
differential equation (2.3) yields explicit expressions for g−,λ(·) and g+,λ(·); see Borodin and
Salminen (2002). Define

fλ(y, z) = g−,λ(y)g+,λ(z) − g−,λ(z)g+,λ(y) and wλ(y, z) = ∂

∂z
fλ(y, z). (2.4)

Note that the function fλ(y, z) is strictly decreasing in y and strictly increasing in z. Hence,
fλ(y, z) = 0 if and only if y = z. By the continuous dependence theorem,

f0(y, z) = lim
λ↓0

fλ(y, z) =
∫ z

y

G(x) dx and w0(y, z) = lim
λ↓0

wλ(y, z) = G(z). (2.5)

Lemma 2.1. (Theorem 3.2 of Darling and Siegert (1953).) For a < x0 < b and λ ≥ 0, we
have

Ex0 [e−λT X(b); T X(b) < T X(a)] = fλ(a, x0)

fλ(a, b)
(2.6)

and

Ex0 [e−λT X(a); T X(a) < T X(b)] = fλ(x0, b)

fλ(a, b)
. (2.7)

When λ = 0, by (2.5), the two relations in Lemma 2.1 are reduced to those in (2.1).

2.2. The main result

Recall the initial value x0, the lower boundary a, and the upper boundary b as specified by
(1.4). Following Kyprianou and Zhou (2009), we define

γ̄ (x) = x −
∫ x

x0

γ (z) dz = x0 +
∫ x

x0

(1 − γ (z)) dz, x ≥ x0,

which is strictly increasing and continuous in x with γ̄ (x0) = x0. Thus, its inverse function
γ̄ −1(·) is well defined on [x0, γ̄ (∞)). Note that both x−γ̄ (x) and γ̄ −1(x)−x are nondecreasing
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and continuous functions. Trivially, γ̄ (∞) = ∞ if we assume that∫ ∞

x0

(1 − γ (z)) dz = ∞. (2.8)

As before, denote by MU
t = sup0≤τ≤t Uτ , t ≥ 0, the running maximum of U . In terms of the

function γ̄ (·), we can rewrite the process U in (1.3) as

Ut = Xt − MX
t + γ̄ (MX

t ), t ≥ 0. (2.9)

As shown in Lemma 2.1 of Kyprianou and Zhou (2009), we have

MU
t = MX

t −
∫ t

0
γ (MX

τ ) dMX
τ = γ̄ (MX

t ), t ≥ 0, (2.10)

and, hence, T U(x) = T X(γ̄ −1(x)) for x ≥ x0.
Our main result is the following.

Theorem 2.1. For a < x0 < b and λ > 0, we have

Ex0 [e−λT U (b); T U(b) < T U(a)] = exp

{
−

∫ γ̄ −1(b)

x0

wλ(x − γ̄ (x) + a, x)

fλ(x − γ̄ (x) + a, x)
dx

}
(2.11)

and

Ex0 [e−λT U (a); T U(a) < T U(b)]

=
∫ γ̄ −1(b)

x0

exp

{
−

∫ y

x0

wλ(x − γ̄ (x) + a, x)

fλ(x − γ̄ (x) + a, x)
dx

}
wλ(y, y)

fλ(y − γ̄ (y) + a, y)
dy. (2.12)

The complete proof of Theorem 2.1 is deferred to Section 3.
One can check that Theorem 2.1 agrees with Lemma 2.1 in the case of no taxation, namely,

γ̄ (x) ≡ x. Actually, it is clear that (2.11) is reduced to (2.6) when γ̄ (x) ≡ x. To check that
(2.12) is reduced to (2.7) when γ̄ (x) ≡ x, we use the identity

fλ(a, x0)wλ(b, b) = wλ(x0, b)fλ(a, b) − fλ(x0, b)wλ(a, b)

for all a < x0 < b and λ > 0, which can be verified by (2.4). In addition, by (2.9) we have

T U(a) = inf{t ≥ 0 : Ut ≤ a} = inf{t ≥ 0 : MX
t − Xt ≥ γ̄ (MX

t ) − a}. (2.13)

Therefore, under (2.8), our relation (2.12) with b = ∞ agrees with Relation (21) of Lehoczky
(1977) with the function u(·) = γ̄ (·) − a and α = 0.

In the example below we show that, restricted to a Brownian motion and a = 0, our relation
(2.11) coincides with Relation (1.5) of Kyprianou and Zhou (2009).

Example 2.1. Let Xt = µt + σWt be a Brownian motion with positive drift µ and write
µλ = √

µ2 + 2λ for λ > 0. We have

g−,λ(x) = exp

{−µ − µλ

σ 2 x

}
and g+,λ(x) = exp

{−µ + µλ

σ 2 x

}
.

Then it follows that

wλ(y, z)

fλ(y, z)
= ((−µ + µλ)/σ

2) exp{µλ(z − y)/σ 2} + ((µ + µλ)/σ
2) exp{−µλ(z − y)/σ 2}

exp{µλ(z − y)/σ 2} − exp{−µλ(z − y)/σ 2} .
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On the other hand, by inverting a corresponding Laplace transform, the scale function of X as
a spectrally negative Lévy process is

W(λ)(x) = σ 2

µλ

(
exp

{−µ + µλ

σ 2 x

}
− exp

{−µ − µλ

σ 2 x

})
;

see Chapter 8 of Kyprianou (2006) for the definition of W(λ). It follows that

wλ(y, z)

fλ(y, z)
= W(λ)′(y − z)

W(λ)(y − z)
.

Then, by a change of variables, one can easily check that our relation (2.11) with a = 0 agrees
with Relation (1.5) of Kyprianou and Zhou (2009).

As an application of Theorem 2.1, we derive a formula for the expected present value of tax
payments until default. Parallel works in the Lévy framework include Theorem 3.2 ofAlbrecher
et al. (2008), Theorem 1.2 of Kyprianou and Zhou (2009), and Theorem 3.1 of Renaud (2009).

Corollary 2.1. Under (2.8), we have

Ex0

[∫ T U (a)

0
e−λtγ (MX

t ) dMX
t

]
=

∫ ∞

x0

γ (y) exp

{
−

∫ y

x0

wλ(x − γ̄ (x) + a, x)

fλ(x − γ̄ (x) + a, x)
dx

}
dy.

The proof of Corollary 2.1 is deferred to Section 3.

2.3. Two-sided exit probabilities and the tax identity

Letting λ ↓ 0 in Theorem 2.1 and using the convergence in (2.5), we obtain the following
result.

Corollary 2.2. It holds that

Px0{T U(b) < T U(a)} = exp

{
−

∫ γ̄ −1(b)

x0

G(x)∫ x

x−γ̄ (x)+a
G(y) dy

dx

}
(2.14)

and that Px0{T U(a) < T U(b)} = 1 − Px0{T U(b) < T U(a)}.
A separate proof of Corollary 2.2 can be given by going along the same lines of the proof of

Theorem 2.1 with λ = 0. Clearly, in the case of no taxation, namely, γ̄ (x) ≡ x, relation (2.14)
agrees with the first relation in (2.1). Moreover, we point out that relation (2.14) is a special
case of Relation (20) of Lehoczky (1977) with u(·) = γ̄ (·) − a. This is due to the observation
that, by (2.10),

Px0{T U(b) < T U(a)} = Px0{MU
T U (a)

≥ b} = Px0{MX
T U (a)

≥ γ̄ −1(b)}
and relation (2.13).

Letting b ↑ ∞ in (2.14) yields the nondefault probability of U as follows.

Corollary 2.3. Under (2.8), it holds that

Px0{T U(a) = ∞} = exp

{
−

∫ ∞

x0

G(x)∫ x

x−γ̄ (x)+a
G(y) dy

dx

}
. (2.15)
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Tax payments increase default risk, of course, which can be observed by comparing (2.15)
with (2.2). Thus, relation (2.15) provides us with a quantitative understanding of the impact
of tax payments on default risk. In particular, the following example shows that the standard
Black–Scholes model without tax has a positive probability to survive forever while any constant
tax rate, no matter how small it is, will drive the firm to default eventually.

Example 2.2. Consider the geometric Brownian motion

dXt = µXt dt + σXt dWt, t ≥ 0,

where X0 = x0 > 0 is the initial value, and µ and σ are positive constants satisfying ρ =
2µ/σ 2 > 1. In addition, we assume that the default threshold is a > 0. Then, by relation (2.2)
with G(y) = (a/y)ρ for y ≥ a, the nondefault probability without tax is

Px0{T X(a) = ∞} = 1 −
(

a

x0

)ρ−1

> 0.

However, in the presence of a constant tax rate 0 < γ < 1, by (2.15) we have

Px0{T U(a) = ∞} = exp

{
−

∫ ∞

x0

x−ρ∫ x

γ x−γ x0+a
y−ρ dy

dx

}
= 0.

In order to compare our Corollary 2.3 with Theorem 1.1 of Kyprianou and Zhou (2009),
we can use the change of variables x = γ̄ −1(s) to rewrite relation (2.14). In particular, if
γ (·) ≡ γ ∈ [0, 1) is constant then γ̄ (x) = x − γ x + γ x0 and relation (2.14) is reduced to

Px0{T U(b) < T U(a)} = exp

{
−

∫ b

x0

G((s − γ x0)/(1 − γ ))∫ (s−γ x0)/(1−γ )

(γ s−γ x0)/(1−γ )+a G(y) dy
ds

}1/(1−γ )

. (2.16)

As mentioned in Section 1, for the case of a constant tax rate γ , the tax identity

Px0{T U(0) = ∞} = (Px0{T X(0) = ∞})1/(1−γ ) (2.17)

has been established by researchers in various situations within the Lévy framework. However,
relation (2.16) indicates that such an identity does not hold in general within the diffusion
framework.

Slightly more generally, we now consider under what condition the identity

Px0{T U(b) < T U(a)} = (Px0{T X(b) < T X(a)})1/(1−γ ) (2.18)

holds. Interestingly, the answer is that µ(·)/σ 2(·) has to be constant.

Corollary 2.4. Consider constant tax rates.

1. For arbitrarily fixed x0 and a with a < x0, relation (2.18) holds for all b > x0 and
0 ≤ γ < 1 if and only if µ(x)/σ 2(x) is constant for x ≥ a.

2. For arbitrarily fixed a and b with a < b, relation (2.18) holds for all a < x0 < b and
0 ≤ γ < 1 if and only if µ(x)/σ 2(x) is constant for a ≤ x ≤ b.

The proof of Corollary 2.4 is deferred to Section 3. By letting b ↑ ∞ and a = 0 in part 2
of Corollary 2.4 and going along the same lines of its proof, we obtain the following result.
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Corollary 2.5. Consider constant tax rates, and assume that (2.8) holds and that
∫ ∞

G(y) dy <

∞. Then relation (2.17) holds for all 0 < x0 < ∞ and 0 ≤ γ < 1 if and only if µ(x)/σ 2(x)

is constant for x ≥ 0.

The condition
∫ ∞

G(y) dy < ∞ in Corollary 2.5 is necessary; otherwise, the probability
P{T X(0) = ∞} is equal to 0 and relation (2.17) becomes trivial. Note that the square-root
process with dynamics

dXt = µXt dt + σ
√

Xt dWt, t ≥ 0,

which is widely used in finance, satisfies the condition that µ(·)/σ 2(·) is constant in
Corollaries 2.4 and 2.5.

Corollaries 2.4 and 2.5 confirm that some intrinsic properties of a Brownian motion can often
be inherited by a time-homogeneous diffusion process with constant µ(·)/σ 2(·). A similar
implication can be found in Lehoczky (1977). Relation (5) therein gives the distribution of the
running maximum of a time-homogeneous diffusion process at the first time it falls a specified
amount below its current maximum. Lehoczky (1977) observed that if µ(·)/σ 2(·) is constant
then this result agrees with that for a Brownian motion.

3. Proofs

Clearly, in order for U to hit b before a, for every s ∈ [x0, b), after T U(s) the process U

must enter (s, ∞) before it hits a. By relations (2.9) and (2.10), this fact can be restated in
terms of X as follows. After T X(γ̄ −1(s)), the process X must enter (γ̄ −1(s), ∞) before it
hits γ̄ −1(s) − s + a. Thus, the event (T U (b) < T U(a)) necessitates a two-sided exit problem
of X for every s ∈ [x0, b). Based on this intuition, we establish lower and upper discrete
approximations for the event (T U (b) < T U(a)) in the following.

Lemma 3.1. Let x0 = s0 < s1 < · · · < sn = b form a partition of the interval [x0, b], n ∈ N.
Then, almost surely,

n⋂
i=1

Ai ⊂ (T U (b) < T U(a)) ⊂
n⋂

i=1

Bi, (3.1)

where each Ai denotes the event that, after T X(γ̄ −1(si−1)), the process X hits γ̄ −1(si) before
γ̄ −1(si) − si + a while each Bi denotes the event that, after T X(γ̄ −1(si−1)), the process X hits
γ̄ −1(si) before γ̄ −1(si−1) − si−1 + a.

Proof. To prove the first inclusion in (3.1), assume that the path of X is continuous such
that

⋂n
i=1 Ai holds. Arbitrarily choose t ∈ [0, T X(γ̄ −1(b))] and suppose that t falls into the

interval [T X(γ̄ −1(si−1)), T
X(γ̄ −1(si))] for some i = 1, . . . , n. Then MX

t ≤ γ̄ −1(si) and, by
relation (2.9), the monotonicity of s − γ̄ (s), and the description of Ai , we have

Ut = Xt − (MX
t − γ̄ (MX

t )) ≥ Xt − (γ̄ −1(si) − γ̄ (γ̄ −1(si))) > a.

To summarize, Ut > a for all t ∈ [0, T X(γ̄ −1(b))]. Hence, T U(a) > T X(γ̄ −1(b)) = T U(b).
To prove the second inclusion in (3.1), assume by contradiction that there exists some

i = 1, . . . , n such that, after T X(γ̄ −1(si−1)), the path of X hits γ̄ −1(si−1) − si−1 + a

before γ̄ −1(si). Then at the moment of hitting γ̄ −1(si−1) − si−1 + a, by relation (2.9), the
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monotonicity of s − γ̄ (s), and MX
t ≥ γ̄ −1(si−1), we have

Ut = Xt − (MX
t − γ̄ (MX

t )) ≤ (γ̄ −1(si−1) − si−1 + a) − (γ̄ −1(si−1) − γ̄ (γ̄ −1(si−1))) = a,

which contradicts T U(b) < T U(a).

Proof of relation (2.11). Let {sn,i , i = 0, . . . , mn}, n ∈ N, constitute a sequence of
increasing partitions of the interval [x0, b] with x0 = sn,0 < sn,1 < · · · < sn,mn = b and
the maximum length of subintervals 	n = max1≤i≤mn(sn,i − sn,i−1) ↓ 0 as n → ∞. By
Lemma 3.1 we have

Ex0 [e−λT U (b); T U(b) < T U(a)] = Ex0

[ mn∏
i=1

e−λ(T U (sn,i )−T U (sn,i−1)); T U(b) < T U(a)

]

≤ Ex0

[ mn∏
i=1

e−λ(T X(γ̄ −1(sn,i ))−T X(γ̄ −1(sn,i−1)));
mn⋂
i=1

Bn,i

]

= En,

where each Bn,i , the same as in Lemma 3.1, denotes the event that, after T X(γ̄ −1(sn,i−1)), the
process X hits γ̄ −1(sn,i) before γ̄ −1(sn,i−1) − sn,i−1 + a. Furthermore, by the strong Markov
property of X,

En =
mn∏
i=1

Ex0 [e−λT X(γ̄ −1(sn,i ));

T X(γ̄ −1(sn,i)) < T X(γ̄ −1(sn,i−1) − sn,i−1 + a) | FT X(γ̄ −1(sn,i−1))
].

For ease of notation, introduce

h(c1, c2 | c0) = 1 − Ex0 [e−λT X(c2); T X(c2) < T X(c1) | FT X(c0)
], c1 < c0 < c2,

so that

En = exp

{ mn∑
i=1

log(1 − h(γ̄ −1(sn,i−1) − sn,i−1 + a, γ̄ −1(sn,i) | γ̄ −1(sn,i−1)))

}
.

It can be shown that all the h(·, · | ·) terms in En are uniformly small. In fact, by relation
(2.6) and the monotonicity of γ̄ −1(s) − s,

h(γ̄ −1(sn,i−1) − sn,i−1 + a, γ̄ −1(sn,i) | γ̄ −1(sn,i−1))

= fλ(γ̄
−1(sn,i−1) − sn,i−1 + a, γ̄ −1(sn,i)) − fλ(γ̄

−1(sn,i−1) − sn,i−1 + a, γ̄ −1(sn,i−1))

fλ(γ̄ −1(sn,i−1) − sn,i−1 + a, γ̄ −1(sn,i))

(3.2)

≤ K max
1≤i≤mn

(γ̄ −1(sn,i) − γ̄ −1(sn,i−1)),

where the constant K is defined as

K = sup(y,z)∈D wλ(y, z)

inf(y,z)∈D fλ(y, z)
< ∞

with D = {(y, z) : a ≤ y ≤ γ̄ −1(b) − b + a, x0 ≤ z ≤ γ̄ −1(b), z − y ≥ x0 − a}. Note that,
over the closed set D, the function fλ(y, z) is strictly positive (hence, away from 0), and that
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the function wλ(y, z) is always continuous and strictly positive. Therefore, by the elementary
relation log(1 − h) ∼ −h as h ↓ 0, it holds for arbitrarily fixed 0 < ε < 1 and all large n that

En ≤ exp

{
−(1 − ε)

mn∑
i=1

h(γ̄ −1(sn,i−1) − sn,i−1 + a, γ̄ −1(sn,i) | γ̄ −1(sn,i−1))

}
.

Since, for all large n and i = 1, . . . , mn, the numerator of (3.2) is bounded below by

(1 − ε)wλ(γ̄
−1(sn,i−1) − sn,i−1 + a, γ̄ −1(sn,i))(γ̄

−1(sn,i) − γ̄ −1(sn,i−1)),

it follows that

lim sup
n→∞

En ≤ lim
n→∞ exp

{
−(1 − ε)2

mn∑
i=1

wλ(γ̄
−1(sn,i−1) − sn,i−1 + a, γ̄ −1(sn,i))

fλ(γ̄ −1(sn,i−1) − sn,i−1 + a, γ̄ −1(sn,i))

× (γ̄ −1(sn,i) − γ̄ −1(sn,i−1))

}

= exp

{
−(1 − ε)2

∫ γ̄ −1(b)

x0

wλ(x − γ̄ (x) + a, x)

fλ(x − γ̄ (x) + a, x)
dx

}
. (3.3)

The last equality in (3.3) is justified by changing each sn,i in the second step to sn,i−1. By the
arbitrariness of ε we have

Ex0 [e−λT U (b); T U(b) < T U(a)] ≤ lim sup
n→∞

En ≤ exp

{
−

∫ γ̄ −1(b)

x0

wλ(x − γ̄ (x) + a, x)

fλ(x − γ̄ (x) + a, x)
dx

}
.

The inequality for the lower bound can be established analogously by using the other part of
Lemma 3.1.

Proof of relation (2.12). We employ the same partition of the interval [x0, b] as in the proof
of relation (2.11). By considering the range of the running maximum of U before hitting a, we
have

Ex0 [e−λT U (a); T U(a) < T U(b)]

=
mn∑
i=1

Ex0 [e−λT U (a); MU
T U (a)

∈ [sn,i−1, sn,i)]

=
mn∑
i=1

Ex0 [e−λ(T U (sn,i−1)+T U (a)−T U (sn,i−1)); T U(sn,i−1) < T U(a) < T U(sn,i)]

=
mn∑
i=1

Ex0 [e−λT U (sn,i−1)Ex0 [e−λT U (a); T U(a) < T U(sn,i) | FT U (sn,i−1)
];

T U(sn,i−1) < T U(a)],
where the last step is due to the fact that FT U (sn,i−1)

= FT X(γ̄ −1(sn,i−1))
and the strong Markov

property of X. Clearly, after T U(sn,i−1), if the process U hits a before sn,i then the process
X hits γ̄ −1(sn,i) − sn,i + a before γ̄ −1(sn,i) because, otherwise, for t ∈ [T U

sn,i−1
, T U

sn,i
], by the

monotonicity of s − γ̄ (s),

Ut = Xt − (MX
t − γ̄ (MX

t )) ≥ Xt − (γ̄ −1(sn,i) − γ̄ (γ̄ −1(sn,i))) > a.
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Hence, conditional on FT X(γ̄ −1(sn,i−1))
,

T X(γ̄ −1(sn,i) − sn,i + a) < T U(a).

Therefore, the inner expectation above is dealt with as

Ex0 [e−λT U (a); T U(a) < T U(sn,i) | FT U (sn,i−1)
]

≤ Ex0 [e−λT X(γ̄ −1(sn,i )−sn,i+a);
T X(γ̄ −1(sn,i) − sn,i + a) < T X(γ̄ −1(sn,i)) | FT X(γ̄ −1(sn,i−1))

]

= fλ(γ̄
−1(sn,i−1), γ̄

−1(sn,i))

fλ(γ̄ −1(sn,i) − sn,i + a, γ̄ −1(sn,i))
,

where the last step is due to relation (2.7). Substituting this into the above and applying relation
(2.11), we obtain

Ex0 [e−λT U (a); T U(a) < T U(b)]

≤
mn∑
i=1

Ex0 [e−λT U (sn,i−1); T U(sn,i−1) < T U(a)] fλ(γ̄
−1(sn,i−1), γ̄

−1(sn,i))

fλ(γ̄ −1(sn,i) − sn,i + a, γ̄ −1(sn,i))

≤
mn∑
i=1

exp

{
−

∫ γ̄ −1(sn,i−1)

x0

wλ(x − γ̄ (x) + a, x)

fλ(x − γ̄ (x) + a, x)
dx

}

× fλ(γ̄
−1(sn,i−1), γ̄

−1(sn,i))

fλ(γ̄ −1(sn,i) − sn,i + a, γ̄ −1(sn,i))
. (3.4)

Since fλ(γ̄
−1(sn,i−1), γ̄

−1(sn,i−1)) = 0 and the function wλ(y, z) is continuous and strictly
positive, for arbitrarily fixed 0 < ε < 1, it holds that, for all large n and i = 1, . . . , mn,

fλ(γ̄
−1(sn,i−1), γ̄

−1(sn,i))

= fλ(γ̄
−1(sn,i−1), γ̄

−1(sn,i)) − fλ(γ̄
−1(sn,i−1), γ̄

−1(sn,i−1))

≤ (1 + ε)wλ(γ̄
−1(sn,i−1), γ̄

−1(sn,i−1))(γ̄
−1(sn,i) − γ̄ −1(sn,i−1)). (3.5)

Substituting (3.5) into (3.4), changing each sn,i in (3.4) to sn,i−1 based on the same reasoning
as in deriving (3.3), and letting n → ∞, we obtain

Ex0 [e−λT U (a); T U(a) < T U(b)]

≤ (1 + ε)

∫ γ̄ −1(b)

x0

exp

{
−

∫ y

x0

wλ(x − γ̄ (x) + a, x)

fλ(x − γ̄ (x) + a, x)
dx

}
wλ(y, y)

fλ(y − γ̄ (y) + a, y)
dy.

By the arbitrariness of ε, the desired upper bound for (2.12) follows.
The corresponding lower bound for (2.12) can be established analogously using the fact

that, after T U(sn,i−1), if the process X hits γ̄ −1(sn,i−1) − sn,i−1 + a before γ̄ −1(sn,i) then the
process U hits a before sn,i .
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Proof of Corollary 2.1. Using the change of variable y = MX
t , we obtain

Ex0

[∫ T U (a)

0
e−λtγ (MX

t ) dMX
t

]
= Ex0

[∫ ∞

x0

γ (y)e−λT X(y)1{y≤MX

T U (a)
} dy

]

= Ex0

[∫ ∞

x0

γ (y)e−λT X(y)1{T X(y)<T U (a)} dy

]

= Ex0

[∫ ∞

x0

γ (y)e−λT U (γ̄ (y))1{T U (γ̄ (y))<T U (a)} dy

]

=
∫ ∞

x0

γ (y)Ex0 [e−λT U (γ̄ (y)); T U(γ̄ (y)) < T U(a)] dy.

Applying relation (2.11) to the right-hand side above yields the desired result.

Proof of Corollary 2.4. Clearly, µ(x)/σ 2(x) is constant for x ≥ a if and only if

G(x) = c1ec2x, x ≥ a,

for some constants c1 > 0 and c2. The sufficiency of both parts can be checked directly. We
now prove the necessity separately for both parts.

Part 1. For arbitrarily fixed x0 and a with a < x0, we assume that relation (2.18) holds for
all b > x0 and 0 ≤ γ < 1. By (2.16), (2.18), and (2.1),

∫ b

x0

G((s − γ x0)/(1 − γ ))∫ (s−γ x0)/(1−γ )

(γ s−γ x0)/(1−γ )+a G(y) dy
ds =

∫ b

x0

G(s)∫ s

a
G(y) dy

ds, b > x0, 0 ≤ γ < 1.

It follows that

G((γ s − γ x0)/(1 − γ ) + s)∫ (γ s−γ x0)/(1−γ )+s

(γ s−γ x0)/(1−γ )+a G(y) dy
= G(s)∫ s

a
G(y) dy

, s > x0, 0 ≤ γ < 1.

Using the change of variable x = (γ s − γ x0)/(1 − γ ) on the left-hand side above, upon some
simple rearrangements we obtain

∫ s

a
G(y) dy

G(s)
G(x + s) =

∫ x+s

x+a

G(y) dy, s > x0, x ≥ 0.

By the continuity of G(·), it follows that
∫ s

a
G(y) dy

G(s)
G(x + s) =

∫ x+s

x+a

G(y) dy, s ≥ x0, x ≥ 0. (3.6)

Taking the derivative with respect to s, upon some simple rearrangements we obtain

G′(x + s)

G(x + s)
= G′(s)

G(s)
, s > x0, x ≥ 0.

This means that G′(·)/G(·) is constant over the interval (x0, ∞). Hence, by the positivity and
continuity of G(·), it must hold that, for some constants c1 > 0 and c2,

G(x) = c1ec2x, x ≥ x0. (3.7)
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Substituting (3.7) into (3.6) with s = x0 yields

ec2x

∫ x0

a

G(y) dy =
∫ x+x0

x+a

G(y) dy, x ≥ 0.

Taking the derivative with respect to x and using (3.7) and a change of variables, we have

G(x) = e−c2a

(
c1ec2x0 − c2

∫ x0

a

G(y) dy

)
ec2x, x ≥ a.

Comparing this with (3.7), we must have e−c2a(c1ec2x0 − c2
∫ x0
a

G(y) dy) = c1 since G(·) is
continuous at x0. One can also easily check this by substitution. Hence, G(x) = c1ec2x is valid
over [a, ∞).

Part 2. For arbitrarily fixed a and b with a < b, we assume that relation (2.18) holds for all
x0 ∈ (a, b) and γ ∈ [0, 1). Similarly as in the proof of part 1, by (2.14), (2.18), and (2.1), we
see that ∫ (b−γ x0)/(1−γ )

x0

G(x)∫ x

γ x−γ x0+a
G(y) dy

dx

= 1

1 − γ

∫ b

x0

G(x)∫ x

a
G(y) dy

dx, x0 ∈ (a, b), γ ∈ [0, 1).

Taking the derivative with respect to x0 and cancelling γ , we obtain, over the range x0 ∈ (a, b)

and γ ∈ (0, 1),
1

1 − γ

G(x0)∫ x0
a

G(y) dy
− 1

1 − γ

G((b − γ x0)/(1 − γ ))∫ (b−γ x0)/(1−γ )

(γ b−γ x0)/(1−γ )+a G(y) dy

=
∫ (b−γ x0)/(1−γ )

x0

G(x)G(γ x − γ x0 + a)

(
∫ x

γ x−γ x0+a
G(y) dy)2

dx.

Letting γ → 0 yields

G(x0)∫ x0
a

G(y) dy
− G(b)∫ b

a
G(y) dy

=
∫ b

x0

G(x)G(a)

(
∫ x

a
G(y) dy)2

dx, x0 ∈ (a, b).

Upon some rearrangements we obtain

G(b) − G(a)∫ b

a
G(y) dy

∫ x0

a

G(y) dy =
∫ x0

a

G′(y) dy, x0 ∈ (a, b),

which implies that
G(b) − G(a)∫ b

a
G(y) dy

G(x) = G′(x), x ∈ (a, b).

Therefore, it must hold that

G(x) = c1ec2x, x ∈ [a, b],
for some constants c1 > 0 and c2 by the positivity and continuity of G(·).
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