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Abstract

In Van den Akker� Van Hoesel� and Savelsbergh ������� we have studied a time�
indexed formulation for single�machine scheduling problems and have presented a
complete characterization of all facet inducing inequalities with right�hand sides �
and 	 of the convex hull of the monotone extension of the set of feasible schedules

In this paper� we discuss the development of a branch�and�cut algorithm based on
these facet inducing inequalities
 We describe separation algorithms for each class
of these inequalities� and elaborate on various other important components of the
branch�and�cut algorithm� such as branching strategies� cut generation schemes� and
primal heuristics
 We present our computational experiences with the algorithm for
the problem of minimizing the total weighted completion time on a single machine
subject to release dates
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� Introduction

Scheduling problems are concerned with the optimal allocation of resources to a set
of tasks or activities over time� These resources are generally scarce so the allocation

�



inevitably gives rise to competition among tasks that are vying for their use� For an
excellent survey of sequencing and scheduling see Lawler� Lenstra� Rinnooy Kan� and
Shmoys ������� We restrict our attention to single	machine scheduling problems� i�e��
problems in which there is only a single resource� Many single	machine scheduling prob	
lems are naturally formulated as integer programs with variables indexed by pairs 
j� t��
where j denotes a job and t denotes a time period� These formulations are commonly
referred to as time�indexed formulations and have been studied by several researchers

Sousa ������� Sousa and Wolsey ����
�� Crama and Spieksma ������� Van den Akker�
Van Hoesel� and Savelsbergh ������� Van den Akker �������� For a survey of these re	
search activities and of other formulations that have been proposed for single	machine
scheduling problems we refer to Queyranne and Schulz �������
In Van den Akker� Van Hoesel� and Savelsbergh ������� we have studied the polyhe	

dral structure associated with a time	indexed formulation for single	machine scheduling
problems and have presented a complete characterization of all facet inducing inequal	
ities with right	hand sides � and 
 of the convex hull of the monotone extension of the
set of feasible schedules� In this paper� we discuss the development of a branch	and	cut
algorithm based on these facet inducing inequalities and we present our computational
experiences with the algorithm for the problem of minimizing the total weighted comple	
tion times on a single	machine subject to release dates� i�e�� �jrjj

P
wjCj� which is known

to be NP	hard 
Lenstra� Rinnooy Kan� and Brucker �������� Developing a branch	and	
cut algorithm involves a lot of engineering� especially when dealing with large linear
programs and large numbers of cuts� We elaborate on several such engineering aspects
and show that handling them properly is of crucial importance to the overall performance
of the algorithm�
This paper is organized as follows� In the �rst part� we concentrate on the separation

algorithms that have been developed for each class of facet inducing inequalities� In
the second part� we discuss various other important components of a branch	and	cut
algorithm� we investigate di�erent branching strategies and cut generation schemes� and
develop several primal heuristics� We have conducted various computational experiments
and their results are reported throughout the second part�

� A time�indexed formulation for single�machine schedul�

ing problems

The usual setting for nonpreemptive single	machine scheduling problems is as follows� A
set of n jobs has to be scheduled on a single machine� Each job j 
j � �� ���� n� must be
processed without interruption during a period pj � The machine can handle no more than
one job at a time and is continuously available from time zero onwards� We are asked to






�nd an optimal feasible schedule� that is� a set of start times such that the capacity and
availability constraints are met and a given objective function is minimized�
A time	indexed formulation is based on time	discretization� i�e�� time is divided into

periods� where period t starts at time t � � and ends at time t� the planning horizon is
denoted by T � which means that we consider the time	periods �� 
� � � � � T � We consider
the following time	indexed formulation for single	machine scheduling problems�

min
nX

j��

T�pj��X

t��

cjtxjt

subject to

T�pj��X

t��

xjt � � 
j � �� � � � � n�� 
��

nX

j��

tX

s�t�pj��

xjs � � 
t � �� � � � � T �� 

�

xjt � f�� �g 
j � �� � � � � n� t � �� � � � � T � pj � ���

where the binary variable xjt for each job j 
j � �� � � � � n� and time period t 
t �
�� � � � � T � pj � �� indicates whether job j starts in period t 
xjt � �� or not 
xjt � ���
Constraints 
�� state that each job has to be processed exactly once� and constraints 

�
state that the machine handles at most one job during any time period�
In Van den Akker� Van Hoesel� and Savelsbergh ������� we have given a complete

characterization of all facet inducing inequalities with right	hand side � and 
 of the
convex hull of the monotone extension of the set of feasible schedules� These facet induc	
ing inequalities form the basis of the branch	and	cut algorithm discussed in this paper�
Before we can present these facet inducing inequalities with right	hand side � and


� we have to introduce the following notation� The set of indices 
j� t� of variables
with nonzero coe�cients in an inequality is denoted by V � The set of variables with
nonzero coe�cients in an inequality associated with job j de�nes a set of time periods
Vj � fsj
j� s� � V g� If job j is started in period s � Vj � then we say that job j is started
in V � With each set Vj we associate two values

lj � minfsjs� pj � � � Vjg

and

uj � maxfsjs � Vjg�

�



For convenience� let lj � � and uj � �� if Vj � �� Note that if Vj �� �� then lj is the
�rst period in which job j can be �nished if it is started in V � and that uj is the last
period in which job j can be started in V � Furthermore� let l � minflj jj � f�� ���� ngg
and u � maxfuj jj � f�� ���� ngg�
Below� we present four theorems de�ning the structure of all facet inducing inequal	

ities with right	hand sides � and 
� For proofs of these results� we refer the reader to
Van den Akker� Van Hoesel� and Savelsbergh ������� For presentational convenience� we
use x
S� to denote

P
�j�s��S xjs and denote valid inequalities with right	hand side � by

x
V � � � and valid inequalities with right	hand side 
 by x
V �� � 
x
V �� � 
� where
V � V � � V � and V � 	 V � � ��

Theorem � A facet inducing inequality x
V � � � has the following structure�

V� � �l� p�� u��
Vj � �u� pj � l� 
j � f
� ���� ng��


��

where l � l� � u� � u� �

This theorem says that a facet inducing inequality with right	hand side � can be repre	
sented by the following diagram�

� ��lu� pj

j � f
� � � � � ng

l � p� u

�

Next� we study the structure of valid inequalities with right	hand side 
� Consider
a valid inequality x
V �� � 
x
V �� � 
� Clearly� at most two jobs can be started in
V � V � � V �� Let j � f�� ���� ng and s � Vj � It is easy to see that� if job j is started in
period s� at least one of the following three statements is true�

�� It is impossible to start any job in V before job j� and at most one job can be
started in V after job j�


� There exists a job i with i �� j such that job i can be started in V before as well
as after job j and any job j� with j � �� j� i cannot be started in V �

�� At most one job can be started in V before job j� and it is impossible to start any
job in V after job j�

�



Therefore� we can write V � L �M � U � where L 
 V is the set of variables for which
statement 
�� holds� M 
 V is the set of variables for which statement 

� holds� and
U 
 V is the set of variables for which statement 
�� holds� Analogously� we can write
Vj � Lj �Mj � Uj �
For both the sets Lj and the sets Uj � we can show that they have the same structure

for all but two jobs� Therefore� to study the structure of valid inequalities with right	hand
side 
� it su�ces to consider three situations� based on the jobs with the deviant intervals
Lj and Uj � The following three theorems describe the structure of the inequalities in each
of the three situations�

Theorem � A facet inducing inequality x
V �� � 
x
V �� � 
 with l � l� � l� � l��

where l� � minflj j j � f�� � � � � ngg� and u � u� � u� � u�� where u� � maxfuj j j �
f�� � � � � ngg� has the following LMU�structure�

L� � �l� p�� l��� M� � �u
� � p�� l

�� n 
L� � U���
L� � �l� � p�� l�� M� � �maxfu�� l�g � p��minfl�� u�g� n 
L� � U���
Lj � �l

� � pj � l�� Mj � �u� � pj � l�� n 
Lj � Uj��

U� � �u� � p�� u��
U� � �u� p�� u���
Uj � �u� pj � u

�� 
j � f�� � � � � ng��

��

where �u� � pj � l� 
 Lj and �u� pj � l�� 
 Uj for all j � f�� � � � � ng� �

This theorem says that a facet inducing inequality x
V �� � 
x
V �� � 
 with l � l� �
l� � l� and u � u� � u� � u� can be represented by the following diagram�

UML

� ��

l�

u� � pj

minfl�� u�gmaxfu�� l�g � p�

l�u� � p�

u� pj u�

u � p� u�

uu� � p�

ll� � pj

ll� � p�

l�l� p�

j � f�� � � � � ng




�

Theorem � A facet inducing inequality x
V ���
x
V �� � 
 with l � l� � l� � l�� where

l� � minflj j j � f�� � � � � ngg� u � u� � u� � u�� where u� � maxfuj j j � f�� � � � � ngg�

�



and lj � l� or uj � u� for all j � f
� � � � � ng has the following LMU�structure�

L� � �l� p�� l��� M� � ��
L� � �l� � p�� l�� M� � �u� � p�� l

�� n 
L� � U���
L� � �l

� � p�� l�� M� � �u
� � p�� l�� n 
L� � U���

Lj � �l
� � pj � l�� Mj � �u� � pj � l�� n 
Lj � Uj��

U� � �u� � p�� u��
U� � �u� p�� u

���
U� � �u� p�� u���
Uj � �u� pj � u

�� 
j � f�� � � � � ng��


��

where l� � u�� �

This theorem says that a facet inducing inequality x
V �� � 
x
V �� � 
 with l � l� �

l� � l�� u � u� � u� � u�� and lj � l� or uj � u� for all j � f
� � � � � ng can be represented
by the following diagram�

l�u� � pj

l�u� � p�

l�u� � p�

u� pj u�

u� p� u�

u�

u� � p�

ll� � pj

l� � p�

j � f�� � � � � ng

�

UML

� ��

u� p�

u

l

ll� � p�

l�l � p�




�

Theorem � A facet inducing inequality x
V ���
x
V �� � 
 with l � l� and u � u� has
the following LMU�structure� where l� � minflj j j � f�� � � � � ngg and u� � maxfuj j j �
f�� � � � � ngg�

L� � �l� p��minfl�� l
�g�� M� � �u

� � p��minfl
�� u�g� n 
L� � U���

L� � �l� � p�� l�� M� � �maxfu�� l�g � p�� l
�� n 
L� � U���

Lj � �l
� � pj � l�� Mj � ��

U� � �u� p�� u���
U� � �maxfu�� u�g � p�� u��
Uj � �u� pj � u

�� 
j � f�� � � � � ng��

��

where �l� � p�� l� 
 L� and �u� p�� u
�� 
 U�� �

�



Note that l� and u� do not necessarily coincide with l� and u� because it is possible that
l� � l� and u� � u�� This theorem says that a facet inducing inequality x
V ���
x
V �� � 

with l � l� and u � u� can be represented by the following diagram�

minfl�� u�g

maxfu�� l�g � p� maxfu�� u
�g � p�

minfl� � l
�g u�u� p�

l�

UML

� ��

u� � p�

u� pj u�

u

ll� � pj

ll� � p�

l� p�

j � f�� � � � � ng




�

� Separation

The separation algorithms for the four classes of facet inducing inequalities presented
in the previous section are based on the enumeration of a small subset of all possible
inequalities that may cut o� the current fractional point�
To illustrate the underlying idea consider the class of facet inducing inequalities with

right	hand side �� Let �x be the current LP solution and let F be a subset of variables
with �xjt � � for all 
j� t� � F and �x
F � � �� Any facet inducing inequality x
V � � � with
F 
 V cuts o� �x� Obviously� there may be many facet inducing inequalities that cut o�
�x� but it su�ces for the separation algorithm to identify only one of them� Our separation
algorithm exploits this observation and restricts the search for a violated inequality to a
subset of all facet inducing inequalities� The subset of facet inducing inequalities is chosen
such that if there exists a violated inequality� then there exists a violated inequality in
this subset�
Recall that each facet inducing inequality x
V � � � is completely determined by a

job k� which w�l�o�g� is called job �� and values l and u� Our separation algorithm restricts
the search for a violated inequality to the subset of facet inducing inequalities covering F
for which u� l is minimal� minimal in the sense that there does not exist a facet inducing
inequality x
V �� � � with F 
 V � and u� � l� � u � l� i�e�� u � l cannot be decreased
without removing nonzero variables from the inequality�
Consider a three	job problem with p� � �� p� � �� and p� � �� The LP solution

x�� � x�	 � x�
 � x���� �
�
� � x�� � � violates the three inequalities with structure 
��

given by the diagrams below

�



�


�

� � � � � �
�

�

�

�

�

� � �

�


�

� � � � �
�

�

�

�

�

� � �

�


�

� � � � � ��
�

�

�

�

�

� � �


Only the middle diagram represents a facet inducing inequality that covers F and is
minimal with respect to u� l�
It can be shown that a facet inducing inequality x
V � � � that covers F is minimal

with respect to u�l if �x��l�p��� � � and �x�u � �� We refer to this condition as the positive
subset condition� As a consequence of the positive subset condition� all potential violated
minimal facet inducing inequalities x
V � � � can be enumerated in time polynomial in
the number of fractional variables in the current LP solution� whereas the total number
of facet inducing inequalities with right	hand side � is polynomial in the planning horizon
T �
The development of separation algorithms for facet inducing inequalities with right	

hand side 
 are also based on the identi�cation of positive subset conditions�
This section is organized as follows� First� we consider facet inducing inequalities

with right	hand side �� Second� we consider facet inducing inequalities with right	hand
side 
� For each type of inequality� we will study the structure of a minimal violated
facet inducing inequality and identify a positive subset condition� We then proceed by
presenting e�cient separation algorithms that can be derived from the results obtained�
In the sequel� �x denotes the current LP	solution� As we start with the LP	relaxation of
the original formulation� �x satis�es 
�� and 

��

��� A separation algorithm for facet inducing inequalities with right�

hand side �

To identify violated facet inducing inequalities with right	hand side �� we have to identify
violated inequalities with structure 
���

Lemma � If �x violates a facet inducing inequality x
V � � �� then �xjs � � for all


j� s� � V �

Proof� Let x
V � � � be facet inducing� Let �xjs � � for some 
j� s� � V � Since �x satis�es

��� �xjs� � � for any s

� �� s� Because of the validity of x
V � � �� any job j� that is started
in V overlaps job j during some time	period� Hence� if �xj�s� � � for some 
j

�� s�� � V

with j� �� j� then the workload of the machine is greater than � during some time period�
Since inequalities 

� state that during any time period the workload of the machine is
at most �� it follows that �xj�s� � � for all 
j

�� s�� � V with j� �� j� We conclude that then

�



�x
V � � �� i�e�� �x does not violate x
V � � �� �

The following lemma shows that the separation can be restricted to the identi�cation
of inequalities satisfying the positive subset condition which states that �x��l�p��� � �
and �x�u � �� By this condition u� l is minimal in the sense that it cannot be decreased
without removing nonzero variables from the inequality�

Lemma � If �x violates a facet inducing inequality x
V � � �� then we may assume that

�x��l�p��� � � and �x�u � ��

Proof� Let �x violate a facet inducing inequality x
V � � �� Since �x satis�es 

�� we
must have l � u� Suppose �x��l�p��� � �� If we increase l by �� then the variable x��l�p���
is removed from x
V � � � and the variables xj�l�� with j �� � such that u�pj � l�� are
added to this inequality� In this way we obtain another facet inducing inequality� Since
in the original inequality �x��l�p��� � �� �x also violates the new inequality� We conclude
that if �x��l�p��� � �� then we obtain another violated inequality by decreasing u � l�
We may hence assume �x��l�p��� � �� In the same way we can show if �x�u � �� then
we obtain another violated inequality by decreasing u� i�e�� by decreasing u� l� We may
hence also assume that �x�u � �� �

Since the current LP	solution �x satis�es the equations 
��� for a violated inequality
x
V � � � we must have Vj �� � for some j � f
� � � � � ng and hence u � maxfpj j j �
f
� � � � � ngg � l� A facet inducing inequality x
V � � � is determined by a job j and
time periods l and u� It is easy to see that the number of such inequalities is of order
nTpmax� where pmax denotes the maximal processing time� However� the number of in	
equalities satisfying the positive subset condition is bounded by the square of the number
of fractional variables in the current LP	solution and hence the number of inequalities
that have to be checked by the separation algorithm is bounded by this number� The
resulting separation algorithm is as follows�

SepRHS���x


begin
for all jobs j � f�� � � � � ng do
for all l such that � � �xj�l�pj�� � � do
for all u such that l � u � l �maxfpi j i �� jg and � � �xju � � do
if
P

s��l�pj �u�
�xjs �

P
i��j

P
s��u�pi�l�

�xis � �

then violated inequality identi�ed�
end�

�



��� A separation algorithm for facet inducing inequalities with right�
hand side �

Facet inducing inequalities with right	hand side 
 are inequalities with structure 
���

��� or 
��� Because of the complexity of the necessary conditions for an inequality with
one of these structures to be facet inducing 
see Van den Akker �������� the separation
algorithm is not restricted to facet inducing inequalities but considers all nondecompos	
able inequalities with one of these structures� where an inequality x
V �� � 
x
V �� � 

is called nondecomposable if it cannot be written as the sum of two valid inequalities
with right	hand side �� As we have done in the previous subsection� we will study the
characteristics of violated inequalities satisfying the positive subset condition� The study
proceeds in three phases and will be presented in the form of several lemmas� For reasons
of brevity� we have omitted the proofs of these lemmas� The interested reader is referred
to Van den Akker �������

Lemma � If �x violates the inequality x
V ���
x
V �� � 
 and satis�es all valid inequal�

ities x
W � � � with W 
 V � then �xjs � � for all 
j� s� � V �

Recall that the positive subset condition implies that some function of the parameters
is minimal in the sense that it cannot be decreased without removing nonzero variables
from the inequality� As the positive subset condition is derived in three phases� the
minimization of this function also proceeds in three phases� The following lemma shows
that the positive subset conditions that are derived in the �rst phase imply that u � l
is minimal� In the �rst phase� we do not consider the classes of inequalities separately�
If �x violates some inequality x
V �� � 
x
V �� � 
 for which u � l is not minimal� then
the violated inequality that can be obtained from it by minimizing u � l may be of a
di�erent type� For example� if �x violates an inequality with structure 
�� for which u� l

is not minimal� then by minimizing u� l we may obtain an inequality with structure 
���

Lemma � If �x violates the inequality x
V ���
x
V �� � 
 with structure 
��� 
��� or 
��
then we may assume that one of the following holds�

a� x
V �� � 
x
V �� � 
 has structure 
�� or 
��� �x��l�p��� � �� and �x�u � ��

b� x
V �� � 
x
V �� � 
 has structure 
��� �x��l�p��� � �� and �x�u � ��

In the second phase� we distinguish between inequalities with structure 
�� or 
�� and
inequalities with structure 
��� This means that if there exists a violated inequality with
minimal u� l that has structure 
�� or 
��� then the separation algorithm will identify a
violated inequality with one of these structures and the given l and u� The same is true
for inequalities with structure 
���

��



For l� � l� or u� � u� an inequality with structure 
�� also has structure 
��� The
following lemma shows that it is bene�cial for the separation algorithm to check some of
the inequalities with structure 
�� while it is considering inequalities with structure 
���
Therefore� in the separation algorithm these inequalities are also seen as inequalities with
structure 
��� i�e�� we allow structure 
�� with lj � l� and uj � u� for some j � f
� � � � � ng�
The following lemma shows that for a violated inequality with structure 
�� or 
�� the
positive subset condition implies that u��� � l� is minimal� where u��� equals u�� if the
inequality has structure 
�� and equals u� if the inequality has structure 
���

Lemma � If �x violates an inequality x
V ���
x
V �� � 
 with structure 
�� or 
��� then
we may assume that one of the following two holds�

a� x
V �� � 
x
V �� � 
 has structure 
��� �x��l��p��� � �� and �x�u� � ��

b� x
V �� � 
x
V �� � 
 has structure 
�� possibly with lj � l� and uj � u� for some

j � f
� � � � � ng� �x��l��p��� � �� and �x�u� � ��

Consider an inequality with structure 
�� and suppose that l� � l�� It is easy to
see that if we set l� � l�� then the only part of the inequality that may be changed is
the interval M�� Therefore� the inequality remains valid� Therefore� we assume l� � l��
although by this assumption we may drop the condition that l� � minfsjs�p��� � V�g�
Analogously� we assume u� � u��
The following lemma shows that for a violated inequality with structure 
�� the

positive subset condition implies that 
l� � l�� � 
u � u��
� is minimal� where x� �

maxfx� �g� The expression 
l�� l�� stems from the fact that since� by de�nition� l� � l�
l� cannot be decreased if l� � l� Analogously� we �nd the expression 
u� u��

��

Lemma � If �x violates x
V �� � 
x
V �� � 
 with structure 
��� then we may assume

that


a� if l� � l� then �x�l� � ��

b� if u� � u� then �x��u��p��� � �� �

In the third phase� each of the classes of inequalities is considered separately� The
following lemma shows that for inequalities with structure 
�� separation can be restricted
to violated inequalities for which 
l��l����
u��u��� is minimal� where the expressions

l�� l��

� and 
u��u��� stem from the conditions on the parameters stating that l� � l�

and u� � u��

Lemma 	 If �x violates x
V �� � 
x
V �� � 
 with structure 
��� then we may assume

that


a� if l� � l�� then either �x�l� � �� M� �� �� and l� is the maximum of M�� or �x�l� � ��
M� �� �� and l� is the maximum of M� �

��




b� if u� � u�� then either �x�u��p��� � �� M� �� �� and u� � p� � � is the minimum of

M�� or �x�u��p��� � �� M� �� �� and u� � p� � � is the minimum of M�� �

Note that for an inequality x
V �� � 
x
V �� � 
 with structure 
�� with l� � l� we
have thatM� �� � and l� is the maximum ofM� if and only if u

��p� � l� � u��p�� The
other conditions in the above lemma can be rewritten in a similar way� For inequalities
with structures 
�� and 
��� we can derive similar lemmas which show that separation
can be restricted to violated inequalities for which respectively 
l� � l��

� � 
u� � u���

and 
l� � l��
� � 
u� � u��� are minimal�

Based on the previous lemmas� we can derive a separation algorithm for inequalities
x
V �� � 
x
V �� � 
 with structure 
��� 
��� or 
��� As for facet inducing inequalities
with right	hand side �� the algorithm is based on enumeration of fractional variables in
the current solution� We will only present the algorithm that identi�es violated inequal	
ities with structure 
��� The identi�cation of violated inequalities with other structures
proceeds in a similar way� Furthermore� we will not describe the algorithm in complete
detail� but only provide an overview�
In the description of the separation algorithm I�a
j�� j�� l� l�� l

�� u�� u�� u� denotes the
value of the left	hand side of the inequality with structure 
�� for �x with job j� as job ��
job j� as job 
� and the numbers l� l�� l�� u�� u� and u as indicated� The number of such
inequalities is O
n�T �p�max�� If the current solution satis�es all valid inequalities with
right	hand side �� then� by Lemma �� the number of inequalities that are checked by the
separation algorithm is bounded by the sixth power of the number of fractional variables
in the current solution� The separation algorithm is as follows�

SepRHS�a��x

begin
for j� and l such that �xj��l�pj���

� � and such that there exists a u with �xj��u � � and
u � l � pmin do
for j� and l� such that �xj��lj��pj���

� �� j� �� j�� l� � l� and
l� � l �maxfpj j j �� j�g do
for u� such that �xj��u� � �� u� � l�� Uj� �� � if Lj� � �� and such that there exists a u

with �xj��u � �� u�maxfpj j j �� j�g � u� � u� and u � l � pmin do
for u such that �xj��u � �� u�maxfpj j j �� j�g � u� � u� and
u � l � pmin do
if l� � pj� � l fLj� � �g
then
SepRHS	aL	empty��x� j�� j�� l� l�� u�� u
�

else
if u� � u� pj� fUj� � �g
then
SepRHS	aU	empty��x� j�� j�� l� l�� u�� u
�

�




else fLj� �� � and Uj� �� �g
SepRHS	anonempty��x� j�� j�� l� l�� u�� u
�

end�

SepRHS�aL�empty��x� j�� j�� l� l�� u�� u�
begin
u� � l��
for l� � l� and l� � l� such that condition �a
 of Lemma � is satis�ed do
if I�a�j�� j�� l� l�� l

�� u�� u�� u
 � 	
then violated inequality identi�ed�

end�

SepRHS�aU�empty��x� j�� j�� l� l�� u�� u�
begin
l� � u��
for u� � u� and u� � u� such that condition �b
 of Lemma �
is satis�ed do
if I�a�j�� j�� l� l�� l�� u�� u�� u
 � 	
then violated inequality identi�ed�

end�

SepRHS�anonempty��x� j�� j�� l� l�� u�� u�
begin
l� � l�� fMj� � �g
for u� � u� and u� � u� such that �xj��u��p�j��� � �� Mj� �� �� and
u� � pj� � � is the minimum of Mj� do
if I�a�j�� j�� l� l�� l

�� u�� u�� u
 � 	
then violated inequality identi�ed�

u� � u�� fMj� � �g
for l� � l� such that �xj��l� � �� Mj� �� �� and l� is the maximum of Mj� do
if I�a�j�� j�� l� l�� l�� u�� u�� u
 � 	
then violated inequality identi�ed�

for l� � l� and u� � u� such that the conditions from
Lemma � are satis�ed do
if I�a�j�� j�� l� l�� l�� u�� u�� u
 � 	
then violated inequality identi�ed�

end�

� A branch�and�cut algorithm for �jrjj
P
wjCj

Based on the separation algorithms derived in the previous section� we have developed
a branch	and	cut algorithm for the problem of minimizing the sum of the weighted
completion times on a single machine subject to release dates� i�e�� �jrjj

P
wjCj� In

��



this section� we describe the main components of the branch	and	cut algorithm and we
report on its performance� We investigate the quality of the lower bounds obtained by
adding violated inequalities� we discuss possible branching strategies and cut generation
schemes� and we develop several primal heuristics� Finally� we present the computational
results of the two variants that perform best�
The branch	and	cut algorithms have been implemented using MINTO� a Mixed IN	

Teger Optimizer 
Nemhauser� Savelsbergh� and Sigismondi �������� MINTO is a software
system that solves mixed	integer linear programs by a branch	and	bound algorithm with
linear relaxations� It also provides automatic constraint classi�cation� preprocessing� pri	
mal heuristics� and constraint generation� Moreover� the user can enrich the basic algo	
rithm by providing a variety of specialized application functions that can customize
MINTO to achieve maximum e�ciency for a problem class� Our computational experi	
ments have been conducted with MINTO 
���CPLEX ��� and have been run on a IBM
RS����� model ���� In all our experiments MINTO�s preprocessing� primal heuristics�
and cut generation have been deactivated�
For our computational experiments� we have used sets of 
� randomly generated

instances with uniformly distributed parameters� the weights are in ��� ���� the release
dates are in ��� ��

Pn
j�� pj �� and the processing times are in ��� pmax�� We consider sets of


�	job instances with pmax equal to �� ��� and 
�� respectively� and sets of ��	job instances
with pmax equal to � and ��� respectively� Recall that the number of constraints is n�T
and the number of variables is approximately nT � Since T �

Pn
j�� pj � the size of the

linear program increases when the number of jobs increases as well as when the processing
times increase� For the ��	job problems we did not consider pmax � 
�� since the memory
requirements were too large�

��� Quality of the lower bounds

The goal of our �rst experiments was to evaluate the quality of the lower bounds obtained
by just solving the LP	relaxation� by solving the LP relaxation in combination with
facet inducing inequalities with right	hand side �� and by solving the LP	relaxation in
combination with facet inducing inequalities with right	hand side � and 
� The results
for one hundred instances� twenty in each of the sets� are summarized in Table �� Let
ZLB denote a lower bound on the optimal value ZIP of the integer program� The gap
GLB corresponding to this lower bound is de�ned by

GLB �
ZIP � ZLB

ZIP

� �����

Note that this gap is expressed as a percentage� In Table �� we report for each set of
twenty instances corresponding to the same combination 
n� pmax� the following numbers�

��




 Gav
LP and G

max
LP � the average gap after solving the LP	relaxation and the maximum

of these gaps�


 Gav
� and Gmax

� � the average gap after the addition of cuts with right	hand side �
and the maximum of these gaps�


 Gav
� and Gmax

� � the average gap after the addition of cuts with right	hand side �
and 
 and the maximum of these gaps�

LP � 



n� pmax� Gav
LP Gmax

LP Gav
� Gmax

� Gav
� Gmax

�



�� �� ����� ����� ����� ��

� ����� ����



����� ���� ����� ��
�� ����� ����� �����


��
�� ����� ����� ���
� ����� ����� �����

��� �� ����� ����� ����� ����� ���
� �����

������ ����� ����� ���
� ����� ����� ����


Table �� Quality of the bounds�

The results in Table � do not re�ect the fact that many instances were solved to
optimality just by adding cuts� Table 
 provides statistics on the frequency with which
optimal solutions were found� More precisely� we report�


 nLP � the number of instances for which the optimal solution of the LP	relaxation
was integral�


 n�� the total number of instances that were solved to optimality after the addition
of cuts with right	hand side ��


 n�� the total number of instances that were solved to optimality after the addition
of cuts with right	hand side � and 
�

These results show that the bounds obtained are excellent� even the initial linear
relaxation is always within two percent of the optimum� and that both classes of in	
equalities are e�ective in reducing the integrality gap� Table � indicates that for most of
the instances the addition of cuts with right	hand side � closes at least half of the inte	
grality gap and that addition of cuts with right	hand side 
 reduces this gap even further�
From Table 
 we conclude that the addition of cuts with right	hand side 
 signi�cantly
increases the number of instances that are solved without branching�

��




n� pmax� nLP n� n�


�� �� � �
 ��


����� � � ��


��
�� � �� ��

��� �� � � �

������ � � �

Table 
� Number of instances that were solved to optimality�

��� Branching strategies

When the addition of cutting plane fails to solve the problem� we resort to branch	and	
bound� In this section� we discuss three branching strategies that can be used in the
branch	and	cut algorithm and we evaluate their performance� The �rst two strategies
are general branching strategies� in the sense that they can be used for any �	� integer
program� whereas the third strategy exploits the structure of feasible schedules�
General branching strategies for �	� integer programs are based on �xing variables�

either a single variable 
variable dichotomy� or a set of variables 
GUB dichotomy��
We have explored both strategies� In the �rst� we branch on the fractional variable xjt
closest to ���� We set xjt � � on one branch� i�e�� we force job j to start in time period
t� and xjt � � on the other branch� i�e�� we prevent job j from being started in time
period t� In case of ties� we select the variable with the smallest t� In the second� we
branch on the assignment constraint

P
��t�T�pj�� xjt � � for the job j that covers the

largest time interval� i�e�� the job j for which the di�erence between the �rst and last
period with positive xjt is maximum� We set

P
��t�bt�c xjt � � on one branch� i�e� we

force job j to start not later than bt�c� and
P

bt�c�t�T�pj��
xjt � � on the other branch�

i�e�� we force job j to start before bt�c � �� where we have chosen t� to be equal toP
��t�T�pj��
t � ��xjt� the mean start time suggested by the current LP solution� The

second branching scheme has the advantage that it divides the search space more evenly�
which is a desirable characteristic of a branching strategy�
The above branching strategies specify how the current set of feasible solutions is to

be divided into smaller subsets� They do not specify how the subproblem to be solved
next is to be selected� We have considered two selection strategies� depth	�rst search and
best	bound search� Depth	�rst search is usually applied to get 
hopefully good� feasible
solutions fast� experience shows that feasible solutions are more likely to be found deep
in the tree than at nodes near the root� Having a good feasible solution is necessary to
be able to prune nodes and thus to reduce the size of the branch	and	bound tree� Best	

��



bound search is motivated by the observation that to prove optimality the node with
the best bound has to be evaluated� so it may as well be explored �rst� Computational
experiments have revealed that the branching strategies based on variable and GUB
dichotomy work best with best	bound search of the tree�
The positional branching strategy� which is the traditional branching strategy used

in combinatorial algorithms� exploits the structure of feasible schedules and �xes jobs
at a certain position in the schedule� At level d in the branch	and	bound tree the jobs
in positions �� � � � � d � � have already been �xed and some job j is �xed at position d�
Fixing a job j in position d is accomplished by �xing its start time at the maximum of
its release date and the completion time of the 
d� ��th job� Note that this can be done
because the objective function is nondecreasing in the completion times of the jobs� As
a dominance rule� we do not allow a job to be �xed in position d if its release date is so
large that it is possible to complete some other job that has not yet been �xed before
this release date� The subproblems at level d are de�ned by �xing the jobs that have
not yet been �xed at position d� The order in which these subproblems are selected is
determined on the basis of the mean start times suggested by the current LP solution�
i�e�� the jobs are put in nondecreasing order of

P
��t�T�pj�� txjt� This strategy works

best in combination with depth	�rst search of the tree�
In Tables �a and �b� we compare the performance of the di�erent branching strategies

for the two sets of ��	job instances with pmax � � and pmax � ��� Since the majority of
the 
�	job instances were solved to optimality in the root node� we do not report results
for these instances� In the �rst three rows of the tables� we report on the number of
nodes in the branch	and	bound tree� the average number 
nav�� the maximum number

nmax�� and the standard deviation 
�n�� In the last three rows of the table� we report
on the computation time� Several observations can be made based on these results�


����� positional GUB variable
branching dichotomy dichotomy

nav �
��� ���� ������
nmax 
�� 
� ����
�n ����
 ���� �������

tav ���� ���� 
����

tmax 
���� 
���� �������
�t ���� ���� ������

Table �a� Performance of the di�erent branching strategies for n � �� and pmax � ��

��




������ positional GUB variable
branching dichotomy dichotomy

nav 
���� ����� ������
nmax 
�� 
�� 
���
�n ����
 �
��� ������

tav 
��
� ����� ������
tmax ������ ������ �
�����
�t ����� ������ �������

Table �b� Performance of the di�erent branching strategies for n � �� and pmax � ���

First� the branching strategy based on variable dichotomy is clearly inferior to the other
two� Second� GUB branching requires fewer nodes than positional branching� However�
evaluating fewer nodes does not translate into faster solution times� There are two factors
that� in our opinion� contribute to this phenomenon� Positional branching �xes many
more variables which reduces the size of the linear programs that have to be solved� In
addition� in a depth	�rst search strategy consecutive linear programs di�er only slightly�
Consequently the basis of last solved linear program is a good starting basis for the
current linear program� In a best	bound search strategy consecutive linear programs
are likely to di�er considerably� Consequently� the basis of the last solved linear program
does not provide a good starting basis for the current linear program� Furthermore� since
many cuts are generated during the solution process� the basis associated with the basis
associated with the last linear program solved in the parent node does not provide a good
starting basis either� A �nal observation is that there is a high variance in complexity
among the instances� With GUB branching all but one instance are solved in fewer than

� nodes and less than �� seconds� the one di�cult instance solves in a little less than

�� nodes and ��� seconds� To verify whether this is typical behavior� we tested GUB
branching and positional branching on an extended set of �� instance with pmax � ���
The results for this extended set of instances can be found in Table � and show a similar
pattern�
An advantage of the branching strategy based on GUB dichotomy is that it can be

applied for all objective functions
Pn

j��

PT�pj��
t�� cjtxjt� whereas the positional branching

strategy is based on the assumption that it is most favorable to start a job as early
as possible and can only be applied if the objective function is nondecreasing in the
completion times of the jobs�
On the other hand� with the positional branching strategy the total number of nodes

��




������ positional GUB
branching dichotomy

nav ������ 
����
nmax 
��� ���
�n ������ ����


tav ����� �����
tmax ������ ������
�t ������ ��
���

Table �� Performance of the di�erent branching strategies for n � �� and pmax � ���

in the branch	and	bound tree only depends on the number of jobs� whereas for the
branching strategy based on GUB dichotomy the number of nodes depends on the number
of jobs as well as on the planning horizon� hence on the size of the processing times� This
suggests that positional branching may perform better for instances with large processing
times�

��� Cut generation schemes

In this subsection� we study the in�uence of di�erent cut generation schemes on the
performance of the branch	and	cut algorithm� Cut generation schemes try to �nd the
proper balance between the expected increase in performance due to stronger bounds
that result from the addition of cuts and the expected decrease in performance due to
the e�ort required to identify violated cuts and to solve larger and more di�cult linear
programs� Cut generation schemes specify� among other things� when we try to identify
violated inequalities� which of the identi�ed violated inequalities are added� and when
inactive inequalities are deleted�
The experiments of the previous section showed that ��	job instances with pmax � �

are relatively easy� in the sense that their solution requires very few nodes� and that a
large sample of ��	job instances with pmax � �� is necessary to be able to draw reliable
conclusions� Therefore� the remaining experiments have been conducted with a set of ��
randomly generated ��	job instances with pmax � ���
We have investigated various possible cut generation schemes that specify choices

related to which classes of cuts to use and when to use them�

R��T��
 At all nodes� add cuts with right	hand side � and 
�

R��T�
 At the root node� add cuts with right	hand side � and 
� in all other nodes� add

��



cuts with right	hand side ��

R��
 At the root node� add cuts with right	hand side � and 
� in all other nodes� do not
add cuts�

R�T�
 At all nodes� add cuts with right	hand side ��

The performance of these variants is shown in Table �a and �b� We report the per	
formance of these variants with positional branching as well as with GUB branching�
Again� nav and nmax denote the average and maximum number of nodes� and tav and
tmax denote the average and maximum computation time�

R��T�� R��T� R�� R�T�

nav ������ 

���� ������ �

���
nmax 
��� ���� ���� ����
tav ����� ���
� ����
 �����
tmax ������ �
���� ������ ������

Table �a� Cut generation schemes with positional branching�

R��T�� R��T� R�� R�T�

nav 
���� ����
 ������ �����
nmax ��� ���� ���� ����
tav ����� ����� ����� �����
tmax ������ ������ �����
 ����
�

Table �b� Cut generation schemes with GUB branching�

Several observations can be made based on these results� First� the cut generation
scheme R��T��� i�e�� generating cuts with right	hand side � and 
� clearly results in the
fewest number of evaluated nodes� However� evaluating fewer nodes does not translate
into faster solution times� For positional branching� cut generation scheme R�T�� i�e��
generating only cuts with right	hand side �� is much faster than R��T�� even though
it generates considerably more nodes� and for GUB branching cut generation scheme
R�T� is about as fast as R��T�� although it generates more nodes� This is probably
due to the fact that the linear programs that result if cuts with right	hand side 
 are


�



added are more di�cult because they are denser than cuts with right	hand side �� So
far the two best variants of the algorithm are positional branching with cut generation
scheme R�T� and GUB branching with cut generation scheme R��T��� We prefer cut
generation scheme R��T�� over R�T� for GUB branching because it seems to be more
robust in the sense that the maximum number of evaluated nodes and the maximum
computation time over all instances are the smallest� For the remainder� we will restrict
our computational experiments to these two versions�
The cut generation schemes discussed above specify choices related to which classes

of cuts to use and when to use them� We have also considered cut generation schemes
that try to improve the performance by limiting the number of violated inequalities that
will be added to the active linear program� In fact� such a cut generation scheme has
been active during all previous experiments� When MINTO processes a node� it monitors
the changes in the value of the LP solutions from iteration to iteration� If it detects that
the total change in the value of the LP solution in the last three iterations is less than
��� percent� i�e�� ����� times the value of the current LP solution� it forces MINTO to
branch� This feature is incorporated in MINTO to handle the �tailing	o�� e�ect exhibited
by many cutting plane algorithms� Tailing	o� refers to a situation in which for several
consecutive iterations violated inequalities are identi�ed and added to the current linear
program� but the objective function value only marginally improves� In such situations�
it may be more advantageous to branch than to continue generating cuts�
The experiments carried out to evaluate the quality of the bounds� discussed in Sec	

tion ���� revealed that it is impossible to predict the change in objective function value
after the addition of violated inequalities� It frequently happened that the objective func	
tion hardly changed for several iterations before improving signi�cantly� Consequently�
it is very likely that MINTO� with default settings� would sometimes force branching too
soon� To ensure the best possible bound at the root node� we have chosen to deactivate
forced branching in the root node�
To evaluate the e�ect of di�erent forcing strategies on the performance of the al	

gorithms� we have investigated the following three strategies� no forced branching� no
forced branching at the root node but forced branching at all other nodes� and forced
branching throughout the tree� The results are shown in Tables �a and �b� The follow	
ing observation can be made based on these results� First� the strategy that we adopted
works well� Second� the tailing	o� e�ect is much stronger when cuts with right	hand side

 are used�
There are various other ways to limit the number of violated inequalities that will

be added to the active linear program� limit the number of cuts that is added in a
single round of cut generation� limit the number of rounds of cut generations per node
evaluation� and limit the number of nodes at which cut generation takes place 
this is
sometimes referred to as the cut frequency�� All these did not seem to have a signi�cant


�



no forcing root forcing forcing

nav 
���
 
���� ����

nmax ��� ��� ����
tav ������ ����� �����
tmax 
������ ������ ������

Table �a� Forcing strategies with GUB branching�

no forcing root forcing forcing

nav ��
��� �

��� ������
nmax ���� ���� ����
tav ����� ����� �
��

tmax ��
��
 ������ ������

Table �b� Forcing strategies with positional branching�

positive e�ect on the performance of the basic algorithm� In most cases� the performance
of these variants was actually worse�
Finally� we have experimented with cut generation schemes in which inequalities are

deleted when they have been inactive for a number of consecutive iterations� i�e�� the
dual variable associated with the inequality has been � for a number of consecutive
iterations� Again� such a cut generation scheme has been in e�ect during all previous
experiments� To control the size of the active linear program MINTO monitors the
dual variables associated with all the inequalities that have been generated during the
solution process and� if the value of a dual variable has been equal to zero for �fty
consecutive iterations� MINTO will deactivate the corresponding inequality� Deactivating
an inequality means deleting it from the active linear program and storing it in a cut

pool� Every time the active linear program is solved and a new linear programming
solution exists� the inequalities in the cut pool will be inspected to see if any of them are
violated by the current solution� If so� these inequalities will be reactivated� Reactivating
a inequality means adding it to the active formulation and deleting it from the cut pool�
The cut pool has a �xed size and is maintained on a �rst	in	�rst	out basis� i�e�� if the
pool over�ows the inequalities that have been in the pool the longest will be deleted�
As soon as a cut is deleted from the cut pool it can never be reactivated again� Table
� shows the e�ect of di�erent thresholds for deletion 
��� ��� ����� for GUB branching�







A threshold for deletion speci�es the number of consecutive iterations in which the dual
variable associated with a constraint has to be equal to � before it is deactivated� Note
that setting the threshold to ���� for this application is equivalent to no cut deletion� We

�� �� ����
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nmax ��� ��� ���
tav ����� ����� �����
tmax ������ ������ ��
����

Table �� E�ect of di�erent thresholds for cut deletion�

conclude that cut deletion greatly in�uences the computation time and that MINTO�s
default setting is appropriate for our application� We have not performed the same
experiment for positional branching� but it is very likely that our conclusions are also
applicable to positional branching�

��� Primal heuristics

In this subsection� we describe the primal heuristics that have been incorporated in the
branch	and	cut algorithm� The availability of good feasible solutions is important for
various reasons� In case of depth	�rst search 
which we do in case of positional branching�
it may signi�cantly reduce the number of nodes that has to be evaluated� since any node
with a lower bound greater than or equal to the value of the best known solution can be
skipped from further consideration� In case of best	bound search 
which we do in case of
GUB branching� it will not reduce the number of evaluated nodes by much� but it will
reduce the set of unevaluated nodes that has to be kept� which is important for large
integer programs because it reduces the chance of running out of memory� Furthermore�
good feasible solutions are essential for e�ective reduced cost �xing�
We have implemented four primal heuristics� The �rst heuristic is derived from

Smith�s rule 
Smith �������� Smith�s rule solves �jj
P
wjCj� i�e�� the case without re	

lease dates� Smith�s rule states that �jj
P
wjCj is solved by scheduling the jobs in order

of nondecreasing pj�wj ratio� Our �rst heuristic schedules the jobs according to the fol	
lowing rule� at each decision point schedule the available job with the smallest pj�wj

ratio� where the �rst decision point is the smallest release date� and the kth decision
point is either the completion time of the job scheduled in the 
k � ��th position or�
in case there are no jobs available at that time� the smallest release date among the
unscheduled jobs�
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The other three heuristics schedule the jobs according to some ordering based on
the values of the current linear programming solution� We have used the following three
orderings�


 schedule jobs in order of nondecreasing mean start time
PT�pj��

t�� 
t� ��xjt�


 schedule jobs in order of nondecreasing maximum start time argmaxtfxjtg�


 schedule jobs in order of nondecreasing �rst start time argmintfxjt � �g�

In most situations� the ordering based on the mean start time provides the best feasible
solution� However� since these heuristics take very little time we always apply all of them�
Furthermore� note that these heuristics are applied every time that a linear program has
been solved� whereas the �rst heuristic is applied only once�
Let zUB denote an upper bound on the optimal value zIP of the integer program�

The gap GUB corresponding to this upper bound is de�ned by

GUB �
zUB � zIP

zIP
� ����

In Table �a and �b� we report for those ��	job instances that were not solved to optimality
by the initial LP	relaxation the following numbers�


 Gav
ratio and G

max
ratio� the average gap for the �rst heuristic and the maximum of these

gaps�


 Gav
init and Gmax

init � the average gap for the best of the other three heuristics when
applied to the solution of the initial LP relaxation and the maximum of these gaps�


 Gav
root and Gmax

root� the average gap after the root node has been evaluated and the
maximum of these gaps�

Observe that the gap after the root node has been evaluated may di�er for the two
variants we consider� since we do not generate cuts with right	hand side 
 with the
positional branching scheme� The computational results show that the solutions to the

Gav
ratio Gmax

ratio Gav
init Gmax

init Gav
root Gmax

root

���� ����
 ���� ���� ���� ��
�

Table �a� Performance of the primal heuristics when cuts with right	hand side � and 

are added�
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ratio Gmax

ratio Gav
init Gmax

init Gav
root Gmax

root

���� ����
 ���� ���� ���� 
�



Table �b� Performance of the primal heuristics when only cuts with right	hand side �
are added�

LP	relaxations encountered during the solution process provide good starting	points for
obtaining primal solutions� the heuristics based on these fractional solutions provide
much better primal solutions than the �rst heuristic�

��� Overall performance and conclusions

Our �nal experiments aim at assessing the overall quality of the branch	and	cut algorithm
that we have developed� We have tried to do this in three ways� First� we compare the
performance of our branch	and	cut algorithm to that of a commercially available IP
solver� Second� we compare the performance of our algorithm to the performance of other
branch	and	cut algorithms that have been developed by other research groups for the
same or related single	machine scheduling problems� Finally� we compare the performance
of our branch	and	cut algorithm to the performance of combinatorial branch	and	bound
algorithms for the same problem�
In Table �� we present the results of the two variants of our algorithm that perform

best� i�e�� GUB branching plus cuts with right	hand	side � and 
 
GUB�
�� positional
branching plus cuts with right	hand side � 
POS��� as well as the results of the CPLEX
mixed integer optimizer �CPLEX Optimization Inc� ������� For each instance the optimal
value 
ZIP � is given� For the variants GUB�
 and POS� we report on the number of
nodes 
  nds�� the computation time in seconds 
time�� the number of linear programs
that had to be solved 
 lps�� and the number of cuts that has been added 
 cuts��
As CPLEX does not generate cuts� we only report on the number of nodes and the
computation time� CPLEX was allowed to evaluate at most ����� nodes� Consequently�
it did not �nd the optimal value for all instances� Therefore� we give for each instance
the value of the best solution that was found 
ZCP �� Furthermore� �!!!!!� indicates
that CPLEX did not have enough memory� The results show that incorporating problem
structure� in the form of cuts� primal heuristics� and branching strategies results in a
faster and more robust algorithm�
Sousa and Wolsey ����
� developed a branch	and	cut algorithm using the time	

indexed formulation� but with di�erent classes of inequalities and di�erent separation
algorithms� We have only been able to compare our algorithms on a set of � instances�
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GUB�	 POS� CPLEX
ZIP �nds time �lps �cuts �nds time �lps �cuts �nds time ZCP
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Table �� Performance of the variants GUB�
 and POS� and of CPLEX
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Each one is solved at the root node by both algorithms� Therefore� we cannot make any
meaningful comparative statements� Crama and Spieksma ������ developed a branch	
and	cut algorithm for the case in which all processing times are equal� They tested their
algorithm on two classes of problems� The �rst one has randomly generated objective co	
e�cients cjt� The second one has objective coe�cients cjt � wj
t� rj� if rj � t � dj and
cjt �M otherwise� whereM is some large integer� these instances model minimization of
the weighted sum of the completion times subject to release dates and deadlines� where
release dates and deadlines may be violated at large cost� For both problem classes the
performance of the algorithms is comparable� However� their branch	and	cut algorithm
incorporates classes of cuts that have been derived speci�cally for problems with equal
processing times� whereas our algorithm does not�
For the problem �jrjj

P
wjCj � several combinatorial branch	and	bound algorithms

have been developed� i�e�� branch	and	bound algorithms that are not based on linear
programming relaxations� An example is the algorithm of Belouadah� Posner� and Potts
����
�� The lower bounds in their algorithm are based on job	splitting� It turns out that
the number of nodes that has to be evaluated by their algorithm is much larger than the
number of nodes that has to be evaluated by our algorithm� but that their algorithm
requires much less computation time� This indicates that our lower bounds are better�
but that we need much more time to compute them� This is due to the fact that we
have to solve large linear programs� Recall that the size of the linear programs increases�
when the processing times increase� Therefore� their algorithm can handle instances with
larger processing times� However� our branch	and	cut algorithm can easily be applied to
many types of scheduling problems with various objective functions� whereas these com	
binatorial branch	and	bound algorithms are typically designed for one speci�c problem
type�
We conclude that the strength of the presented branch	and	cut algorithm is that it

can be applied successfully to a wide range of single	machine scheduling problems� but
that its weakness is the fact that in its current form it is limited to instances with a
relatively small number of jobs and relatively small processing times� because otherwise
the time to solve the linear programs becomes prohibitive� In a sequel paper 
Van den
Akker� Hurkens� and Savelsbergh �������� we will investigate column generation as a way
of handling this weakness�
Finally� we like to make some general observations� First� the integrality gap� i�e�� the

di�erence between the optimal value of the integer program and the value of the linear
programming relaxation� may not be a reliable indicator of the di�culty of the prob	
lem� The average integrality gap for the most di�cult class of instances we considered

n � ��� pmax � ��� is only ���� percent and the maximum gap is just ���� percent�
However� most of the instances are very hard to solve� Second� developing a successful
branch	and	cut algorithm involves much more than designing and implementing sepa	
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ration algorithms� It also requires the development of appropriate branching schemes�
primal heuristics� and cut generation schemes� The importance of the latter is often
overlooked� For our algorithms the choice of the appropriate cut generation scheme was
crucial to achieving good overall performance�
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