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Abstract 

 
In this paper we introduce a constrained Level Building 
Algorithm (LBA) in order to reduce the search space of a 
Large Vocabulary Handwritten Word Recognition (LVHWR) 
system. A time and a length constraint are introduced to limit 
the number of frames and the number of levels of the LBA 
respectively. A regression model that fits the response 
variables, namely, accuracy and speed, to a non–linear 
function of the constraints is proposed and a statistical 
experimental design technique is employed to analyse the 
effects of the two constraints on the responses. Experimental 
results prove that the inclusion of these constraints improve 
the recognition speed of the LVHWR system without 
changing the recognition rate significantly. 

 
 
1  Introduction 
 
In spite of recent advances in the field of handwriting recognition, few early studies 
have addressed the problem of large vocabulary off–line handwritten word 
recognition [1] [2] [3]. The most frequent simplification has been a pre–selection of 
possible candidate words before the recognition based on other sources of 
knowledge [4]. The majority of works have focused on improving the accuracy of 
small vocabulary systems while the speed is not taken into account. 
   In HMM–based systems, to handle the huge search space and keep search effort as 
small as possible, generally beam search is used together with the Viterbi algorithm. 
Beam search finds locally, i.e. at the current frame, best state hypothesis and discard 



all other state hypotheses that are less probable than the locally best hypothesis by a 
fixed threshold [5]. The conventional LBA does not incorporate any kind of time or 
length constraint. Rabiner and Levinson [7] introduced global duration constraints 
built into the algorithm to limit the duration of the models. 
   In this work, we introduce two constraints to the LBA, one to limit the number of 
frames at each level and another to limit the number of levels of the LBA. 
Furthermore, we characterize the performance of the system by two responses, 
recognition rate (RR) and recognition speed (RS), and we assume that these 
responses are governed by the two constraints. A statistical experimental design 
technique [8] is employed to better characterize the behaviour of the LVHWR 
system as well as to optimise its performance as a function of these two constraints. 
   This paper is organized as follows. Section 2 gives an overview of the LVHWR 
system. Section 3 introduces the two constraints to the LBA. Section 4 describes the 
experimental plan, the statistical analysis of the experimental data and the results of 
the verification experiment over another database. Finally, some conclusions are 
drawn in the last section. 
 
2  The LVHWR System 
 
This section presents a brief overview of the structure and the main components of 
the LVHWR system. The system is composed of several modules: pre–processing, 
segmentation, feature extraction, training and recognition. The pre–processing 
normalizes the word images in terms of slant and size. After, the images are 
segmented into graphemes and the sequence of segments is transformed into a 
sequence of symbols (or features). There is a set of 69 models among characters, 
digits and special characters that are modelled by a 10–state–arc–based HMM [4]. 
Training of the HMMs is done by using the Maximum Likelihood criterion and 
through the Baum–Welch algorithm. Recognition is based on a syntax–directed level 
building algorithm (SDLBA) using a tree–structured lexicon generated from a 
36,100–word vocabulary. 
   The lexicon is organized as a character tree (Fig. 1). If the spelling of two or more 
words contains the same n initial characters, they share a single sequence of n 
character HMMs representing that initial portion of their spelling. The recognition 
engine works in such a way that for a certain lexicon size (from 10 to 30,000) made 
up of words randomly chosen from the global vocabulary, the corresponding word 
HMMs are made up by the concatenation of character HMMs. All words are 
matched against the sequence of observations extracted from the word image and the 
probability that such word HMMs have generated that sequence of observations are 
computed. The word candidate is that one that provides the highest likelihood. 
   A crucial problem of such a system is the recognition speed. Since we do not know 
a priori the case of the characters we need to test both uppercase and lowercase 
characters at each level of the LBA and that increase the size of the search space. For 
digits and symbols, only a single model is tested at each level of the LBA. This 
approach provides good recognition rates but at the cost of low speed for lexicons 
that contain more than 1,000 entries. Therefore, our goal is to find a best 



compromise between the recognition rate and the recognition speed when 
considering large vocabularies. 
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Figure 1: Tree–structured lexicon 
 
2.1  Level Building Algorithm (LBA) 
 
The LBA has been used for a long time in speech recognition [7], and more recently 
on handwriting recognition. Given a set of individual character models c = {c0, c1, 
c2, …, cK–1} where K denotes the number of models and a sequence of observations 
O = {o0, o1, ..., oT–1}, where T denotes the length of the sequence, recognition means 
decoding O into the sequence of models. Namely, it is to match the observation 
sequence to a state sequence of models with maximum joint likelihood. The LBA 
jointly optimises the segmentation of the sequence into subsequences produced by 
different models, and the matching of the subsequences to particular models. 
   In the LVHWR system, we have adapted the LBA to take into account some 
particular characteristics of our character model since it is modelled by a 10–state–
left–right–arc–based HMM, and also to take into account some contextual 
information. Since the lexical tree guides the recognition process, the LBA 
incorporates some constraints to handle the language syntax provided by the lexical 
tree as well as the contextual information related to the character class transition 
probabilities. Different from an open vocabulary problem where all character HMMs 
are permitted in all levels of the LBA, here the character HMMs that will be tested in 
each level depend on the sequence of nodes of the lexical tree. Furthermore, since 
only two character models compete in each level of the LBA, one corresponding to 
the uppercase and other corresponding to the lowercase character, it will be only 
necessary to compute the likelihood of two character HMMs at each level of the 
LBA. For digits and special characters, only one model is computed by level. 



3  Incorporating Time and Length Constraints to the 
LBA 
 
The SDLBA presented by Koerich et al. [3] is constrained only by the HMM 
topology and the lexical tree. The SDLBA implies the testing of the whole sequence 
of observations at each level. Due to the fact that our HMMs do not include self–
transitions, we know that such a model can emit a limited number of observations. In 
other words, we have a priori knowledge of the model duration since it is implicitly 
modelled by the HMM topology [9]. Furthermore, it seems to be wasteful to align 
the whole observation sequence at all levels of the LBA, since it is expected that in 
average four observations be emitted at each level of the LBA. Therefore, limiting 
the number of observations at each level could reduce the size of the search space. 
   If we take into account again the topology of our HMM, it is easy to verify that 
short observation sequences are more likely to be generated by short words. 
Therefore, it seems useless to align the observation sequences with nodes of high 
levels if the sequence is short. Nevertheless, we know in advance the length of the 
sequence of features and considering that each character model can emit 0, 2, 4 or 6 
observations, we can estimate from the length of the sequence of features the length 
of the words that could have generated such a sequence and use such information to 
limit the search to words with appropriate lengths. Therefore, it is expected that the 
performance of the system will be improved by constraining the LBA both in time 
and in length without changing the accuracy significantly. 
 
3.1  Time Constraint 
 
The time constraint concerns the limitation of the number of frames aligned at each 
level of LBA. We introduce two variables: FLIT(l) and FLFT(l). The first one denotes 
the index of the first frame while the second one denotes the index of the last 
observation frame that will be aligned at each level of the LBA. Both variables are 
functions of the level (l). Figure 2 shows how these two constraints are incorporated 
to the LBA. 
   To incorporate these two constraints into the LBA, the equations of the LBA are 
not modified, but just the range of the variable t that denotes the frame index. The 
variable t, that originally ranges from 0 to T–1, now, its range will be given by 
equation (1). 
 

)(,...,2)(,1)(),( lFLlFLlFLlFLt FTITITIT ++=    (1) 
 
where FLIT(l) and FLFT(l) must be integers and they are given by equations (2) and 
(3) respectively. The lower and upper limits for FLIT(l) and FLFT(l) are 0 to T–1 
respectively. 
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where FLI and FLF are the two control factors to be determined. 
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Figure 2: LBA incorporating time and length constraints 
 
3.2  Length Constraint 
 
As we have discussed in the first paragraphs of section 3, the length constraint 
concerns the limitation of the number of levels of the LBA. We introduce the 
variable WLMAX(T) which denotes the maximum number of levels of the LBA for a 
given observation sequence with length T. To incorporate this constraint to the LBA, 
the equations of the LBA are preserved, but the range of the variable l that denotes 
the level index, is modified slightly. Now, instead of ranging from levels 0 to L–1, 
the range will be given by equation (4). 
 

)(,...,2,1,0 TWLl MAX=    (4) 
 
where WLMAX(T) is an integer given by equation (5) and its lower and upper limits 
are given by the shortest and the longest word in the lexicon respectively. 
 

WL
TTWLMAX =)(     (5) 

 
where WL is the control factor to be determined. 



 
4  Factorial Analysis 
 
Here we introduce a formal method to determine the values of the control factors 
(FLI, FLF, and WL) based on a statistical experimental design technique that 
optimises the performance of the LVHWR system. In order to simplify our analysis, 
we take into account only two control factors, FLI and WL. The value of the other 
control factor, FLF, is fixed equal to 1. 
   First, we derive two regression models where the independent variables are FLI, 
and WL, and the dependent variables are the responses of the system: recognition 
rate (RR) and recognition speed (RS). Afterwards, a complete factorial plan is 
employed to gain information on the control factors and to determine the coefficients 
of the regression models. Based on these regression models, the optimal values of 
the control factors that jointly optimise both RR and RS can be determined. 
 
4.1  Multiple Regression Model 
 
We need to establish a multiple regression model before carrying out any 
experiment. We assume that the responses RR and RS are approximated by the mean 
(M), the two control factors ( FLI and WL ), the square of the control factors ( FLI

2 
and WL2 ), and the interaction between them ( FLI.WL ). We assume that equation (6) 
gives the regression model for the recognition rate (RR) while equation (7) gives the 
regression model for the recognition speed (RS). 
 

WLFLaWLaFLaWLaFLaMRR IIIRR .5
2

4
2

321 +++++≅   (6) 
 

WLFLbWLbFLbWLbFLbMRS IIIRS .5
2

4
2

321 +++++≅   (7) 
 
   By analysing RS and RR for different values of WL and FLI, it is possible to 
determine the means MRR and MRS and estimate the coefficients a1, …, a5 and b1, …, 
b5 for the control factors and the interactions. 
 
4.2  Experimental Design 
 
Since we have only two control factors, we can use a complete factorial plan, 
assigning three levels to each factor to capture the linear and the quadratic effects of 
both constraints over the responses. For this plan we have only 9 treatment 
combinations and 8 degrees of freedom (df’s) to estimate the effects in the process 
we are investigating. However, to accommodate the non–linear effects and the 
interactions, we replicate the experiments by using a different random lexicon. 
Therefore, we will have 18 treatment combinations from which we lose 1 df due to 
finding the mean of the data and other 17 df’s to estimate the effects. 
   Eighteen experimental runs were conducted, corresponding to the 18 combinations 
of the two control factors (9 for each random lexicon) and both RR and RS were 
measured. In these experiments, we have used a validation set that has been taken 



from the Service de Recherche Technique de la Poste (SRTP) database. The SRTP 
database is composed of digitised images of French postal envelopes. The 
information written on the envelopes is labelled and segmented. This dataset is 
composed of 3,475 images of French city names. The experiments were carried out 
for lexicons with 10, 100, 1,000, 5,000, 10,000, 20,000 and 30,000 entries. 
 
4.3  Analysis of Results 
 
In order to perform a multifactor analysis of variance for RR and RS, we have 
constructed various tests and graphs to determine which factors have a statistically 
significant effect on both responses for different lexicon sizes. Figure 3 shows an 
example of the effects of the linear and quadratic terms of both WL and FLI in both 
responses for a 100–entry lexicon. The control factor WL has the most pronounced 
effect on RR. The effect of this control factor is approximately quadratic. The other 
control factor has less effect and it seems to be approximately linear. On the other 
hand, the control factor WL has the most pronounced effect on RS, but the effect due 
to the control factor FLI is also pronounced. The effect of both factors is 
approximately quadratic. 
   For each lexicon size, the sum of squares, the mean of squares, and the Fischer 
coefficients were computed. All Fischer coefficients were based on the mean square 
error. For the different lexicon sizes, both WL and FLI have a statistically significant 
effect on RR. For the control factor FLI, the quadratic effect can be neglected. On the 
other hand, both the linear and the quadratic effects of the factor WL are significant. 
These results confirm what we have seen in Figure 3. Both constraints have a 
statistically significant effect on RS and the linear and quadratic effects of both 
constraints are significant. The effects of the interaction of the two control factors are 
not significant and they can be neglected. The same behaviour was observed for the 
different lexicon sizes. 
 

 
 

Figure 3: Main effects of the control factors on RR and RS for a 100–entry lexicon 
 
   The coefficients of the regression models can be determined by using a least–
square procedure [11]. For each lexicon size, we will have different multiple 
regression equations that have been fitted to the experimental data. 
 
 



4.4  Optimisation of Parameters 
 
Optimisation involves estimating the relationship between RR and RS, and the two 
control factors. Once the form of this relationship is known approximately, the 
constraints may be adjusted to jointly optimise the system performance. 
   In our system an optimal response means maximizing both RR and RS. Therefore, 
we need to determine the combination of experimental factors that simultaneously 
optimise both response variables. We do so by maximizing equations (6) and (7) for 
each lexicon size. The combination of control factor levels that achieves the overall 
optimum responses for each lexicon size is given in Figure 4. 
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Figure 4: Optimal control factor values for each lexicon size 

 
4.5  Experimental Results 
 
In order to demonstrate the applicability of these constraints in the reduction of the 
search space and to verify the effects of the control factors in the responses of the 
LVHWR system, we have run a confirmation experiment. We have used a different 
dataset. This testing dataset contains 4,674 samples of city name images also taken 
from the SRTP database. Figure 5 shows the results obtained by the standard LBA 
(STD) and the constrained LBA (TLC). By comparing the results for recognition 
speed we can verify that by using the two constraints and setting them up to the 
optimal values given by the statistical experimental design technique, we improved 
the recognition speed significantly while keeping almost the same recognition rate.  
   It should be notice that, in spite of the values of the control factors are dependent 
on the lexicon size the improvement in speed is almost independent. Table 1 shows 
the approximate individual contribution of the constraints in speeding up the system. 
The number of character is related to WL while the number of frames is related to 
FLI but it is also dependent on the WL. 
 



5  Discussion and Conclusion 
 
In this study, we have presented a constrained LBA where two control factors were 
chosen and analysed through a complete factorial plan. The effects of these two 
factors in the outputs of a LVHWR system were investigated. We have seen that 
limiting the number of observations according to the level of the LBA as well as 
limiting the number of levels of the LBA by taking into account the length of the 
observation sequences lead to an improvement of 24.4–30.3% in the recognition 
speed with a slight reduction of 0.28–0.77% in the recognition rate for lexicons with 
10–30,000 entries respectively. If we compare with the results of a previous version 
of the system based on a Viterbi–flat–lexicon scheme [3] [4], the improvement in 
speed is more expressive (627–1,010%) with a reasonable reduction in the 
recognition rate (0.45–1.8%). Furthermore, the experimental design technique used 
for adjusting the values of the control factors provides us a robust framework where 
the responses of the system are non–linear functions of the control factors. Our 
future work will focus on the pruning the number of characters by using a beam 
search technique. 
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Figure 5: RR and RS for the standard LBA (STD) and the constrained LBA (TLC) 

 
Table 1: Reduction in the number of frames and characters 

Lexicon 
Size 

Characters 
(%) 

Frames 
(%) 

Speed 
(%) 

10 0 29.41 24.38 
100 0.632 31.58 26.90 

1,000 2.542 33.47 27.77 
5,000 2.568 35.06 29.25 

10,000 2.855 35.90 29.79 
20,000 4.357 36.88 30.63 
30,000 3.879 37.46 30.28 
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