
A Time-Optimal Solution for the Path Cover Problem on Cographs �

K. Nakanoy S. Olariuz A. Y. Zomayax

Abstract

We show that the notoriously difficult problem of find-
ing and reporting the smallest number of vertex-disjoint
paths that cover the vertices of a graph can be solved time-
and work-optimally for cographs. Our algorithm solves
this problem in O(log n) time using n

log n processors on the
EREW-PRAM for an n-vertex cograph G represented by its
cotree.

1 Introduction

A graph-theoretic problem with a large number of prac-
tical applications is the path cover problem, which involves
finding a minimum number of vertex-disjoint paths that to-
gether cover the vertices of a graph. A graph G that admits
a path cover of size one is referred to as Hamiltonian. It
is, therefore, clear that the path cover problem is at least as
hard as the problem of deciding whether a graph G has a
Hamiltonian path.

The class of cographs, or complement-reducible graphs,
is defined recursively as follows: (1) A single-vertex graph
is a cograph; (2) If G = (V; E) is a cograph, then its com-
plement G = (V; V � V �E) is also a cograph; (3) If both
G1 = (V1; E1) and G2 = (V2; E2) satisfying V1 \ V2 = �

are cograph, then their union G = (V1[V2; E1[V2) is also
a cograph.

The cographs admit a tree representation unique up to
isomorphism. Specifically, one can associate with every
cograph G = (V;E) a unique rooted tree T (G) called the
cotree of G featuring the following properties: (4) Every
internal node of T (G) has at least two children; (5) The
internal nodes of T (G) are labeled by either 0 (0-node)
and 1 (1-node) in such a way that labels alternate along
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Figure 1. A cograph and the corresponding
cotree.

every path in T (G) starting at the root; (6) Each leaf of
T (G) corresponds to a vertex in V , such that, (x; y) 2 E

if and only if the lowest common ancestor of the leaves
corresponding to x and y is a 1-node. We refer the reader to
Figure 1 illustrating a cograph and its cotree. He [5] showed
that the cotree of a cograph with n vertices and m edges
can be built in O((logn)2) time using O(n + m) CRCW
processors.

Lin et al. [7] showed that an instance of size n of the
path cover problem for a cograph can be solved in O(n)
sequential time. Quite a while back Adhar and Peng [1]
presented a parallel algorithm to find a minimum path cover,
a Hamiltonian path, and a Hamiltonian cycle in n-vertex
cographs. Their algorithm runs in O(log2n) time and using
O(n2) processors on the CRCW. Surprisingly, the algorithm
in [1] takes O(log2n) time and O(n2) processors on the
CRCW even to determine whether a cograph contains a
Hamiltonian path or cycle.

As a first step towards solving this open problem, Lin et
al. [8] showed that one can determine the number of paths
in a minimum path cover for cographs in O(logn) time and
O(n) work on the EREW. At the same time, Lin et al. [8]
proposed an algorithm to report all the paths in a minimum
path cover running in O(log2n) time, using n

log n processors
on the EREW. Since, as shown in [7], a minimum path cover
can be returned in O(n) sequential time, the algorithm in
[8] is suboptimal.

The main contribution of this work is to offer a time-
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and work-optimal solution to the path cover problem for
cographs. Our algorithm runs in O(logn) time using n

logn
processors on the EREW for an n-vertex cograph G repre-
sented by its cotree. Due to the page limitation, we omit the
proof of the time- and work-optimality.

2 Finding a minimum path cover: a first look

We begin by reviewing the sequential algorithm of [7] for
finding a minimum path cover of n-vertex cograph in O(n)
time, as well as the parallel algorithm of [8] for computing
the number of paths in a minimum path cover in O(logn)
time using n

log n processors on the EREW.
For convenience and ease of presentation we now show

how to binarize the cotree T (G) corresponding to a cograph
G, in such a way that each of its internal nodes has exactly
two children [8]. Let u be an internal node with children
v1; v2; : : : ; vk, (k � 3). We replace node u by k � 1 nodes
u1; u2; : : : uk�1 such that u1 has children v1 and v2, and each
ui, (2 � i � k), has children ui�1 and vi. We shall refer to
the binarized version of T (G) as Tb(G) and note that Tb(G)
satisfies properties (4) and (6) above.

For an internal node u of Tb(G) its left and right chil-
dren will be denoted by v and w, respectively. Let G(u)
denote the subgraph of G induced by the leaf descendants
of u in Tb(G). Further, let L(u) denote the number of leaf
descendants of u in Tb(G), that is, the number of vertices of
G(u). Let p(u) denote the number of paths in a minimum
path cover of G(u). We say that Tb(G) is leftist, if for every
internal node u, the condition L(v) � L(w) is satisfied. Let
Tbl(G) denote the leftist binarized cotree of G.

We now review the ideas in [7] for finding a minimum
path cover of a cograph G, given its leftist binarized cotree
Tbl(G). Suppose that the minimum path covers of G(v) and
G(w) have already been obtained. If u is 0-node, then no
edge in G(u) connects vertices from G(v) and G(w). Thus,
a minimum path cover for G is just the union of minimum
path covers for G(v) and G(w).

If u is 1-node, recall that every vertex in G(v) is adja-
cent to all the vertices in G(w). Referring to Figure 2, we
distinguish the following two cases.
Case 1, p(v) > L(w) : We use the L(w) vertices in G(w)
to bridge L(w) + 1 of the paths in a minimum path cover of
G(v) into one path and the resulting minimum path cover
has p(v) � L(w) paths. In Figure 2, L(w) = 2 vertices
bridge p(v) = 4 paths into p(v) � L(w) = 2 paths.
Case 2, p(v) � L(w) : In this case, p(v)�1 vertices inG(w)
are used to bridge the p(v) paths in a minimum path cover
of G(v) into one path. These vertices are said to be bridge
vertices. The remaining L(w) � p(v) + 1 vertices, called
insert vertices, will be inserted into the path thus obtained.
The resulting minimum path cover is a Hamiltonian path. In
Figure 2, p(v)� 1 = 3 vertices are used to bridge p(v) = 4

G(w)

Case 1

G(v) G(w)

Case 2

G(v)G(v)

bridge vertex insert vertex

Figure 2. Illustrating Case 1 and Case 2.

paths into one path and L(w) � p(v) + 1 = 4 vertices are
inserted into the path.

We refer the reader to [7] for a detailed proof of the
correctness of this approach. As it turns out, all the paths in
a minimum path cover of G can be obtained by traversing
Tbl(G) in a bottom-up fashion from the leaves to the root.
A careful implementation guarantees that the corresponding
algorithm runs in time linear in the size of Tbl(G). Thus,
we have the following result.

Lemma 2.1 [7] Given the cotree T (G) of an n-vertex co-
graph G, a minimum path cover can be returned in O(n)
sequential time.

Lin et al. [8] showed that the simpler problem of com-
puting the number of paths in a minimum path cover can be
computed in O(logn) time. The idea is as follows. From
the construction of the minimum path cover, the number
p(u) of paths in the minimum path cover of G(u) can be
computed by the following formula:

p(u) = p(v) + p(w) if u is 0-node

= maxfp(v)� L(w); 1g if u is 1-node

The well-known tree contraction technique [6] enables us to
evaluate this formula for each internal node u. Using this
idea, the following result was proved in [8].

Lemma 2.2 [8] For every internal node u in Tbl(G), the
number p(u) of paths in a minimum path cover of G(u) can
be computed inO(log n) time using n

log n EREW processors.

We now further modify Tbl(G). The vertices of the co-
graph G (i.e. leaves of Tbl(G)) will be partitioned into
three categories as follows: bridge vertex: a vertex bridg-
ing paths at a 1-node; insert vertex: a vertex to be inserted
in the path at a 1-node; primary vertex: a vertex neither
bridging nor being inserted. Note that a primary vertex cor-
responds to a leaf of Tbl(G) such that every internal node
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Figure 3. A path tree and the corresponding
path.

along a path from the root to the leaf is not the right child of
a 1-node. Conversely, a bridge or insert vertex belongs to a
subtree rooted at an internal node that is the right child of a
1-node.

3 Finding a minimum path cover using path
trees

The main goal of this section is to introduce path trees
that will turn out to be key ingredients in our time- and
work-optimal parallel algorithm for the path cover problem.

Let G be a cograph. A path tree is a rooted binary tree
with each node of the path tree corresponding to a vertex of
some path � in G. The path � is captured by the inorder
traversal of the path tree. We refer the reader to Figure 3
illustrating a path tree and the corresponding path. Clearly,
once a path tree is available it can be readily converted into
the desired path by using the Euler tour technique. Multiple
vertex-disjoint paths will be captured by disjoint collections
of path trees.

Let u be an internal node of Tbl(G) with left and right
children v and w, respectively. We are interested in com-
puting a path tree of G(u) using those for G(v) and G(w).
First, suppose that u is a 0-node and the path trees of G(v)
and G(w) are already available. Since no edge in the graph
connects edges from G(v) and G(w), the union of the path
trees for G(v) and G(w) yields the path trees for G(u).

Next, suppose thatu is a 1-node and the path trees ofG(v)
have already been computed. We consider the following two
cases:
Case 1, p(v) > L(w) : The L(w) vertices in G(w) bridge
L(w) + 1 paths and the resulting minimum path cover of
G(u) has p(v)�L(w) paths. To perform the corresponding
operation on the path trees, we construct a binary tree having
the L(w) vertices in G(w) as internal nodes and the roots
of L(w) + 1 path trees in G(v) as leaves. This process is
illustrated in Figure 4, where we construct a binary tree with
vertices a, b, c having the roots of the path trees B, C, D, E

A

B

C

D

E

a

b

c

G(v) G(w)

A B C D E

a

b

c

Figure 4. Construction for Case 1.
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Figure 5. Construction for Case 2

as their children. The inorder traversal of the path tree thus
obtained is

B ! c! C ! b! D! a! E;

which corresponds to the path we should obtain.
Case 2, p(v) � L(w) : We refer the reader to Figure 5 for
an illustration of the construction of a path tree in Case 2.
In this case, p(v) � 1 bridge vertices from G(w) connect
the roots of the path trees in a way similar to Case 1. In the
figure, two vertices a and b connect three path trees. Each
of the L(w) � p(v) + 1 insert vertices is connected to path
trees as leaves. In the figure, five vertices c; d; e; f , and g

are connected to path trees as leaves.
Notice that in this process, a vertex of the original path

trees with at most on child may end up with one (or two)
insert vertices from G(w) as leaves. However, not all such
vertices can have a child. For example, C1 cannot have an
insert vertex as a left child; if vertex g were a left child of
C1, then a and g would be adjacent in the corresponding
Hamiltonian path. However, it is not necessarily the case
the a and g are adjacent in the underlying graph G. For the
same reason,B3 cannot have an insert vertex as a right child.
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Figure 6. Illustrating a pseudo path tree

More generally, we may have illegal children as follows: Let
T1, T2, : : :, Tp(v) denote the path trees placed left-to-right
in this order such that their roots are connected by p(v)� 1
bridge vertices.

1. The right child of the rightmost vertex (i.e. the vertex
that appears last in the inorder traversal) of Ti, (1 �
i � p(v) � 1). If an insert vertex is connected as the
right child, then it must be adjacent to the bridge vertex
that is the lowest common ancestor of Ti and Ti+1, a
contradiction.

2. The left child of the leftmost vertex in Ti, (2 � i �
p(v)), by a mirror argument.

For later reference, we introduce a pseudo path tree,
which may have illegal insert vertices. Figure 6 illustrates
a pseudo path tree: vertices e and f are illegal, and the
corresponding path is invalid in the graph since the edges
(f; a) and (a; e) are not present.

4 Constructing path trees using brackets

To begin, we demonstrate how pseudo path trees can be
constructed efficiently. Once this is done, we can convert
pseudo path trees to (correct) path trees. For constructing
pseudo path trees efficiently, we will generate a sequence
of brackets, each corresponding to a vertex in the pseudo
path tree. We use two types of brackets: square brackets
(“[” and “]”) and round brackets (“(“ and “)“). By finding
matching pairs of square brackets and matching pairs of
round brackets independently, we can construct pseudo path
trees as follows.

Let u be a node of Tbl(G) and let v and w denote,
respectively, its left and right children if any. We as-
sociate with u a sequence B(u) of brackets as follows:
If u is a leaf corresponding to a primary vertex, then

B(u) =
up

[
ul

(
ur

( . If u is 0-node then B(u) = B(v) � B(w).
If u is 1-node and p(v) > L(w) (i.e. Case 1), then,

B(u) = B(v)�
sr1

]
sl1

]
s
p

1

[
sr2

]
sl2

]
s
p

2

[ � � �
sr
L(w)

]
sl
L(w)

]
s
p

L(w)

[ , where, si
(1 � i � L(w)) denotes the bridge vertices of w. The

matching pair
s
p

i

[ and
sri+1

] (1 � i � L(w) � 1) corresponds
to an edge connecting the right child si and the parent si+1.

Further, each of
sl1

] ;
sl2

] ; : : : ;
sl
L(w)

] and
sr1

] matches a square
bracket in B(v), and corresponds to an edge connecting
with a root of a path tree of G(v).

If u is 1-node and p(v) � L(w) then, B(u) =

B(v)�
sr1

]
sl1

]
s
p

1

[
sr2

]
sl2

]
s
p

2

[ � � �
sr
p(v)�1

]
sl
p(v)�1

]
s
p

p(v)�1

[
t
p

p(v)

)
t
p

p(v)+1

)

� � �

t
p

L(w)

)
tl
p(v)

(
tr
p(v)

(
tl
p(v)+1

(
tr
p(v)+1

( � � �
tl
L(w)

(
tr
L(w)

( , where, si
(1 � i � p(v) � 1) denotes the bridge vertices, and ti
(p(v) � i � L(w)) denotes the insert vertices. The square
brackets for si work similarly to Case 1. Each of the round

brackets
t
p

p(w)

)
t
p

p(w)+1

) � � �

t
p

L(w)

) is used to find a parent of ti in

G(v). Further, the round brackets
tli

(
tri

( (p(w) � i � L(w))
are used to find the left and the right children, which will
appear in the right of B(u).

By finding matchings for square brackets and round
brackets in the sequence B(R) of brackets of root R of
Tblr(G), we can construct pseudo path trees. For the readers
benefit, we now show an example of B(R). The following
sequence of brackets corresponds to the cotree illustrated in
Figure 7.

ap

[
al

(
ar

(
bp

)
bl

(
br

(
cp

[
cl

(
cr

(
dr

]
dl

]
dp

[
ep

)
fp

)
el

(
er

(
f l

(
fr

( :

Note that a and c are primary vertices, b, e, and f are insert
vertices, and d is a bridge vertex. Assume that matching
of square brackets and that of round brackets are computed
independently. In the above sequence of brackets, we can
find the following matching:

ap

[
dl

] ;
cp

[
dr

] ;
ar

(
bp

) ;
cl

(
fp

) :
cr

(
ep

) ;

These matchings corresponds to an edge of a pseudo path

tree. For example,
ap

[
dl

] corresponds to an edge connecting
the vertex a to the parent d as a left child.

In order to convert a pseudo path tree to the correct one,
we need to remove illegal insert vertices. For this purpose,
we will use 2p(v) � 2 dummy vertices. Figure 8 illustrates
2p(v)� 2 = 4 dummy vertices d1; d2; d3, and d4 connected
to a pseudo path tree. The dummy vertices can have one
child. After constructing the pseudo path trees with dummy
vertices, for each insert vertex we check whether it is ille-
gal. Further, we also check whether each dummy vertex is
illegal, that is, it is adjacent to a bridge vertex. If there are

4



1

a b

c f

0

d

ef

a

b

c

d e

1 0

0
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Figure 8. Construction of a path tree using
dummy vertices

illegal insert vertices, they are exchanged with legal dummy
vertices. In Figure 8, e and f are illegal insert vertices.
Also, dummy nodes d2 and d3 are illegal. Thus, e and f

are exchanged with d1 and d4, respectively. Note that this
exchanging is not only for the vertices but also for the sub-
trees. That is, exchanging of e and d1 means that the parent
of d1 becomes new parent of e and vice versa. After that,
bypassing dummy vertices in the path tree, we can obtain a
correct path tree.

5 Parallel algorithm for finding the minimum
path cover of a cograph

We will show that, for given the cotree T (G) of a cograph
G, the minimum path cover can be exhibited efficiently. The
algorithm is spelled out as follows:
Input: the adjacent list of the cotree T (G) of a cograph G;
Output: the minimum path cover of G;
Step 1: Find the leftist binarized Tbl(G);
Step 2:Generate a sequence of brackets B(R) of the root R
of Tbl(G);

Step 3:Find the pseudo path tree by finding all matchings of
B(R);
Step 4:Convert the pseudo path tree into the (correct) path
tree;
Step 5: Find the minimum path cover using the path trees.

The reader should have no difficulty to confirm that the
algorithm above correctly exhibits the minimum path cover.
Further, it is not so difficult to confirm that the above al-
gorithm can be implemented to run in O(logn) time using
n

logn processors on the EREW PRAM by the following basic
algorithms: the prefix-sums, list ranking, bracket matching,
preorder, postorder and inorder numberings [2, 3, 4, 6, 9].

Finally, we have

Theorem 5.1 The task of exhibiting the minimum path
cover of a cograph can be done efficiently, that is, in
O(log n) time using n

log n processors on the EREW PRAM.
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