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Abstract

Time�indexed formulations for single�machine scheduling problems have received

a lot of attention� because the linear program relaxations provide strong bounds�

Unfortunately� time�indexed formulations have one major disadvantage� their size�

Even for relatively small instances the number of constraints and the number of

variables can be large� In this paper� we discuss how Dantzig�Wolfe decomposition

techniques can be applied to alleviate the di�culties associated with the size of time�

indexed formulations and that the application of these techniques still allows the use

of cut generation techniques�
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� Introduction

Integer programming approaches to single�machine scheduling problems have received a
considerable amount of attention in the past decade� For a survey of the formulations
that have been proposed and investigated� we refer the reader to an excellent survey by
Queyranne and Schulz ������� One of the more powerful formulations� in the sense that
it can model many di	erent types of scheduling problems and that its LP relaxation
provides strong bounds� is based on time�discretization �Sousa ��
�� Sousa and Wolsey
����� Van den Akker� Van Hoesel� and Savelsbergh ����� Van den Akker ����� Van den
Akker� Hurkens� and Savelsbergh ���� Crama and Spieksma ����� Unfortunately� these
time�indexed formulations have one major disadvantage� their size� Even for relatively
small instances the number of constraints and the number of variables can be large� As
a result� solution times and memory requirements may be prohibitive�

Dantzig�Wolfe decomposition is a well�known technique that can be applied to large
scale structured linear programs to reduce the memory requirements and solution times�
The application of Dantzig�Wolfe decomposition techniques results in a reformulation
of the linear program with far fewer constraints but many more variables� However�
the variables are handled implicitly rather than explicitly� Variables are left out of the
linear program because there are too many to handle e�ciently and many of them will
be equal to zero in an optimal solution anyway� Then to check the optimality of the
solution to the linear program� a subproblem� called the pricing problem� is solved to try
to identify variables to enter the basis� If such variables are found� the linear program is
reoptimized�

In this paper� we investigate whether Dantzig�Wolfe decomposition techniques� also
referred to as column generation techniques� can be used to alleviate the di�culties
associated with the size of time�indexed formulations�

Experiments with an LP�based branch�and�bound algorithm based on a time�indexed
formulation for the problem of minimizing the total weighted completion time on a
single�machine subject to release dates have shown that the bounds provided by the
LP relaxation of the time�indexed formulation are strong� However� to obtain a robust
algorithm� i�e�� an algorithm that consistently solves instances in a reasonable amount
of time� it is necessary to enhance the algorithm with cut generation �Van den Akker�
Hurkens� and Savelsbergh ����� Therefore� a major part of the research discussed in
this paper deals with the complexities associated with combining approaches based on
column generation with cut generation� To the best of our knowledge� this is one of the
few studies in which this di�cult but important issue is covered in some detail�

In Section �� we review the time�indexed formulation for single�machine scheduling
problems� In Section �� we present and analyze the reformulation obtained by applying
Dantzig�Wolfe decomposition and discuss its advantages and disadvantages� In Section
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�� we develop a cutting plane algorithm for a large class of single machine scheduling
problems based on the reformulation discussed in Section �� We elaborate on the issues
related to combining column generation and cut generation and present some general
results that are also applicable in other contexts� In Section � we discuss some extensions
and present some concluding remarks�

� A time�indexed formulation for single�machine schedul�

ing problems

A time�indexed formulation is based on time�discretization� i�e�� time is divided into
periods� where period t starts at time t� � and ends at time t� The planning horizon is
denoted by T � which means that we consider the time�periods �� �� � � � � T � We consider
the following time�indexed formulation for single�machine scheduling problems�

min
nX

j��

T�pj��X
t��

cjtxjt

subject to

T�pj��X
t��

xjt � � �j � �� � � � � n�� ���

nX
j��

tX
s�t�pj��

xjs � � �t � �� � � � � T �� ���

xjt � f�� �g �j � �� � � � � n� t � �� � � � � T � pj � ���

where the binary variable xjt for each job j �j � �� � � � � n� and time period t �t �
�� � � � � T � pj � �� indicates whether job j starts in period t �xjt � �� or not �xjt � ���
The assignment constraints ��� state that each job has to be started exactly once� and
the capacity constraints ��� state that the machine can handle at most one job during
any time period�

The major advantage of the time�indexed formulation is that it can be used to model
di	erent single�machine scheduling problems� Di	erent objective functions can be mod�
eled by appropriate choices of cost coe�cients and many constraints� such as deadlines
and release dates� can be handled simply by �xing certain variables to zero� In addition�
and equally important� the LP relaxation of the time�indexed formulation provides a
strong bound� better than bounds provided by other mixed integer programming formu�
lations� The main disadvantage of the time�indexed formulation is its size� there are n�T
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constraints and approximately nT variables� where T is at least
Pn

j�� pj � As a result� for
instances with many jobs or jobs with large processing times� the memory requirements
and the solution times will be large� This was con�rmed by computational experiments
with a branch�and�cut algorithm for the problem of minimizing the total weighted com�
pletion time on a single machine subject release dates �Van den Akker� Hurkens� and
Savelsbergh ����� An analysis of the distribution of the total computation time over
the various components of the branch�and�cut algorithm revealed that most of the time
was spent on solving linear programs� This is not surprising if we recall that the typical
number of simplex iterations is proportional to the number of constraints and that the
number of constraints is n� T �

� Reformulation

We have applied Dantzig�Wolfe decomposition techniques to obtain a reformulation in
which the number of constraints is reduced from n� T to n� � at the expense of many
more variables� However� the huge number of variables does not pose a real problem�
because they can be handled implicitly by means of column generation techniques�

Dantzig�Wolfe decomposition can be applied to linear programs exhibiting the fol�
lowing structure

min cx

Ax � b�

x � X�

where for presentational convenience we assume X is bounded� The fundamental idea
of Dantzig�Wolfe decomposition is that the set X is represented by its extreme points
x�� � � � � xk� Each vector x � X can be represented as

x �
X

��j�k

�jx
j �

X
��j�k

�j � �� �j � �� j � �� ���� k�

This leads to the following reformulation� which is known as the Dantzig�Wolfe master
problem

min
X

��j�k

�cxj��j

X
��j�k

�Axj��j � b

�



X
��j�k

�j � �

�j � � j � �� ���� k�

However� since the reformulation frequently contains a huge number of columns� it may
be necessary to work with restricted versions that contain only a subset of its columns�
and to generate additional columns only as they are needed� Column generation for the
restricted master problem is accomplished by solving the pricing problem

min
x�X

��c� �A�x� ��

where ��� �� is an optimal dual solution to the LP relaxation of the restricted master
problem�

In the next subsections� we investigate how Dantzig�Wolfe can be applied to the
time�indexed formulation for single�machine scheduling problems�

��� The master problem

The LP�relaxation of the time�indexed formulation is given by�

min
nX

j��

T�pj��X
t��

cjtxjt

subject to

T�pj��X
t��

xjt � � �j � �� � � � � n�� ���

nX
j��

tX
s�t�pj��

xjs � � �t � �� � � � � T �� ���

xjt � � �j � �� � � � � n� t � �� � � � � T � pj � ���

We place the assignment constraints ��� in the master problem and the capacity con�
straints ��� plus the nonnegativity constraints in the pricing problem� Therefore� we have
to describe the polytope P de�ned by the capacity constraints plus the nonnegativity
constraints as the convex hull of its extreme points�

The polytope P is described by the system�
A

�I

�
x �

�
�

�

�
�





where A represents the capacity constraints and I the nonnegativity constraints� Observe
that a variable xjs occurs in the capacity constraint for time period t if and only if
s � t � s � pj � �� This means that the column in A corresponding to xjs has a one
in the positions s� � � � � s � pj � �� i�e�� the ones are in consecutive positions� Therefore�
A is an interval matrix� Interval matrices are known to be totally unimodular �see for
example Schrijver ���
���� This implies that the matrix

� A
�I

�
describing the polytope P

is also totally unimodular� Hence� the extreme points of P are integral�
Because the assignment constraints are not part of the description of P � the extreme

points of P represent schedules that satisfy the capacity constraints but not necessarily
the assignment constraints� Since the latter constraints state that each job has to be
started exactly once� the extreme points of P represent schedules in which jobs can be
started more than once� once� or not at all� In the sequel� we will refer to such schedules
as pseudo�schedules�

Let xk �k � �� � � � � K� be the extreme points of P � Any x � P can be written asPK
k�� �kx

k for some nonnegative values �k such that
PK

k�� �k � �� The master problem
can now be expressed as�

min
KX
k��

�
nX

j��

T�pj��X
t��

cjtx
k
jt� �k

subject to

KX
k��

�

T�pj��X
t��

xkjt� �k � � j � �� � � � � n� ��

KX
k��

�k � �� ���

�k � � k � �� � � � � K�

Observe that the coe�cient of �k in the jth row of ��� i�e��
PT�pj��

t�� xkjt� is precisely

the number of times that job j occurs in the pseudo�schedule xk� This means that the
column corresponding to the pseudo�schedule xk indicates how many times each job oc�
curs in this schedule� The cost coe�cient of the variable �k is equal to the cost of the
pseudo�schedule xk�

Example
Consider the following two�job example with p� � � and p� � �� The variable �k corre�
sponding to the pseudo�schedule x�� � x�� � � has cost coe�cient c��� c�� and column
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��� �� ��T� where the one in the last entry stems from the convexity constraint ����

By reformulating the problem in this way� the number of constraints is decreased from
n � T to n � �� On the other hand� the number of variables is signi�cantly increased�
Fortunately� the huge number of variables does not pose a real problem� because they
can be handled implicitly by means of column generation techniques� In a column
generation scheme� most columns are left out of the LP relaxation because there are too
many columns to handle e�ciently and most of them will have their associated variable
equal to zero in an optimal solution anyway� Then to check the optimality of an LP
solution� a subproblem� called the pricing problem� is solved to try to identify columns
to enter the basis� If such columns are found� the LP is reoptimized� The pricing problem
identi�es a column with minimal reduced cost�

��� The pricing problem

The reduced cost of a variable �k is given by

nX
j��

T�pj��X
t��

cjtx
k
jt �

nX
j��

�j�

T�pj��X
t��

xkjt�� ��

where �j denotes the dual variable associated with the jth constraint of ��� and �

denotes the dual variable of constraint ���� This can be rewritten as

nX
j��

T�pj��X
t��

�cjt � �j�x
k
jt � ��

Recall that each extreme point xk represents a pseudo�schedule� i�e�� a schedule in
which the capacity constraints are observed� but in which jobs do not have to start
exactly once� Such pseudo�schedules can be represented by paths in a network N as
follows� The network has a node for each of the time periods �� �� � � � � T � � and two
types of arcs� process arcs and idle time arcs� A process arc corresponds to the use of
the machine� For each job j and each period t� with t � T � pj � �� there is a process
arc from t to t � pj representing that the machine processes job j from time t to time
t � pj � We say that this arc refers to job�start �j� t�� An idle time arc corresponds to
the machine being idle� There is an idle time arc from t to t � � for each time period
t representing that the machine is idle in period t� The path corresponding to pseudo�
schedule xk contains an arc referring to job�start �j� t� for each component xkjt of x

k with

xkjt � � complemented by idle time arcs� From now on we refer to this path as path Pk�
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Note that the correspondence between the extreme points xk and paths in the network
N can also be established directly by observing that the matrix A is a network matrix
with associated network N �

Example �continued�
Figure � depicts the network for our ��job example with p� � �� p� � �� and T � ��

1 2 4 5 6 73

job �

job �

Figure �� The network N for a ��job example�

If we set the length of the arc referring to job�start �j� t� equal to cjt � �j � for all j
and t� and we set the length of all idle time arcs equal to �� then the reduced cost of
the variable �k is precisely the length of path Pk minus the value of dual variable ��
Therefore� solving the pricing problem corresponds to �nding the shortest path in the
network N with arc lengths de�ned as above� Since the network is directed and acyclic�
the shortest path problem� and thus the pricing problem� can be solved in O�nT � time
by dynamic programming�

Observe that the optimal solution of the master problem is given in terms of the
variables �k and that the columns only indicate how many times each job occurs in the
corresponding pseudo�schedule� Therefore� to derive the solution in terms of the original
variables� we have to maintain the pseudo�schedules corresponding to the columns�

Example
Consider the following three�job example with p� � �� p� � �� p� � � and T � 
� Suppose
that the solution in terms of the reformulation has �k � �

� for the columns ��� �� �� ��T

and ��� �� �� ��T� where the �rst column corresponds to the pseudo�schedule x��� � x��� �
x��� � � and the second one to the pseudo�schedule x��� � x��� � x��� � �� In terms of the
original formulation this solution is given by x�� �

�
� � x�� �

�
� � x�� �

�
� � x�� �

�
� � x�� �

�
� �

and x�� �
�
� �

Remark






The optimal LP solution found by the column generation algorithm may or may not
correspond to an extreme point of the original formulation� The LP solution of the above
example is in fact an extreme point� However� if in this example the pseudo�schedule
corresponding to the second column is replaced by x��� � x��� � x��� � �� then the
corresponding LP solution in the original formulation is x�� � �� x�� �

�
� � x�� �

�
� � x�� �

�
� � x�� �

�
� � which is a convex combination of the feasible schedules x�� � x�� � x�� � �

and x�� � x�� � x�� � ��

��� Computational validation

We have tested the performance of the column generation algorithm on the LP�relaxation
of the time�indexed formulation for the problem of minimizing the total weighted com�
pletion time on a single machine subject to release dates on the jobs� We report results
for twelve sets of �ve randomly generated instances with uniformly distributed weights
in ��� ��� and uniformly distributed release dates in ��� ��

Pn
j�� pj �� Half of the instances

have twenty jobs� the others have thirty jobs� The processing times are in ��� pmax�� where
pmax equals � ��� ��� ��� � or ���� We have �ve instances for each combination of n and
pmax� these instances are denoted by Rn�pmax�i� where i is the number of the instance�
Our computational experiments have been conducted with MINT� ����CPLEX ��� and
have been run on a IBM RS����� model ���

The computational results are given in Tables �a and �b� These tables show the
running time of the column generation algorithm �time cg�� the time required to solve the
LP�relaxation of the original formulation by CPLEX� primal simplex method �simplex��
and the time required to solve the LP�relaxation by CPLEX� barrier method �barrier��
All running times are in seconds�

A ��� in the tables indicates that there was insu�cient memory� This only occurred
with CPLEX barrier for instances with �n� pmax� equal to ���� ����� For these instances
the size of the matrix is approximately ���� � ���� and the number of nonzero�s is
approximately ����������

As expected� the computational advantage of the reformulation is apparent for those
problems in which T �

P
��j�n pj is large� i�e�� large values of n and pmax� For both

n � �� and n � ��� the column generation scheme for the reformulation is the fastest for
pmax � ��� The cpu time required by the column generation scheme for the reformulation
appears to grow very slowly with the size of the instance�

Observe also that the number of generated columns seems to be almost independent
of the instance size� Therefore the increases in computation time can be fully contributed
to the increases in execution times of the shortest path algorithm due to the increase in
size of the underlying network�
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� Combining column and cut generation

In the previous section� we have shown that for large instances the LP relaxation of
the time�indexed formulation can be solved e�ciently by a column generation scheme
for a reformulation obtained by applying Dantzig�Wolfe decomposition� Van den Akker�
Hurkens� and Savelsbergh ����� have demonstrated that cutting planes strengthen the
bounds from the time�indexed formulation considerably and that a branch�and�cut al�
gorithm performs signi�cantly better and is more robust than a plain branch�and�bound
algorithm� Therefore� the next natural step is to investigate whether the LP relaxations
that have to be solved after cuts have been added can also be solved e�ciently by column
generation techniques� i�e�� whether column generation can be combined e	ectively with
cut generation�

The main di�culty when combining column and cut generation is that the pricing
problem may become much more complicated after the addition of extra constraints�
since each constraint that is added to the master problem introduces a new dual variable
that must be handled in the pricing problem�

In the �rst part of this section� we show that the LP relaxations that have to be
solved after one or more cuts have been added to the time�indexed formulation can still
be solved by a column generation scheme� We discuss in detail what modi�cations are
necessary in the pricing problem to handle the additional dual variables� In the second
part of this section� we show that� under mild assumptions� the same ideas can be applied
in other contexts where a column generation scheme based on a reformulation obtained
through Dantzig�Wolfe decomposition is combined with the addition of cuts that are
given in terms of the original formulation�

��� Column and cut generation for single machine scheduling problems

Van den Akker� Van Hoesel� and Savelsbergh ������ present a complete characterization
of all facet inducing inequalities with right�hand sides � and � for the time�indexed for�
mulation� Inequalities with right�hand side � are denoted by x�V � � �� which is a short
notation for

P
	j�s
�V xjs � �� Van den Akker� Van Hoesel� Savelsbergh ������ show that

for any facet�inducing inequality V is given by f��� s� j s � �l � p�� u�g � f�j� s� j j ��
�� s � �u� pj � l�g� for some l and u with l � u and some special job� which for presenta�
tional convenience is assumed to be job �� Such an inequality can be represented by the
following diagram�

��



� ��lu� pj

j � f�� � � � � ng

l� p� u

�

Example
Consider a three�job problem with p� � �� p� � �� and p� � �� The LP solution
x�� � x�� � x�� � x���� �

�
� � x�� � � violates the inequality with l � 
 and u � � given

by the diagram below

�
�
�

 � � 
 �
�

�

�

�

�

� � ��

Suppose that we add such an inequality x�V � � � to the master problem� The
reformulated inequality in terms of the variables �k is given by

KX
k��

�
X

	j�s
�V

xkjs��k � ��

The coe�cient of �k is equal to the number of arcs in path Pk � that refer to job�start
�j� t� for �j� t� � V �

Now that we have established the structure of the reformulated inequality� two issues
have to be addressed�

� How hard is it to update the columns already present in the restricted master
problem when a �reformulated� inequality is added�

� How hard is it to generate new columns for the restricted master problem after a
�reformulated� inequality is added�

Observe that the number of arcs in path Pk that refer to job�starts in V is readily
determined� Therefore� it is easy to compute the coe�cient of a reformulated inequality
for the columns already present in the restricted master problem�

After a facet inducing inequality x�V � � � has been added� the master problem
becomes�

min
KX
k��

�
nX

j��

T�pj��X
t��

cjtx
k
jt� �k

��



subject to

KX
k��

�

T�pj��X
t��

xkjt� �k � � �j � �� � � � � n��

KX
k��

�k � ��

KX
k��

�
X

	j�s
�V

xkjs��k � ��

�k � � �k � �� � � � � K��

Denote the dual variable of the additional constraint by �V � The reduced cost of the
variable �k is given by

nX
j��

T�pj��X
t��

cjtx
k
jt �

nX
j��

�j

T�pj��X
t��

xkjt � �� �V
X

	j�s
�V

xkjs�

which can be rewritten asX
	j�s
�V

�cjs � �j � �V �xjs �
X

	j�s
��V

�cjs � �j�xjs � ��

It is easy to see that the pricing problem now corresponds to determining the shortest
path in the network N � where the length of the arc referring to job�start �j� t� equals
cjs � �j � �V if �j� s� � V and cjs � �j if �j� s� 	� V � The length of the idle time arcs
is again equal to zero� In fact� the only di	erence with the original pricing problem is
that �V has been subtracted from the length of the arcs referring to job�starts �j� s� for
�j� s� � V � If several constraints have been added� then the length of the arcs is modi�ed
in the same way for each constraint� Hence� the structure of the pricing problem does
not change� it remains a shortest path problem on a direct acyclic graph� We conclude
that we can combine column generation with the addition of facet inducing inequalities
with right�hand side ��

Summarizing� we have shown that for each reformulated inequality the coe�cient
of �k is equal to the value of the left�hand side of the original inequality when the
pseudo�schedule xk is substituted� Furthermore� the dual variable associated with a
reformulated inequality does not change the structure of the pricing problem� it only
a	ects the objective function coe�cients�

It is not hard to show that facet inducing inequalities with right�hand side � can be
handled similarly�
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��� Column and cut generation for decomposable problems

In this subsection� we show that the above ideas and techniques can also be applied
in other situations in which column generation is used to solve the LP relaxation of
a reformulation obtained through Dantzig�Wolfe decomposition and where inequalities
given in terms of the original formulation are added�

Consider the linear programming problem

min cx

A	�
x � b	�
�

A	�
x � b	�
�

where c � Rn� A	�
 � Rm��n� and b	�
 � Rm� � and where for presentational convenience�
we assume that A	�
x � b	�
 describes a bounded set and hence a polytope� Let xk

�k � �� � � � � K� be the extreme points of this polytope� The master problem obtained
through Dantzig�Wolfe decomposition is as follows�

min
KX
k��

�
nX

j��

cjx
k
j ��k

subject to

KX
k��

�
nX

j��

a
	�

ij x

k
j ��k � b

	�

i �i � �� � � � � m���

kX
k��

�k � ��

�k � � �k � �� � � � � K��

The reduced cost of the variable �k is equal to
nX

j��

cjx
k
j �

m�X
i��

�i�
nX
j��

a
	�

ij x

k
j �� ��

where �i denotes the dual variable of the ith constraint and � the dual variable of the
convexity constraint� The pricing problem can hence be written as

minf
nX

j��

�cj �
m�X
i��

�ia
	�

ij �x

k
j � � j k � �� � � � � Kg�

Theorem � If the algorithm for the solution of the pricing problem does not depend on
the structure of the cost coe�cients� then the addition of a valid inequality dx � d in
terms of the original variables does not complicate the pricing problem�

��



Proof� In terms of the Dantzig�Wolfe reformulation the inequality dx � d is given by

KX
k��

�dxk��k � d�

The coe�cient of �k in the reformulated inequality is equal to the value of the left�hand
side of the original inequality when the extreme point xk is substituted� Observe that
after the addition of this inequality the reduced cost is given by

nX
j��

cjx
k
j �

m�X
i��

�i�
nX
j��

a
	�

ij x

k
j �� �� 
�

nX
j��

djx
k
j ��

where 
 denotes the dual variable of the additional constraint� The pricing problem is
hence given by

minf
nX

j��

�cj �
m�X
i��

�ia
	�

ij � 
dj�x

k
j � � j k � �� � � � � Kg�

Observe that the new pricing problem di	ers from the original pricing problem only
in the objective coe�cients� Hence� if we can solve the pricing problem without using
some special structure of the objective coe�cients� i�e�� we can solve this problem for
arbitrary cj � then the addition of constraints does not complicate the pricing problem� �

The situation is usually more complicated if a valid inequality
PK

k�� gk�k � g in
terms of variables of the reformulation is added� In that case� the pricing problem
becomes

minf
nX

j��

�cj �
m�X
i��

�ia
	�

ij �x

k
j � �� 
gk j k � �� � � � � Kg�

The addition of the inequality results in an additional term 
gk in the cost of each
feasible solution xk to the pricing problem� As there may be no obvious way to transform
the cost gk into costs on the variables xkj � the additional constraint can complicate the
structure of the pricing problem� An example of this situation is the addition of clique
constraints to the set partitioning formulation of the generalized assignment problem
that was discussed by Savelsbergh �������

��� Computational validation

We have tested the performance of a cutting plane algorithm for the problem of minimiz�
ing the total weighted completion time on a single machine subject to release dates on the

��



jobs� in which the linear programs are reformulated using Dantzig�Wolfe decomposition
and subsequently solved by a column generation scheme�

We present results for the problems Rn�pmax�iwith n � ��� �� and pmax � � ��� ��� ���
�� ���� The results are found in Tables �a and �b� They show the number of columns
generated in the solution of the initial LP and the time required to solve this initial LP�
the total number of columns that has been generated during the execution of the cutting
plane algorithm� the total time required by the execution of the cutting plane algorithm�
the number of inequalities that has been added the cutting plane algorithm� and the
number of cut generation rounds�

The most important observation that can be made when analyzing the computational
results� is that after adding a set of cuts the resulting LP seems to be at least as hard to
solve as the original LP� i�e�� about the same number of columns needs to be generated
to solve the extended LP� This is in stark contrast to standard cutting plane algorithms�
where the time to resolve the LP after cuts have been added is typically a fraction of the
time it took to solve the �rst LP� This is a major computational drawback of combined
column and cut generation approaches� since it means that each round of cut generation
results in an LP that has to be solved from scratch�

On a more positive note� we are able to run the cutting plane algorithm on the largest
instances� where this was impossible with the simplex and barrier algorithms�

� Extensions and conclusions

We have shown that it is possible to implement a cutting plane algorithm� in which the
linear programs are reformulated using Dantzig�Wolfe decomposition and subsequently
solved by a column generation scheme� To extend such a cutting plane algorithm to
a branch�and�cut algorithm� i�e� an LP based branch�and�bound algorithm with cut
generation in each node of the search tree� a branching strategy needs to be developed
that does not destroy the structure of the pricing problem� It is not hard to see that any
branching strategy that �xes variables in the original formulation can be used� Suppose
that at some node the variable xjs is �xed at zero� Then we are only allowed to generate
columns that represent a path not containing the arc belonging to the variable xjs� This
can be achieved by omitting this arc from the network N � Suppose� on the other hand�
that this variable is �xed at one� Then all columns that are generated have to correspond
to paths containing the arc belonging to xjs� i�e�� the path determined by the pricing
problem has to contain the arc from s to s � pj corresponding to job j� This means
that the pricing problem decomposes into two subproblems� We have to determine the
shortest path from � to s and the shortest path from s � pj to T � ��

The conclusions that can be drawn from the research described in this paper are ���

�



that Dantzig�Wolfe decomposition techniques can be applied e	ectively to time�indexed
formulations for machine scheduling problems� and ��� that column generation techniques
can be combined with cut generation techniques�
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Table �a� Performance of the column generation� simplex� and barrier algorithms for
the ���job instances�
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Table �b� Performance of the column generation algorithm� CPLEX simplex� and
CPLEX barrier for the ���job instances�
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Table �a� Combining row and column generation for the ���job instances�
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Table �b� Combining row and column generation for the ���job instances�
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