
SPECIAL SECTION ON INTELLIGENT INFORMATION SERVICES

Received February 18, 2020, accepted February 26, 2020, date of publication March 3, 2020, date of current version March 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2978101

A Time Petri Net With Relaxed Mixed Semantics
for Schedulability Analysis of Flexible
Manufacturing Systems

LI PAN 1∗

, BO YANG 1∗

, JUNQIANG JIANG 1, AND MENGCHU ZHOU 2, (Fellow, IEEE)
1Department of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
2Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA

Corresponding author: Mengchu Zhou (zhou@njit.edu)

∗Li Pan and Bo Yang are contributed equally to this work.

This work was supported in part by the Hunan Provincial Natural Science Foundation of China under Grant 2017JJ2016, Grant 2018JJ2152,

Grant 2018JJ2153, and Grant 2019JJ40105, in part by the Science and Technology Program of Hunan Province under Grant 2018TP2022,

and in part by the Scientific Research Fund of Hunan Provincial Education Department under Grant 17A089 and Grant 18B356.

ABSTRACT Several semantics models are adopted by time Petri nets for different applications. Yet they

have some limitations on schedulability analysis of flexible manufacturing systems. The scheduling scope

of a strong semantics model is greatly limited because of the impact of strong timing requirements, perhaps

keeping some optimal schedules out of the consideration. A weak semantics model cannot guarantee the

scheduling timeliness as there lacks strong timing enforcement. A mixed semantics model cannot ensure

that independent transitions with overlapping firing interval fire in an interleaving way, thus affecting the

search for the optimal schedules. In this paper, we present a relaxed mixed semantics model for time Petri

nets to address these problems by redefining the firability rules of transitions. In our model, the firability of a

transition is determined bymaximal concurrent sets containing the transition. This treatment not only extends

the scheduling scope of TPNmodel greatly while avoiding the generation of invalid schedules, but also solves

the problem of concurrent scheduling of independent transitions. A state class method is then proposed

to support the verification and analysis of temporal properties. Finally, we apply the proposed model to

schedulability analysis of a job shop scheduling problem, and compare the features of four semantics models.

INDEX TERMS Scheduling, semantics models, state class methods, schedulability analysis, time Petri nets.

I. INTRODUCTION

Petri nets as a mathematical tool, have been widely used

to handle many problems in discrete event systems [1]–[4].

Flexible manufacturing systems are the typical discrete event

dynamic systems. Time uncertainty exists in flexible manu-

facturing systems, and can be described by using time inter-

vals [5]–[7]. Thus, the scheduling problems in the area of

flexible manufacturing with time uncertainty can be modeled

by time Petri nets (TPNs) [8]–[12].

In TPNs, a transition is associated with a time interval

representing all its possible firing time relative to its enabling

instant. Once a transition is enabled, its dynamic firing inter-

val is initialized to its static interval. Its dynamic interval

decrease synchronously with time. It can fire only when the

The associate editor coordinating the review of this manuscript and

approving it for publication was Shouguang Wang .

lower bound of its dynamic interval reaches zero. Firing a

transition takes no time.

When the upper bound of its dynamic interval decreases

to zero, two different time semantics are usually adopted

[8]–[10], [13]–[15]: strong (time) semantics and weak (time)

one. The former forces a transition to fire when its upper

bound reaches zero. The latter does not force transitions to

firewithin their time bounds. That is to say, it allows the upper

bound of any transition to be below zero. In this case, this

transition will no longer be possible to fire unless it becomes

enabled again.

The key competitive strength of a manufacturing system

lies in its flexibility, which represents the ability to respond

effectively to changing circumstances. The efficient oper-

ation of a flexible manufacturing system can be achieved

by exploiting routing flexibility and scheduling flexibility.

Thus a Petri net-based scheduling model for a flexible

46480 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0002-9187-5544
https://orcid.org/0000-0003-4210-8864
https://orcid.org/0000-0002-6934-0113
https://orcid.org/0000-0002-5408-8752
https://orcid.org/0000-0002-8998-0433


L. Pan et al.: TPN With Relaxed Mixed Semantics for Schedulability Analysis of Flexible Manufacturing Systems

FIGURE 1. A TPN with choice structures.

FIGURE 2. Reachability trees of the TPN in Fig. 1 for the existing
semantics models. (a) Reachability tree for strong semantics model,
(b) Reachability tree for mixed semantics model, (c) Reachability tree for
weak semantics model.

manufacturing system usually has abundant choice structures

that are used to model route selection and resource allocation.

The process of verifying whether a schedule of task exe-

cution meets the imposed timing constraints is referred to

as schedulability analysis, which is critical in maintaining

correctness of timed-dependent systems [16]–[19]. However,

there are still some limitations on schedulability analysis of

flexible manufacturing systems for the existing semantics

models of time Petri nets.

We consider a simple TPN with optional tasks in Fig.1.

In strong semantics, the firability of a transition is affected

by time constraints of all enabled transitions. Thus t2, t4
and t6 cannot be scheduled in any case. Only two schedules

t1t3t5t7t8 and t1t5t3t7t8 are feasible by using such semantics

(see Fig. 2a). The problem may cause some enabled transi-

tions never to be scheduled, and perhaps keep some optimal

schedules out of the consideration, such as t5t3t2t8 or t3t5t2t8.

In weak semantics, each enabled transition can fire in its

time interval, and may miss its deadline. In Fig.1, t1, t2, t3,

t4, t5 and t6 are firable at the initial state s0. If t4 or t6 is

fired at s0, then it means that t1 and t2 have missed their own

deadlines. That is to say, weak semantics cannot guarantee the

timeliness of task execution. The problem may cause some

invalid schedules produced in this model, such as t3t6, t4t6,

t5t4 and t6t4 (see Fig. 2c).

In [19], Pan, et al. proposed a mixed semantics model

to try to overcome limitations of the strong and weak

semantics models. This model removes the impact of time

constraints of conflicting transitions on the firability of a

transition, i.e., the firability of a transition is determined

by time constraints of its non-conflicting transitions. How-

ever, this model cannot guarantee the interleaving execu-

tion of independent transitions. For example, in Fig. 1,

t2 and t5 are two independent enabled transitions with

overlapping firing intervals. t2 is firable at s0 because it

can fire before its all non-conflicting transitions (t3, t4, t5
and t6). But t5 cannot be scheduled at s0 due to the

time constraint of its non-conflicting transition t1. Thus,

in the model, schedule t2t5t4t8 is feasible but t5t2t4t8 is not

(see Fig. 2b).

In brief, strong semantics models may cause some enabled

transitions never to be scheduled; weak semantics models

may produce invalid schedules; and mixed semantics models

cannot ensure that independent transitions with overlapping

firing intervals fire in an interleaving way. To attack the above

scheduling issues, a new semantics model is required for time

Petri nets.

This paper presents a relaxed mixed semantics model

to address these scheduling analysis issues. In the model,

at least a progressive maximal concurrent transition set

is preserved by redefining firabiltiy rules of transi-

tions. The treatment not only extends the scheduling

scope of the strong semantics models while avoiding

the generation of invalid schedules in the weak seman-

tics models, but also solves the problem of interleaving

execution of independent transitions in the mixed semantics

models.

Our model has the following properties: 1) any enabled

transition can be fired in some reachable state; 2) there are no

overdue enabled transition set; and 3) independent transitions

with overlapping firing intervals in a maximal concurrent set

can fire in an interleaving way.

The rest of the paper is organized as follows. In Section II,

we define formal semantics of the existing semantics models.

Section III presents a relaxed mixed semantics model, and

proves that the model has particular properties such that the

problems of the existing models can be overcome. Section IV

presents a state class method for the schedulability analysis

of timed systems. In Section V, we apply the proposed model

to a job shop scheduling problem of flexible manufacturing

systems, and compare the abilities of the four semantics

models in schedulability analysis. Section VI concludes the

paper.

VOLUME 8, 2020 46481



L. Pan et al.: TPN With Relaxed Mixed Semantics for Schedulability Analysis of Flexible Manufacturing Systems

II. THE EXISTING SEMANTICS MODELS

A. TIME PETRI NETS

Let R (R+) be the set of (nonnegative) real numbers. An

interval is a connected subset of R. Formally,

I = [a, b] is an interval if I = {x ∈ R|a ≤ x ≤ b},

where a ∈ R, b ∈ R∪{∞} and a ≤ b. When a = b,

we abbreviate [a, a] to a. The lower and upper bounds of

interval I are denoted by ↓ I and ↑ I , respectively.

Let I(I+) denote the set of all (nonnegative) intervals. Let

I1, I2 ∈ I and a ∈ R. Their operations are defined as:

1. I1 + I2 = [↓ I1+ ↓ I2, ↑ I1+ ↑ I2];

2. I1 − I2 = [↓ I1− ↑ I2, ↑ I1− ↓ I2];

3. a∗I = [a∗ ↓ I1, a
∗ ↑ I1], and a + I = [a+ ↓ I1,

a+ ↑ I1];

4. I1 ∩ I2 = [max{↓ I1, ↓ I2}, min{↑ I1, ↑ I2}], if I1 ∩

I2 6= ∅.

A TPN is a 6-tuple TPN = (P,T ,B,F,M0, SI ) where

1. P = {p1, p2, . . . , pm} is a finite nonempty set of places;

2. T = {t1, t2, . . . , tn} is a finite nonempty set of transi-

tions;

3. B: P× T → N is the backward incidence matrix;

4. F : P× T → N is the forward incidence matrix;

5. M0: P → N is the initial marking;

6. SI: T → I
+ is a mapping called static firing interval.

∀t ∈ T , SI(t) represents t’s static firing interval relative

to the time at which t is enabled.

We denote by B(t) the vector of input places of transition t ,

which corresponds to the vector of column t in the backward

incidence matrix. Similarly, F(t) represents the vector of

output places of t .

A marking of a Petri net is an assignment of tokens to

places, i.e., a mapping M : P → N . A transition t is enabled

at marking M , if

∀p ∈ P : B(p, t) ≤ M (p).

Let En(M ) be the set of transitions enabled at marking M .

LetNew(M , tf ) denote the set of newly enabled transitions by

firing tf from M , which is defined by

New(M , tf ) = En(M − B(tf ) + F(tf ))\En(M − B(tf )).

Note that a transition that is disabled at intermediate mark-

ingM −B(tf ) but enabled at new markingM −B(tf )+F(tf )

is considered as a newly enabled one. In order to simplify

the treatment of the problem, we do not consider multi-

enabledness of transitions [20]–[22].

A state of a TPN is a pair s = (M , f ), where

1. M is a marking; and

2. f is a dynamic firing interval function. ∀t ∈

En(M ), f (t) represents t’s firing interval in which each

value is a possible firing time relative to the current

state.

The initial state is defined as s0 = (M0, f0), where M0 is

the initial marking, and f0(t) = SI (t) for all t ∈ En(M0).

B. STRONG SEMANTICS MODELS

To describe different semantics models of time Petri nets in

a uniform way, we introduce the concepts of time bound and

efficient firing interval.

In a time Petri net with strong semantics (S-TPN),

an enabled transition t is firable at state s if

↓ f (t) ≤↑ f (ti) for any ti ∈ En(M ).

Let Fr(s) be the set of all firable transitions at s. The

efficient firing time bound of firable transition t at state s is

defined as

Ŵ(t) = min{↑ f (ti)|ti ∈ En(M )}.

Ŵ(t) represents t’s maximal enabling time that is allowed

from s to the next state if firing t in an S-TPN. The efficient

firing interval of firable transition t at state s is defined as

2(t) = [↓ f (t), Ŵ(t)].

The semantics of a TPN model can be characterized by a

Labeled Transition System (LTS) [23], [24] that is defined

below. An LTS is a quadruple L = (S, s0, 6,→) where

1. S is a finite set of states;

2. s0 ∈ S is the initial state;

3. 6 is a set of labels representing activities; and

4. → is the transition relation.

Given TPN = (P,T ,B,F,M0, SI ), the formal semantics

of its S-TPN is defined as Ls = (Ss, s0, 6,→s) such that

1. Ss = NP × I
T ;

2. s0 = (M0, f0);

3. 6 ⊆ T × R+;

4. →s⊆ Ss × 6 × Ss is the transition relation,

∀d ∈ R+, ∀tf ∈ T , (M , f )
tf ,d
−→s (M

′, f ′)iff































tf ∈ Fr(s) (1)

d ∈ 2(tf ) (2)

M ′ = M − B(tf ) + F(tf ) (3)

∀t ∈ En(M ′), f ′(t) =

{

SI (t) if t ∈ New(M , tf )

f (t) − d otherwise
(4)

From the transition relation, it is easy to see that (1) ensures

that tf is firable at state s; (2) determines the range of efficient

firing time of tf at s; (3) describes themarking transformation;

(4) computes firing intervals of all transitions enabled at state

s′ after firing tf .

For example, in Fig. 1, according to the formal semantics

of S-TPNs, only t1 is firable at s0. Thus only schedules

t1t3t5t7t8 and t1t5t3t7t8 are feasible in the model. The problem

greatly narrows the scheduling scope of TPNs. Some desired

schedules, like the optimal schedules t5t3t2t8 and t3t5t2t8, are

not produced with such model.

46482 VOLUME 8, 2020



L. Pan et al.: TPN With Relaxed Mixed Semantics for Schedulability Analysis of Flexible Manufacturing Systems

C. WEAK SEMANTICS MODELS

In a time Petri net with weak semantics (W-TPN), enabled

transition t is firable at state s if

↑ f (t) ≥ 0.

The efficient firing time bound of firable transition t at state

s is defined as

Ŵ(t) =↑ f (t).

The efficient firing interval of firable transition t at state s

is defined as

2(t) = [max(0, ↓ f (t)), Ŵ(t)].

Given TPN = (P,T ,B,F,M0, SI), the formal semantics

of its W-TPN is defined as Lw = (Sw, s0, 6,→w) such that

1. Sw = NP × I
T ;

2. s0 = (M0, f0);

3. 6 ⊆ T × R+;

4. →w⊆ Sw × 6 × Sw is the transition relation, which is

the same as that of an S-TPN.

In a W-TPN, the firability of a transition only depends on

its own time constraint. As a result, firing a transition may

cause some other non-conflicting enabled transitions to miss

their deadlines. Mathematically, an enabled transition t is

overdue at state s if ↑ f (t) < 0. Otherwise t is progressive

(i.e., ↑ f (t) ≥ 0). An overdue enabled transition is not firable,

because its firing deadline has been missed.

For example, in Fig. 1, if we fire t4, then both t1 and t2
become overdue for the missing of their deadlines. In this

case, t8 is not schedulable. As a result, the whole task cannot

be finished. The problem results in some invalid schedules in

the state space of such model.

D. MIXED SEMANTICS MODELS

Let S ⊆ En(M ). We define the minimal time upper bound of

set S by ↑S = min{↑ f (t)|t ∈ S}. Let En(M − B(t)) be t’s

non-conflicting enabled transition set.

In a time Petri net with mixed semantics (M-TPNs), pro-

gressive enabled transition t is firable at state s if

max(↓ f (t), 0) ≤ ↑f (ti) for any ti ∈ En(M − B(t)).

In other word, progressive enabled transition t is firable if it

can fire before its all non-conflicting transitions. The efficient

firing time bound of firable transition t at state s is defined as

Ŵ(t) = ↑(En(M − B(t)) ∪ {t}).

Ŵ(t) indicates that the firing time of transition t at state

s cannot overtake the upper bounds of firing intervals of its

all non-conflicting transitions and itself. The efficient firing

interval of firable transition t at state s is defined as

2(t) = [max(0, ↓ f (t)), Ŵ(t)].

Given TPN = (P,T ,B,F,M0, SI ), the formal semantics

of its M-TPN is defined as Lm = (Sm, s0, 6,→m) such that

1. Sm = NP × I
T ;

2. s0 = (M0, f0);

3. 6 ⊆ T × R+;

4. →m⊆ Sm × 6 × Sm is the transition relation, which is

the same as that of an S-TPN.

For example, in Fig. 1, t2 is firable because it can fire before

its all non-conflicting transitions. However, t5 is not firable

because it cannot fire before its non-conflicting transition t1.

This is irrational as t2 and t5 are two independent transitions

with the overlapping firing intervals. Therefore, this model

cannot ensure the interleaving execution of two independent

transitions.

III. RELAXED MIXED SEMANTICS MODEL

A. FORMAL SEMANTICS

We present a relaxed mixed semantics model for time Petri

nets (RM-TPN) to address the above problems. In this model,

we redefine transition firability by further loosening firable

conditions of M-TPNs to achieve the desired properties.

Two transitions ti and tj are concurrent (or independent)

at marking M , denoted by ti||tj, if B(ti) + B(tj) ≤ M . For

transition set U ⊆ T , if ∀ti, tj ∈ U , ti||tj, then U is a

concurrent set atM . We say that concurrent set U is maximal

if it is not a subset of any other concurrent set. Formally,

U is a maximal concurrent set if
∑

t∈U B(t) ≤ M and

En(M −
∑

t∈U B(t)) = ∅.

LetU(M ) be the set of all maximal concurrent sets atM and

U(M , t) = {U |U ∈ U(M ) ∧ t ∈ U} be the set of maximal

concurrent sets containing t . For U ∈ U(M ), if ∀t ∈ U , t is

progressive, we say that U is progressive. In other word, U is

progressive if and only if ↑U ≥ 0.

In an RM-TPN, progressive enabled transition t is firable

at state s, if

∃U ∈ U(M , t), such that max (0, ↓ f (t)) ≤ ↑U .

In other words, t is firable if there is a maximal concurrent

set U containing t , such that t may fire before any other

transition in U . The efficient firing time bound of firable

transition t at state s is defined as

Ŵ(t) = max{↑U |U ∈ U(M , t)}.

Ŵ(t) indicates that the firing time of transition t at state s

cannot overtake minimal time upper bounds of all maximal

concurrent sets containing t at M . That is to say, each transi-

tion firing can keep at least a progressive maximal concurrent

set at the new state. The efficient firing interval of firable

transition t at state s is defined as

2(t) = [max(0, ↓ f (t)), Ŵ(t)].

Given TPN = (P,T ,B,F,M0, SI ), the formal semantics

of its RM-TPN is defined as Lr = (Sr, s0, 6,→r) such that

1. Sr = NP × I
T ;

2. s0 = (M0, f0);

3. 6 ⊆ T × R+;

4. →r⊆ Sr ×6 ×Sr is the transition relation, which is the

same as that of S-TPN.

VOLUME 8, 2020 46483



L. Pan et al.: TPN With Relaxed Mixed Semantics for Schedulability Analysis of Flexible Manufacturing Systems

Determining the firability of a transition needs to enu-

merate all maximal concurrent sets containing the transition.

Obviously, this enumeration takes exponential time. Thus,

we must reduce its computational complexity.

Lemma 1:Given that S ⊆ En(M ), if En(M−
∑

t∈S B(t)) =

∅, then ∃U ⊆ S, such that U ∈ U(M ).

Proof: If En(M −
∑

t∈S B(t)) = ∅ and
∑

t∈S B(t) ≤ M ,

from the definition of a maximal concurrent set, it follows

that S ∈ U(M ). Otherwise, there is p ∈ P such that
∑

t∈S B(p, t) > M (p), i.e., there are conflicting transitions

in S. We obtain U ⊆ S by eliminating conflicting transitions

from S until
∑

t∈U B(t) ≤ M . Then U must be a maximal

concurrent set. Because if En(M −
∑

t∈U B(t)) 6= ∅, then

∃ti ∈ S such that ti ∈ En(M −
∑

t∈U B(t)). It follows that ti
is not in conflict with transitions in U and thus ti should not

be removed from S. This is a contradiction.

Lemma 1 shows that if En(M −
∑

t∈S B(t)) is empty, then

S must include a maximal concurrent set.

Property 1: Let S = {t|t ∈ En(M − B(tf ))∧ ↑ f (t) ≥

max(0, ↓ f (tf ))}, where tf is a progressive enabled transition

atM . Then tf ∈ Fr(s) if and only if En(M−
∑

t∈S∪{tf }
B(t)) =

∅.

Proof: (⇐) IfEn(M−
∑

t∈S∪{tf }
B(t)) = ∅, by Lemma 1,

then ∃U ⊆ S ∪ {tf } such that U ∈ U(M , tf ). Since ∀t ∈ S, ↑

f (t) ≥ max(0, ↓ f (tf )), it follows that ↑U ≥ max(0, ↓ f (tf )).

According to the definition of transition firability, we obtain

that tj ∈ Fr(s).

(⇒) If En(M −
∑

t∈S∪{tf }
B(t)) 6= ∅, by the definition of

S, then ∀t ′ ∈ En(M −
∑

t∈S∪{tf }
B(t)), ↑ f (t ′) < max(0, ↓

f (tf )). Thus, ∀U ∈ U(M , tf ), there must be t ′ ∈ En(M −
∑

t∈S∪{tf }
B(t)) such that t ′ ∈ U , and then ↑U ≤↑ f (t ′) <

max(0, ↓ f (tf )). Thus tf /∈ Fr(s).

Property 1 transforms the enumeration computation of

transition firability into the emptiness determination of set

En(M −
∑

t∈S∪{tf }
B(t)), where S is a set of t ′f s non-

conflicting transitions that can fire after tf .

A progressive enabled transition tf is firable at state s, if

En(M −
∑

t∈S∪{tf }
B(t)) = ∅

where S = {t|t ∈ En(M−B(tf ))∧ ↑ f (t) ≥ max(↓ f (tf ), 0)}.

Consider the example in Fig. 1. At s0, for t5, we have that

f0(t5) = [3, 5], S = {t|t ∈ En(M0 − B(t5))∧ ↑ f0(t) ≥ 3} =

{t2, t3, t4} and En(M0 − B(t5) − B(t2) − B(t3) − B(t4)) = ∅.

Thus t5 ∈ Fr(s0). For t4, we have that f0(t4) = [6, 6], S =

{t|t ∈ En(M0 − B(t4))∧ ↑ f0(t) ≥ 6} = {t6} and En(M0 −

B(t4) − B(t6)) = {t1, t2} 6= ∅. Thus t4 /∈ Fr(s0).

Next, we give an algorithm to compute efficient firing time

bounds of firable transitions. Let t is a firable transition at s.

As shown in Algorithm 1, if En(M − B(t)) = ∅, then {t}

is the only maximal concurrent set containing t at M . From

the definition of efficient firing time bounds, it follows that

Ŵ(t) = ↑f (t). Otherwise, we construct S by selecting from

En(M − B(t)) progressive enabled transitions whose upper

firing time bounds are not less than ↓ f (t). Then we compare

↑f (t) with ↑S. If ↑f (t) ≤ ↑S, then ∀U ∈ U(M , t), thus

Algorithm 1 Computation of Time Bound of Firable

Transition t
Input: TPN = (P,T ,B,F,M0, SI ), s = (M , f ), t ∈ Fr(s)

Output: Firing time bound tb of transition t at state s

1. If En(M − B(t)) = ∅

2. Return ↑ f (t)

3. Let S = {ti|ti ∈ En(M − B(t))∧ ↑ f (ti)

≥ max(0, ↓ f (t))}

4. While En(M −
∑

ti∈S∪{t} B(ti)) = ∅

5. If ↑ f (t) ≤ ↑S

6. Return ↑ f (t)

7. Else

8. tb = ↑S

9. S = {ti|ti ∈ En(M−B(t))∧ ↑ f (ti) > tb}

10. Return tb

we return Ŵ(t) = ↑f (t). If ↑f (t) > ↑S, then Ŵ(t) is set

to ↑S, and S is updated by selecting progressive enabled

transitions that can fire after ↑S. Repeat this process until

En(M −
∑

ti∈S∪{t} B(ti)) 6= ∅.

Let n = |En(M − B(t))| be the number of t’s non-

conflicting enabled transitions. The number of iterations of

Algorithm 1 is not more than n. In each iteration, the compu-

tation of set S needs time O (n). Hence, time complexity of

the algorithm is O(n2).

We consider the example in Fig. 1. At s0, for t2 ∈ Fr(s0),

we have that f0(t2) = [3, 4], S = {t|t ∈ En(M0 − B(t2)) ∧

↑f0(t) ≥ 3} = {t3, t4, t5, t6} and En(M0 − B(t2) − B(t3) −

B(t4) − B(t5) − B(t6)) = ∅. Since ↑f0(t2) = 4 < ↑S =

5, Ŵ(t2) = 4. For t5 ∈ Fr(s0), we have that f0(t5) =

[3, 5], S = {t|t ∈ En(M0 − B(t5)) ∧ ↑f0(t) ≥ 3} =

{t2, t3, t4} and En(M0 − B(t5) − B(t2) − B(t3) − B(t4)) = ∅.

Since ↑f0(t5) = 5 > ↑S = 4, tb = ↑S = 4. Then

S ′ = {t|t ∈ En(M0 − B(t5)) ∧ ↑f0(t) > 4} = {t3, t4} and

En(M0 − B(t5) − B(t3) − B(t4)) 6= ∅. Thus Ŵ(t5) = tb = 4.

A firing sequence σ is a finite (or infinite) string consisting

of symbols in transition set T . The empty sequence is the

sequence with zero occurrences of symbols. A run ρ of a

time Petri net is a finite or infinite sequence of the form

ρ = s0
t0,d0
−→ s1

t1,d1
−→ . . .

tn−1,dn−1
−→ sn . . . . We write s

∗

−→ s′

if there is a run ρ such that s is the initial state of ρ and s′

the final state of ρ. Let Rs(s) = {s′|s
∗

−→ s′} be the set of all

states reachable from state s.

Next, we illustrate a run of the RM-TPN in Fig.1 with

ρ = s0
t3,3
−→r s1

t2,1
−→r s2

t5,1
−→r s3

t8,1
−→r s4. The computation

process of the run is shown in Table 1. Note that schedule

t3t2t5t8 is feasible in the RM-TPN, but not in the S-TPN and

M-TPN.

B. MODEL PROPERTIES

In the subsection, we prove that RM-TPNs have particular

properties that can overcome the mentioned problems in the

existing semantics models.

46484 VOLUME 8, 2020



L. Pan et al.: TPN With Relaxed Mixed Semantics for Schedulability Analysis of Flexible Manufacturing Systems

TABLE 1. Computation process of a run of the RM-TPN in Fig. 1.

Property 2: In an RM-TPN, if t is enabled at s ∈ Rs(s0),

then ∃s′ ∈ Rs(s0) such that t ∈ Fr(s′).

Proof: Assume that t begins enabled at s ∈ Rs(s0), then

f (t) = SI (t). We consider two cases:

(1) If ↓ f (t) ≤ max{↑U |U ∈ U(M , t)}, then ∃U ∈

U(M , t) such that 0 ≤↓ f (t)) ≤ ↑U . From the definition

of transition firability, it follows that t ∈Fr(s).

(2) If ↓ f (t) > max{↑U |U ∈ U(M , t)}, then ↑f (t) ≥↓

f (t) >max{↑U |U ∈ U(M , t)}. It follows that ∃U ∈ U(M , t)

and ti ∈ U such that ↑U = ↑f (ti), then ∃U ∈ U(M , ti) such

that ↓ f (ti) ≤ ↑f (ti) ≤ ↑U , and thus ti ∈Fr(s). Let di =

↑f (ti). We execute s
ti,di
−→r s1. From the transition relation of

RM-TPNs, it follows that t ∈ En(M1) and f1(t) = f (t) − di.

Similarly, at s1, if ↓ f1(t) > max{↑U |U ∈ U(M1, t)},

there must be U ∈ U(M1, t) and tj ∈ U , such that ↑U =

↑f (tj). Then we run s1
tj,dj
−→r s2 where dj = ↑f (tj). As a

result, ↓ f2(t) is smaller than ↓ f1(t). Repeating this way,

there must be some state s′ ∈ Rs(s), such that ↓ f ′(t) ≤

max{↑U |U ∈ U(M ′, t)}. According to the result of (1),

we have that t ∈Fr(s′).

Property 2 shows that a transition enabled at a state can

be scheduled at some state reachable from the state, i.e., an

enabled transition can surely be scheduled in an RM-TPN.

But S-TPNs do not meet the property, like t2 in Fig. 1.

Property 3: In an RM-TPN, En(M ) 6= ∅ if and only if

Fr(s) 6= ∅.

Proof: (⇐) If En(M ) = ∅, by the firability definition,

then there is no firable transition at s. Thus Fr(s) = ∅.

(⇒) If En(M ) 6= ∅, we use mathematical inductionmethod

to prove that Fr(s) = ∅. The proof is carried out by induction

on state sn.

For the basis case (state s0), if En(M0) 6= ∅, then ∀t ∈

En(M0), f0(t) = SI (t). We select transition tm with the

minimal upper time bound from En(M0), i.e., ↑ f0(tm) =

↑En(M0). If En(M0 − B(tm)) = ∅, then ∃U = {tm} such that

0 ≤↓ f0(tm) ≤ ↑U . According to the firability definition,

we have that tm ∈ Fr(s). If En(M0 − B(tm)) 6= ∅, we let S =

En(M0 − B(tm)). Then En(M −
∑

t∈S∪{tm} B(t)) = ∅, by the

rewrited firability definition, we obtain that tm ∈ Fr(s0).

Hence, the assert holds for n = 0.

Assume that the assertion holds for n ≤ k . Consider

n = k + 1.

By induction hypothesis, Fr(sk ) 6= ∅. Let us suppose that

tk ∈ Fr(sk ) and sk
tk

−→r sk+1. Then ∃U ∈ U(Mk , tk ) such

that max(0, ↓ fk (tk )) ≤ ↑U . Since tk is independent of

any other transition in U , the firing of tk does not change

independence relations between these transitions in U . Let

U ′ = U/{tk}. At sk+1, we have that ↑ U ′ ≥ 0 by the formal

semantics of RM-TPNs. Let U ′′ be a maximal concurrent set

at Mk+1 including U ′. Since there is no multi-enabledness

of transitions, the transitions in U ′′/U ′ are newly enabled at

Mk+1. We let tm be the transition with the minimal upper time

bound in U ′′. It follows that tm ∈ Fr(sk+1) from the firability

definition. Hence, the assertion holds for n = k + 1.

Property 3 shows that RM-TPNs can keep the consistency

of the non-emptiness of the enabled and firable transition sets

at any state. However, W-TPNs do not satisfy the property.

For example, in Fig. 1, after firing t4 and t6, both t1 and t2
are overdue enabled, i.e., En(M ) = {t1, t2}, but Fr(s) = ∅.

Therefore, W-TPNs may produce some invalid schedules due

to the lack of timing enforcement.

Property 4: In an RM-TPN, for two progressive enabled

transitions ti and tj, if ∃U ∈ U(M ) such that ti,tj. ∈ U and

max(0, ↓ f (ti), ↓ f (tj)) ≤ ↑U , then ti and tj can fire in an

interleaving way from s.

Proof: Since ti, tj ∈ U and max(0, ↓ f (ti), ↓ f (tj)) ≤

↑U , we have that ti||tj and ti, tj ∈ Fr(s). Let ED = [max(0, ↓

f (ti), ↓ f (tj)), ↑U ]. If we execute s
ti,d
−→r s

′ with d ∈ ED, then

↓ f ′(tj) =↓ f (tj)−d ≤ 0 and ↑ f ′(tj) =↑ f (tj)−d ≥ 0. At s′,

there must be U ′ ∈ U(M ′, tj) such that ↓ f ′(tj) ≤ 0 ≤ ↑U ′,

thus we obtain that tj ∈ Fr(s′). Similarly, we may fire tj and

ti successively from s. Hence, ti and tj can fire independently

from s.

Property 4 shows that two independent transitions with

overlapping efficient firing intervals in a maximal concurrent

set can fire independently in an RM-TPN. Their overlapping

efficient firing interval is [max(0, ↓ f (ti), ↓ f (tj)), ↑U ].

However, M-TPNs do not meet the property. For example,

in Fig. 1, t2t5 can be scheduled in the M-TPN but t5t2
cannot. The cause of the issue is that the firabilities of two

independent transitions are determined by different transition

sets in an M-TPN. For example, t2’s firability is decided by

transition set {t2, t3, t4, t5, t6} and t5’s by {t5, t1, t2, t3, t4}.

VOLUME 8, 2020 46485



L. Pan et al.: TPN With Relaxed Mixed Semantics for Schedulability Analysis of Flexible Manufacturing Systems

FIGURE 3. Independent transitions and timed concurrency.

Note that two independent firable transitions with overlap-

ping firing intervals may not fire concurrently. For example,

in Fig. 3, t2, t5 ∈ Fr(s0) and t2||t5. Their firing intervals are

overlapping, i.e., f0(t2) = [2, 5] and f0(t5) = [4, 7]. But their

efficient firing intervals are not overlapping, i.e., 20(t2) =

[2, 3] and 20(t5) = [4, 5]. Thus they cannot fire in an

interleaving way from s0.

C. TIMED LANGUAGE ACCEPTANCE

In order to compare scheduling scopes of the four semantics

models, we demonstrate their expressive powers in terms of

timed language acceptance [23], [24].

A timed word w over T is a finite or infinite sequence w =

(t0, θ0)(t1, θ1) . . . (tn, θn) . . . , such that for each i ≥ 0, ti ∈

T , θi ∈ R+ and θi+1 ≥ θi. Note that θ in timed word w is

the absolute (global) firing time of transition t , while d in

s
d

−→ s′ denotes the relative time elapsing from state s.

If a run ρ has the following form ρ = s0
t0,d0
−→ s1

t1,d1
−→

· · · sn
tn,dn
−→ sn+1 · · · , then the timed word w(ρ) can be com-

puted by w(ρ) = (t0, d0)(t1, d0 + d1) · · · (tn, d0 + d1 + . . . +

dn) · · · .

In Fig. 1, Timed word (t1, 1)(t3, 4)(t5, 5)(t7, 6)(t8, 7)

can be accepted by all four semantics models. Timed

word (t2, 3)(t3, 4)(t5, 5)(t8, 6) is accepted by M-TPN, RM-

TPN and W-TPN, but not by S-TPN. Timed word

(t3, 4)(t2, 4)(t5, 5)(t8, 8) is accepted by RM-TPN and W-

TPN, but not by S-TPN and M-TPN. Timed word (t6, 7) is

accepted by W-TPN but not by the others.

A timed language L accepted by a TPN model is a set of

all timed words accepted by the model. Let LA denote timed

language L accepted by a model A. We say that a language

LA is a subclass of a language LB, denoted by LA ⊆ LB, if any

timed word accepted by A is also accepted by B.

Property 5: For a TPN, LS−TPN ⊆ LM−TPN ⊆ LRM−TPN ⊆

LW−TPN.

Proof: (1) LM−TPN ⊆ LRM−TPN.

For a TPN, its M-TPNmodel and RM-TPNmodel have the

same initial state s0 = (M0, f0). Thus, we only need to prove

that if s →m s
′ then s →r s

′.

Let S = En(M−B(t)). If s
t,d

−→m s
′, then max(0, ↓ f (t)) ≤

d ≤ min{↑ f (t), ↑S} by the formal semantics of M-TPN.

From the rewrited firability definition of RM-TPN, it follows

that t ∈ Fr(s) for RM-TPN. Since Ŵr (t) = max{↑U |U ∈

U(M , t)} ≥ min{↑ f (t), ↑S} = Ŵm(t), we obtain that max(0,

↓ f (t)) ≤ d ≤ Ŵr (t). From the semantics of RM-TPN,

it follows that s
t,d

−→r s
′.

Hence, if there is a run ρ1 = s0
t0,d0
−→m s1

t1,d1
−→m · · · sn

in M-TPN, then there must be a run ρ2 = s0
t0,d0
−→r s1

t1,d1
−→r

· · · sn in RM-TPN. According to the definition of timed word,

we have that w(ρ1) = w(ρ2). That is to say, if w(ρ1) ∈

LM−TPN, then w(.ρ2) ∈ LRM−TPN. Therefore, it follows that

LM−TPN ⊆ LRM−TPN.

The proofs of LS−TPN ⊆ LM−TPN and LRM−TPN ⊆

LW−TPN are similar to that of (1) and thus omitted.

The property shows that the scheduling scope of an

RM-TPN is between that of M-TPN and W-TPN. From the

definitions of efficient firing time bound of a transition,

we can find that the order of time bounds at a state for four

semantics models is Ŵs(t) ≤ Ŵm(t) ≤ Ŵr (t) ≤ Ŵw(t). Thus

the number of feasible firable transitions at a state for an

RM-TPN is more than that for M-TPN and S-TPN.

On the other hand, from the definition of transition firabil-

ity of RM-TPNs, we know that the firing of a transition

can preserve at least a progressive maximal concurrent set.

The property keeps the consistency in non-emptiness of the

enabled and firable transition sets for RM-TPN, and ensures

that the model does not produce overdue enabled transition

set.

D. TURING EQUIVALENCE

It is known that time Petri nets with strong semantics that can

perform zero testing is equivalent to a Turing machine [25].

In [13], timed Petri net models (with weak semantics) are

proved to be not Turing powerful because they cannot simu-

late a counter with test on zero. Next, we show that M1-TPNs

and RM-TPNs are expressive enough to model Two Counter

Machines (2CM), which have been proved to be Turing

equivalent.

A 2-counter machine (2CM), with nonnegative counters c1
and c2, is a sequence of labeled instructions

0 : Instr0; 1 : Instr1; . . . ; n : Instrn

where Instrn is a Halt-command and Instri, i = 0, 1, . . . , n-1,

has one of the two following forms (assuming 0 ≤ k, k1,

k2 ≤ n and 1 ≤ j ≤ 2)

1. cj := cj + 1; goto k

2. if cj = 0 then goto k1 else (cj := cj − 1; goto k2)

A configuration of 2CM is a tuple C = (l, v1, v2) where

1. l is the value of the program counter (instruction

pointer); and

2. v1 and v2 are the values of counters c1 and c2.

A computation of 2CM is a finite or infinite sequence of

configurations.

Theorem 1: RM-TPNs can simulate 2-counter machines.

Proof:We construct an RM-TPN simulating a 2-counter

machine (2CM) as follows.

(i) Adding places p1, p2 (representing two counters) and

places p′
0, p

′
1, . . . , p

′
n (representing the instruction pointers of

the program counter) into the place set P.

46486 VOLUME 8, 2020



L. Pan et al.: TPN With Relaxed Mixed Semantics for Schedulability Analysis of Flexible Manufacturing Systems

(ii) If Instri is ‘‘cj := cj+1; goto k’’. Then adding transition

ti into the transition set T such that B(p′
i, ti) = F(p′

k , ti) =

F(pj, ti) = 1, and SI (ti) = 0.

(iii) If Instri is ‘‘if cj = 0 then goto k1 else (cj := cj − 1;

goto k2)’’, then adding transitions ti1, ti2, ti3, ti4, ti5 and places

pi1, pi2, pi3, pi4 into M2-TPN such that

B(p′
i, ti1) = F(pi1, ti1) = F(pi2, ti1) = 1,

B(pi2, ti2) = F(pi3, ti2) = 1,

B(pi1, ti3) = B(pj, ti3) = F(pi4, ti3) = 1,

B(pi1, ti4) = B(pi3, ti4) = F(p′
k1, ti4) = 1,

B(pi3, ti5) = B(pi4, ti5) = F(p′
k2, ti5) = 1,

SI (ti1) = SI (ti3) = SI (ti4) = SI (ti5) = 0 and SI (ti2) = 2.

FIGURE 4. Representing a 2CM by an RM-TPN.

This construction is schematized in Fig. 4.

For any input counter values v1 and v2, we put v1 and v2
tokens in places p1 and p2 respectively, one token in p′

1, and

0 tokens elsewhere in RM-TPN.

Now, we prove that a run of RM-TPN can simulate a

computation of 2CM. The proof is carried out by induction

on h.

For the basis case (h = 0), we let M0(p1) = v01, M0(p2) =

v02, M0(p
′
1) = 1, and M0(p) = 0 for any other place p. Hence

M0 can simulate the initial configuration (l0, v
0
1, v

0
2) with l0 =

0.

Assume that the assertion holds for h ≤ r . Consider h =

r + 1.

By induction hypothesis, we know that the run M0 →

M1 . . . , → Mr simulates the computation (l0, v
0
1, v

0
2), (l1,

v11, v
1
2), . . . , (lr , v

r
1, v

r
2) such that Mr (p1) = vr1, Mr (p2) =

vr2,Mr (p
′
lr
) = 1 and Mr (p) = 0 for any other place p.

We consider two cases:

Case 1: If Instrlr is ‘‘cj := cj + 1; goto k’’. Then tlr can

fire from Mr as shown in Fig. 4a. Firing tlr leads to marking

Mr+1 such that Mr+1(pj) = vrj+ 1, Mr+1(pj⊕1) = vrj⊕1,

Mr+1(p
′
k ) = 1 andMr+1(p) = 0 for any other place p, where

j ∈ {1, 2} and j ⊕ 1 = (j mod 2) + 1. Hence the (r + 1)th

configuration is (lr+1, v
r+1
1 , vr+1

2 ) with lr+1 = k, vr+1
j =

vrj + 1 and vr+1
j⊕1 = vrj⊕1.

Case 2: If Instrlr is ‘‘if cj = 0 then goto k1 else (cj := cj−1;

goto k2)’’. Then this case is divided into two subcases:

(i) If cj = 0, then the transition sequence tlr1tlr2tlr4 can be

fired fromMr (Fig. 4b). Firing the sequence takes 2 time units

and reaches Mr+1 with Mr+1(pj) = vrj = 0,Mr+1(pj⊕1) =

vrj⊕1,Mr+1(p
′
k1
) = 1 and Mr+1(p) = 0 for any other place p.

Hence the (r + 1)th configuration is (lr+1, v
r+1
1 , vr+1

2 ) where

lr+1 = k1, v
r+1
j = vrj = 0 and vr+1

j⊕1 = vrj⊕1.

(ii) If cj > 0, then the transition sequence that can be fired

fromMr is tlr1 tlr3 tlr2 tlr5 (Fig. 4b). Firing the sequence takes

2 time units and reaches marking Mr+1 with Mr+1(pj) =

vrj − 1,Mr+1(pj⊕1) = vrj⊕1,Mr+1(p
′
k2
) = 1 andMr+1(p) = 0

for any other place p. Hence the (r + 1)th configuration is

(lr+1, v
r
1, v

r
2) where lr+1 = k2, v

r+1
j = vrj − 1 and vr+1

j⊕1 =

vrj⊕1.

Therefore, a RM-TPN can simulate a 2-counter machine.

Theorem 1 shows that RM-TPN has the power of a Turing

machine. This is because the model has timing enforcement

on minimal time upper bounds of maximal concurrent sets.

IV. STATE CLASS METHOD

State class methods are a fundamental and most widely

applied technique for schedulability analysis and timing ver-

ification of TPNs [8]–[10], [26]–[29]. In this subsection, we

propose a state class method for M2-TPNs.

A state class of a TPN is a pair C = (M ,D), where

1. M is a marking;

2. D: Ṫ × Ṫ → I is a firing domain. For ti, tj ∈ Ṫ ,

D(ti, tj) represents the firing interval of tj relative to ti,

where Ṫ = T∪{t0, t∗}, t∗ is the generative transition of

C , and t0 is a special reference transition, called zero

transition, which global firing time is 0 (i.e. SI (t0) = 0).

If firing transition t directly leads to state class C , we say

that t is a generative transition of C . t0 can be viewed as the

generative transition of the initial state class C0.

It is easy to find that ↑ D(ti, tj) = − ↓ D(tj, ti). The initial

state class C0 = (M0,D0) is defined as follows:

1. M0 is the initial marking; and

2. ∀ti, tj ∈ En(M0) ∪ {t0}, if ti 6= tj,D0(ti, tj) = SI (tj) −

SI (ti); otherwise D0(ti, tj) = 0.

Firability: Transition tf ∈ En(M ) is firable at state class

C = (M ,D), if

1. ↑ D(t∗ , tf ) ≥ 0; and

2. ∃U ∈ U(M , tf ), such that ∀ti ∈ U , ↑ D(tf , ti) ≥ 0.

For RM-TPNs, a progressive enabled transition is firable if

it can fire before the other transitions in a maximal concurrent

transition set containing itself.

According to Property 1, firable condition 2 of RM-TPNs

can be rewritten as:

En(M −
∑

t∈S∪{tf }
B(t)) = ∅,

where S = {t|t ∈ En(M − B(tf ))∧ ↑ D(tf , t) ≥ 0}.

VOLUME 8, 2020 46487



L. Pan et al.: TPN With Relaxed Mixed Semantics for Schedulability Analysis of Flexible Manufacturing Systems

LetFr(C) be the set of all firable transitions at state classC .

Firing rules: In RM-TPNs, state class Ck+1 =

(Mk+1,Dk+1) reached from Ck = (Mk ,Dk ) by firing tf ∈

Fr(Ck ) is computed as follows:

1. Marking Mk+1: Mk+1 = Mk − B(tf ) + F(tf )

2. Firing domain Dk+1:

Let t∗ = tf , ∀ti, tj ∈ En(Mk+1) ∪ {t0},

(i) Dk+1(ti, ti) = 0

(ii) Dk+1(t∗ , ti) =

{

SI (ti) if ti ∈ New(Mk , tf )

[↓Dk (ti, tf ), ↑ Dk (tf , ti)] otherwise

where ↓Dk (ti, tf ) = max{↓ Dk (tf , ti), ↓ Dk (t, ti)| t ∈

En(Mk − B(tf ))∧ ↑ Dk (tf , t) ≥ 0}.

(iii) Dk+1(ti, tj)

=

{

Dk+1(t∗ , tj)−Dk+1(t∗ , ti) if ti or tj ∈ New(Mk , tf )

Dk (ti, tj) ∩ (Dk+1(ti, t∗ ) + Dk+1(t∗ , tj)) otherwise

Firing rule 2(ii) computes the firing interval of ti relative to

firing tf , i.e., the firing interval of ti relative to Ck+1, where

↓Dk (ti, tf ) indicates the maximal lower bound among firing

intervals of all persistently progressive enabled transitions

relative to tf . Rule 2(iii) computes the firing interval of tj
relative to ti at Ck+1 according to the results of Rule 2(ii).

A correctness proof of the firing rules is showed in

Appendix.

Next, we take schedule t3t5t2t8 in Fig. 1 as an example to

illustrate the proposed state class method.

The initial state class is C0 = (M0,D0) where

M0 = (1 1 1 0 0 0 0 0),

D0 =

t0
t1
t2
t3
t4
t5
t6





















0 [1, 2] [3, 4] [4, 5] [6, 6] [3, 5] [6, 7]

0 [1, 3] [2, 4] [4, 5] [1, 4] [4, 6]

0 [0, 2] [2, 3] [−1, 2] [2, 4]

0 [1, 2] [−2, 1] [1, 3]

0 [−3, −1] [0, 1]

0 [1, 4]

0





















.

At C0, t2 is firable because En(M −
∑

t∈S∪{t2}
B(t)) =

∅ with S = {t3, t4, t5, t6}. t4 is not because En(M −
∑

t∈S∪{t4}
B(t)) 6= ∅ where S = {t6}. In the same way,

we obtain that Fr(C0) = {t1, t2, t3, t5}.

Firing t3 reaches C1 = (M1,D1) where

M1 = (10100100),

D1 =

t0
t∗ (t3)

t2
t5
t6













0 [4, 4] [4, 4] [4, 5] [6, 7]

0 [0, 0] [0, 1] [2, 3]

0 [0, 1] [2, 3]

0 [1, 3]

0













.

By the transition firability, Fr(C1) = {t2, t5}. At C1, firing

t5 leads to C2 = (M2,D2) such that

M2 = (10000110),

D2 =

t0
t∗ (t5)

t2





0 [4, 4] [4, 4]

0 [0, 0]

0



 .

By the transition firability, Fr(C2) = {t2}. Firing t2 leads

to C3 = (M3,D3) where

M3 = (00001110),

D3 =

t0
t∗ (t2)

t8





0 [4, 4] [7, 7]

0 [3, 3]

0



 .

Fr(C3) = {t8}. Firing t8 leads to C4 = (M4,D4) where

M4 = (00000001),

D4 =
t0

t∗ (t8)

(

0 [7, 7]

0

)

.

En(M4) = ∅ and Fr(C4) = ∅. Thus, the firing interval of

schedule t3t5t2t8 is [7,7]. We generate a reachability class tree

of RM-TPN in Fig. 5.

FIGURE 5. Reachability tree of the TPN in Fig. 1 for RM-TPN.

V. SCHEDULING PROBLEM WITH DUE WINDOWS

Scheduling problems with due windows have their origins in

Just-in-Time (JIT) philosophy. Usually, JIT scheduling mod-

els assume an existence of job due-dates and penalize both

early and tardy jobs. However, in manufacturing industry it

is often expected that the jobs are finished in a certain time

interval (due window) rather than at a single point in time

(due date) [5]–[7], [30], [31].

Consider a scheduling problem with distinct due windows,

under the assumptions that a machine can process at most one

job at a time and all jobs are ready for processing at time

t = 0. For convenience, we list the notations used throughout

the paper as follows:

Ji: the ith job;

mk : the kth machine;

Oij: the processing operation of job i on machine j;

5 : the set of all schedules;

π ∈ 5: a schedule;

dj: the due window of job j, where ↓ dj is the earliest due

date and ↑ dj is the latest due date;

c(π ): the interval completion time of schedule π ;

cj(π ): the interval completion time of job j in schedule π ;

Ej(π ) = [max{0, ↓ dj− ↑ cj(π )},max{0, ↓ dj− ↓

cj(π )}]: the interval earliness of job j in schedule π ;

Tj(π ) = [max{0, ↓ cj(π )− ↑ dj},max{0, ↑ cj(π )− ↑

dj}]: the interval tardiness of job j in schedule π ;

αj: the unit earliness penalty for job j;

βj: the unit tardiness penalty for job j;

gj(π ) = α∗
j Ej(π ) + β∗

j Tj(π ): the penalty interval of job j

in schedule π .

46488 VOLUME 8, 2020



L. Pan et al.: TPN With Relaxed Mixed Semantics for Schedulability Analysis of Flexible Manufacturing Systems

TABLE 2. A scheduling problem with 4 jobs and 4 machines.

G(π ) =
∑n

i gi(π ): the total penalty interval of schedule π .

We consider a scheduling problem with four jobs and three

machines in [32], which is described in Table 2. Each job has

four operations. The data on each operation is composed of

two parts: the first is the machine that processes the operation

and the second is interval processing time. Let Oij represent

the operation of Job Ji on machine mj, where i = 1, 2, 3, 4

and j = 1, 2, 3, 4. Processing time interval of operation

Oij is [oij, oij + rij], where oij is the processing time of the

corresponding operation in [32] and random integer rij ∈

[0, 6].

FIGURE 6. The TPN model of the scheduling problem.

According to the description of the problem, we build the

TPN model with the initial marking represented in Fig. 6.

Transition tij represents operation Oij. Place pmk stands for

machine mk (k = 1, 2, 3, 4). Place pi0 represents the initial

status of job Ji and place pij the completion status of the jth

operation process.

Next, we evaluate makespan and total penalty by using

the state class methods of the proposed models, which are

important performance indexes for scheduling problems with

due windows.

Let π# be the optimal schedule with the minimal

makespan. As shown in Table 3, S-TPN produces 2 feasible

schedules, where π# = O24O21O13O31O32O11O33O14O22

O41O43O42O34O44 O23 and c(π#) = [300, 318].

TABLE 3. Comparison of schedulability analysis for four semantics
models.

M-TPN generates 51 feasible schedules, where π# =

O24O31O21O13O32O11O33O22O14O12O41 O23O34O43O42O44

and c(π#) = [286, 300]. RM-TPN produces 1508 feasi-

ble schedules, in which π# = O24O31O21O13O32O33 O22

O41O34O11O43O42O14O12O23O44 and c(π
#) = [272, 286].

W-TPN generates 80876 schedules, where the schedule

with minimal firing interval is O24O13O41O43O42O44 and

its firing interval is [165,178]. Obviously, this is an invalid

schedule because jobs J1, J2 and J3 are not completed. If we

remove the invalid schedules fromW-TPN, we can obtain the

same optimal solution as RM-TPN.

Assume that the due dates of four jobs are d1 = [240, 260],

d2 = [250, 270], d3 = [170, 190] and d4 = [270, 290], and

that the earliness penalty weight αj = 0.3 and the tardiness

penalty weight βj = 0.7.

For RM-TPN, c1(π
#) = [245, 259], c2(π

#) =

[252, 263], c3(π
#) = [172, 179] and c4(π

#) = [272, 286].

E1(π
#) = [max{0, 240 − 259},max{0, 240 − 245}] = [0, 0]

and T1(π
#) = [max{0, 245 − 260},max{0, 259 − 260}] =

[0, 0], and thus g1(π
#) = 0.3∗E1(π

#)+ 0.7∗T1(π
#) = [0, 0].

Similarly, g2(π
#) = [0, 0], g3(π

#) = [0, 0] and g4(π
#) =

[0, 0]. Therefore, the total penalty interval of schedule π# is

G(π#) =
∑n

i gi(π
#) = [0, 0].

In the same way, we can obtain total penalties of optimal

schedules in S-TPN and M-TPN, as shown in Table 3. For

W-TPN, the listed schedule O24O13O41O43O42O44 does not

finish jobs J1, J2 and J3, thus we cannot compute its total

penalty. If these invalid schedules are removed fromW-TPN,

the optimal schedule is the same as that of RM-TPN.

Therefore, we obtain the optimal schedule of the schedul-

ing problem with the minimal makespan and total penalty,

which is π# = O24O31O21O13O32O33O22O41O34O11O43

O42O14O12O23O44. The Gantt chart of the schedule is shown

in Fig. 7.

As shown in Table 3, the computation time of feasible

schedules is in positive correlation with the size of the state

VOLUME 8, 2020 46489



L. Pan et al.: TPN With Relaxed Mixed Semantics for Schedulability Analysis of Flexible Manufacturing Systems

TABLE 4. Summary of four semantics models.

FIGURE 7. The optimal schedule of the problem in Fig. 6.

spaces produced by these semantics models. The size of

the state space of RM-TPN is between that of M-TPN and

W-TPN. However, the state space of W-TPN includes a lot

of invalid schedules. But removing these invalid schedules

needs plenty of time. Therefore, from the state space of

RM-TPN, we can usually obtain better scheduling solutions

than the other semantics models.

The comparison of four semantics models is summarized

in Table 4. All the experiments are performed onDell Latitude

E6430 laptop with a 2.60GHz Intel i7-3720QM processor,

8GB Memory and 64-bit Windows 7 operating system.

VI. CONCLUSION

We have presented a relaxed mixed semantics model for

schedulability analysis and timing verification of time Petri

nets. Our model can preserve particular properties, which are

not satisfied in the existing models, by relaxing the firable

conditions of transitions and keeping strong timing on mini-

mal time upper bounds of maximal concurrent sets.

In this model, the firability of a transition depends on max-

imal concurrent sets containing the transition. The treatment

not only extends the scheduling scope of TPN models, but

also avoids the generation of overdue enabled transition sets.

Invalid schedules that cause overdue enabled transition sets

are avoided in our model. Therefore, by using the model,

we may obtain better feasible solutions than the existing

models.

Benefiting from the preservation of strong timing, a

RM-TPN is proved to be Turing equivalent. The comparison

of four semantics models w.r.t. timed language acceptance

reflects the difference in scheduling scopes of these models.

We further develop a state class method for the schedulability

analysis of the model.

The analysis tool for RM-TPNs has been developed

based on a Matlab platform. The tool is available at

http://sice.hnist.cn/info/1066/1491.htm. Future work intends

to improve our analysis tool and apply it to the modeling and

schedulability analysis of complex systems [33]–[35].

APPENDIX

In order to prove the correctness of the firing rules, we intro-

duce a concept of the Difference Bound Matrix (DBM) [36],

[37]. DBM is a practical matrix representation of time con-

straints (x − y ≤ c). Let Var = {x0, x∗ , x1, . . . , xs} be a finite

set of firing time variables of transitions with its elements in

R+ ∪ {∞}, where x0 ≡ 0, and x∗ is firing time variable of

transition t∗ .

For any ti, tj ∈ En(M )∪ {t0, t∗}, firing interval D(ti, tj) can

be represented by two time constraints xj−xi ≤↑ D(ti, tj) and

xi − xj ≤ − ↓ D(ti, tj). Let B(D) be the DBM representing

a firing domain D. Its element bij can be computed in three

steps:

1. ∀ti, tj ∈ En(M ) ∪ {t0, t∗}, let bij =↑ D(ti, tj) and bji =

− ↓ D(ti, tj);

2. If ti, tj /∈ En(M ) ∪ {t0, t∗}, let bij = ∞; and

3. Add an implicit constraint xi − xi ≤ 0, and let bii = 0.

The closure of a time constraint set computes its tightest

time representation. The closure provides a canonical rep-

resentation, as two closed firing domains describe the same

solution set precisely when they are identical [37]. Thus,

a DBM is normal if its time constraints have been tightened

by the Floyd’s shortest path algorithm [26], [37].

The proof of the following theorem is inspired from the

normalization proof in [10], [26].

Theorem 2: In RM-TPNs, if Cn = (Mn, Dn) is a reachable

state class from the initial state class C0 = (M0, D0), then

B(Dn) is normal.

Proof: The proof is carried out by induction on n.

The base case (n = 0). Let ti, tj, tk ∈ En(M0)∪{t0}. Accord-

ing to the definition of the initial state class C0, we have that

D0(ti, tj) = SI (tj) − SI (ti), i.e., b
0
ij =↑ SI (tj)− ↓ SI (ti) in

B(D0). Then, we obtain that b
0
ik+b

0
kj =↑ SI (tk )− ↓ SI (ti)+ ↑

SI (tj)− ↓ SI (tk ) = b0ij+ ↑ SI (tk )− ↓ SI (tk ) ≥ b0ij. Thus b
0
ij is

not replaced by b0ik + b0kj during the execution of the Floyd’s

shortest path algorithm, and B(D0) is identical to its shortest

path closure. Therefore, B(D0) is normal.

Assume that the assertion holds for n ≤ h. Consider

n = h+ 1.

46490 VOLUME 8, 2020



L. Pan et al.: TPN With Relaxed Mixed Semantics for Schedulability Analysis of Flexible Manufacturing Systems

Suppose that tf ∈ F(Ch). By the inductive assumption,

B(Dh) is normal.

For any ti ∈ En(Mh+1) ∪ {t0}, if ti ∈ New(Mh, tf ), then

its firing interval should equal xf + SI (tr ), where xf is tf ’s

firing time. Thus bh+1
∗i = max{xi− xf } =↑ SI (ti) and b

h+1
i∗ =

max{xf − xi} = − ↓ SI (ti), and therefore, Dh+1(t∗ , ti) =

[−bh+1
i∗ , bh+1

∗i ] = SI .

If ti ∈ En(Mh − B(tf )) ∪ {t0}, then the earliest firing

time of each transition ti that remains enabled should be

postponed to xf , but its latest firing time remains the same.

It follows that bh+1
∗i = max{xi − xf } = bhfi =↑ Dh(tf , ti).

According to the definition of transition firability, the fir-

ing time of tf cannot overtake the minimum of the latest

firing time of its non-conflicting transitions. Thus bh+1
i∗ =

min{max{xf − xi},max{xl − xi|l 6= i, f }} = min{bhif , b
h
il} =

min{↑ Dh(ti, tf ), ↑ Dh(ti, tl)} = min{− ↓ Dh(tf , ti), − ↓

Dh(tl, ti)} = −max{↓ Dh(tf , ti), ↓ Dh(tl, ti)}. Therefore,

Dh+1(t∗ , ti) = [−bh+1
i∗ , bh+1

∗i ] = [max{↓ Dh(tf , ti), ↓

Dh(tl, ti)}, ↑ Dh(tf , ti)].

For any ti, tj ∈ En(Mh+1) ∪ {t0}, if ti or tj ∈ New(Mh, tf ),

then bh+1
ij = max{xj − xi} = max{xj − xf } + max{xf −

xi} = bh+1
∗j +bh+1

i∗ and bh+1
ji = bh+1

∗i + bh+1
j∗ . Therefore

Dk+1(ti, tj) = [−bh+1
ji , bh+1

ij ] = [−bh+1
∗i − bh+1

j∗ , bh+1
∗j +

bh+1
i∗ ] = [↓ Dk+1(t∗ , tj)− ↑ Dk+1(t∗ , ti), ↑ Dk+1(t∗ , tj)− ↓

Dk+1(t∗ , ti)] = Dk+1(t∗ , tj) − Dk+1(t∗ , ti).

If ti, tj ∈ En(Mh−B(tf ))∪{t0}, then b
h+1
ij = min{bhij, b

h+1
i∗ +

bh+1
∗j } = min{↑ Dh(ti, tj), ↑ Dh+1(ti, t∗ )+ ↑ Dh+1(t∗ , tj)}

and −bh+1
ji = −min{↑ Dh(tj, ti), ↑ Dh+1(tj, t∗ )+ ↑

Dh+1(t∗ , ti)} = max{↓ Dh(ti, tj), ↓ Dh+1(ti, t∗ )+ ↓

Dh+1(t∗ , tj)}. Thus, Dh+1(ti, tj) = [−bh+1
ji , bh+1

ij ] =

Dh(ti, tj) ∩ (Dh+1(ti, t∗ ) + Dh+1(t∗ , tj)).

For any ti, tj, tk ∈ En(Mh+1)∪{t0}, if ti or tj ∈ New(Mh, tf )

(assume that tj ∈ New(Mh, tf )), we face two cases:

1) If tk ∈ New(Mh, tf ), then b
h+1
ij = bh+1

i∗ + bh+1
∗j , bh+1

ik =

bh+1
i∗ + bh+1

∗k and bh+1
kj = bh+1

∗j + bh+1
k∗ . It follows that bh+1

ik +

bh+1
kj = bh+1

i∗ + bh+1
∗k + bh+1

∗j + bh+1
k∗ = bhfk +min{bhkf , b

h
kl} +

bh+1
i∗ +bh+1

∗j =min {bhfk+bhkf , b
h
fk+bhkl}+bh+1

i∗ +bh+1
∗j . By the

inductive assumption and the transition firability, we obtain

that min{bhfk + bhkf , b
h
fk + bhkl} ≥ 0. Thus, bh+1

ik + bh+1
kj ≥

bh+1
i∗ + bh+1

∗j = bh+1
ij .

2) If tk ∈ En(Mh − B(th+1)) ∪ {t0}, then b
h+1
ij = bh+1

i∗ +

bh+1
∗j , bh+1

ik = min{bhik , b
h+1
∗k + bh+1

i∗ } and bh+1
kj = bh+1

∗j +

bh+1
k∗ . It follows that bh+1

ik +bh+1
kj = min{bhik , b

h+1
∗k +bh+1

i∗ }+

bh+1
∗j +bh+1

k∗ = min{ bhik , b
h
fk+bh+1

i∗ }+min{bhkf , b
h
kl}+bh+1

∗j =

min{bhik +bhkf , b
h
ik +bhkl , b

h
fk +bhkf +bh+1

i∗ , bhfk +bhkl +bh+1
i∗ }+

bh+1
∗j . By the inductive assumption and transition firability,

bh+1
ik + bh+1

kj ≥ min{bhif , b
h
il , b

h+1
i∗ , bh+1

i∗ }+ bh+1
∗j = bh+1

i∗ +

bh+1
∗j = bh+1

ij .

If ti, tj, ∈ En(Mh-B(th+1))∪{t0}, there are two cases:

1) If tk ∈ New(Mh, tf ), then bh+1
ij = min{bhij, b

h+1
i∗ +

bh+1
∗j }, bh+1

ik = bh+1
i∗ + bh+1

∗k and bh+1
kj = bh+1

∗j + bh+1
k∗ .

It follows that bh+1
ik + bh+1

kj = bh+1
∗k + bh+1

i∗ + bh+1
∗j + bh+1

k∗ =

min{ bhfk + bhkf , b
h
fk+ bhkl} + bh+1

i∗ + bh+1
∗j . By the inductive

assumption and transition firability, we obtain that min{ bhfk+

bhkf , b
h
fk+bhkl}≥ 0. Thus, bh+1

ik +bh+1
kj ≥ bh+1

i∗ +bh+1
∗j ≥ bh+1

ij .

2) If tk ∈ En(Mh-B(th+1))∪{t0}, then b
h+1
ij = min{ bhij,

bh+1
i∗ + bh+1

∗j }, bh+1
ik = min{bhik , b

h+1
i∗ + bh+1

∗k } and bh+1
kj =

min{bhkj, b
h+1
k∗ + bh+1

∗j }. It follows that bh+1
ik + bh+1

kj = min{

bhik +bhkj, b
h
ik +bh+1

k∗ +bh+1
∗j , bh+1

i∗ +bh+1
∗k +bhkj, b

h+1
i∗ +bh+1

∗k +

bh+1
k∗ + bh+1

∗j }. By the inductive assumption and transition

firability, we obtain that bh+1
ik + bh+1

kj ≥ bhij, b
h
ik + bh+1

k∗ +

bh+1
∗j = bhik + min{bhkf , b

h
kl}+b

h+1
∗j ≥ min{bhif , b

h
il}+b

h+1
∗j =

bh+1
i∗ bh+1

∗j , bh+1
i∗ +bh+1

∗k +bhkj = bh+1
i∗ +bhfk+b

h
kj ≥ bh+1

i∗ +bhfj =

bh+1
i∗ bh+1

∗j and bh+1
i∗ + bh+1

∗k + bh+1
k∗ + bh+1

∗j = bh+1
i∗ + bh+1

∗j +

min{bhkf , b
h
kl}+b

h
fk ≥ bh+1

i∗ bh+1
∗j . Thus, bh+1

ik + bh+1
kj ≥ bh+1

ij .

Therefore, B(Dh+1) is normal.

REFERENCES

[1] X. Guo, S. Wang, D. You, Z. Li, and X. Jiang, ‘‘A siphon-based deadlock

prevention strategy for S3PR,’’ IEEE Access, vol. 7, pp. 86863–86873,

2019.

[2] W. Duo, X. Jiang, O. Karoui, X. Guo, D. You, S. Wang, and Y. Ruan,

‘‘A deadlock prevention policy for a class of multithreaded software,’’

IEEE Access, vol. 8, pp. 16676–16688, 2020.

[3] S. Wang, D. You, andM. Zhou, ‘‘A necessary and sufficient condition for a

resource subset to generate a strict minimal siphon in s 4PR,’’ IEEE Trans.

Autom. Control, vol. 62, no. 8, pp. 4173–4179, Aug. 2017.

[4] F. Yang, N. Wu, Y. Qiao, and R. Su, ‘‘Polynomial approach to optimal

one-wafer cyclic scheduling of treelike hybrid multi-cluster tools via

Petri nets,’’ IEEE/CAA J. Automatica Sinica, vol. 5, no. 1, pp. 270–280,

Jan. 2018.

[5] A. Janiak, W. A. Janiak, T. Krysiak, and T. Kwiatkowski, ‘‘A survey on

scheduling problemswith due windows,’’Eur. J. Oper. Res., vol. 242, no. 2,

pp. 347–357, Apr. 2015.

[6] T. Jamrus, C.-F. Chien, M. Gen, and K. Sethanan, ‘‘Hybrid particle

swarm optimization combined with genetic operators for flexible job-shop

scheduling under uncertain processing time for semiconductormanufactur-

ing,’’ IEEE Trans. Semicond. Manuf., vol. 31, no. 1, pp. 32–41, Feb. 2018.

[7] Q.-K. Pan, R. Ruiz, and P. Alfaro-Fernández, ‘‘Iterated search methods

for earliness and tardiness minimization in hybrid flowshops with due

windows,’’ Comput. Oper. Res., vol. 80, pp. 50–60, Apr. 2017.

[8] B. Berthomieu andM. Diaz, ‘‘Modeling and verification of time dependent

systems using time Petri nets,’’ IEEE Trans. Softw. Eng., vol. 17, no. 3,

pp. 259–273, Mar. 1991.

[9] J. Wang, Y. Deng, and G. Xu, ‘‘Reachability analysis of real-time systems

using time Petri nets,’’ IEEE Trans. Syst., Man, Cybern. B. Cybern., vol. 30,

no. 5, pp. 725–736, Oct. 2000.

[10] L. Pan, Z. J. Ding, and M. C. Zhou, ‘‘A configurable state class method

for temporal analysis of time Petri nets,’’ IEEE Trans. Syst., Man, Cybern.

Syst., vol. 44, no. 4, pp. 482–493, Apr. 2014.

[11] F. Basile, M. P. Cabasino, and C. Seatzu, ‘‘Diagnosability analysis of

labeled time Petri net systems,’’ IEEE Trans. Autom. Control, vol. 62, no. 3,

pp. 1384–1396, Mar. 2017.

[12] L. Li, F. Basile, and Z. Li, ‘‘An approach to improve permissiveness of

supervisors for GMECs in time Petri net systems,’’ IEEE Trans. Autom.

Control, vol. 65, no. 1, pp. 237–251, Jan. 2020.

[13] T. Bolognesi and P. Cremonese, ‘‘The Weakness of Some Timed Mod-

els for Concurrent Systems,’’ NR-Classic-Cars, Rudersberg, Germany,

Tech. Rep. CNUCE C89-29, 1989.

[14] P. A. Reynier and A. Sangnier, ‘‘Weak time Petri nets strike back!’’ in Proc.

Int. Conf. Concurrency Theory, vol. 5710. Berlin, Germany: Springer,

2009, pp. 557–571.

[15] J. J. P. Tsai, S. Jennhwa Yang, and Y.-H. Chang, ‘‘Timing constraint

Petri nets and their application to schedulability analysis of real-time

system specifications,’’ IEEE Trans. Softw. Eng., vol. 21, no. 1, pp. 32–49,

Jan. 1995.

VOLUME 8, 2020 46491



L. Pan et al.: TPN With Relaxed Mixed Semantics for Schedulability Analysis of Flexible Manufacturing Systems

[16] D. Xu, X. He, and Y. Deng, ‘‘Compositional schedulability analysis of

real-time systems using time Petri nets,’’ IEEE Trans. Softw. Eng., vol. 28,

no. 10, pp. 984–996, Oct. 2002.

[17] H. Lee and J.-Y. Choi, ‘‘Constraint solving approach to schedulability

analysis in real-time systems,’’ IEEE Access, vol. 6, pp. 58418–58426,

2018.

[18] Y. Qiao, N. Wu, and M. Zhou, ‘‘Schedulability and scheduling analysis of

dual-arm cluster tools with wafer revisiting and residency time constraints

based on a novel schedule,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 45,

no. 3, pp. 472–484, Mar. 2015.

[19] L. Pan and W. Zhao, ‘‘A mixed semantics model for schedulability

analysis of time Petri nets,’’ in Proc. Int. Conf. Manage. E-Commerce

E-Government, 2009, pp. 503–508.

[20] H. Boucheneb, D. Lime, and O. H. Roux, ‘‘On multi-enabledness in time

Petri nets,’’ in Proc. Int. Conf. Appl. Theory Petri Nets Concurrency,

vol. 7927. Berlin, Germany: Springer, 2013, pp. 130–149.

[21] Z. Ma, Z. Li, and A. Giua, ‘‘Marking estimation in a class of time labeled

Petri nets,’’ IEEE Trans. Autom. Control, vol. 65, no. 2, pp. 493–506,

Feb. 2020, doi: 10.1109/TAC.2019.2907413.

[22] Z. He, Z. Li, and A. Giua, ‘‘Optimization of deterministic timed

weighted marked graphs,’’ IEEE Trans. Autom. Sci. Eng., vol. 14, no. 2,

pp. 1084–1095, Apr. 2017.

[23] B. Berard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux, ‘‘Comparison

of the expressiveness of timed automata and time Petri nets,’’ in Proc.

Int. Conf. Formal Model. Anal. Timed Syst., vol. 3829. Berlin, Germany:

Springer, 2005, pp. 211–225.

[24] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux, ‘‘The expres-

sive power of time Petri nets,’’ Theor. Comput. Sci., vol. 474, pp. 1–20,

Feb. 2013.

[25] N. D. Jones, L. H. Landweber, and Y. Edmund Lien, ‘‘Complexity of some

problems in Petri nets,’’ Theor. Comput. Sci., vol. 4, no. 3, pp. 277–299,

Jun. 1977.

[26] E. Vicario, ‘‘Static analysis and dynamic steering of time-dependent sys-

tems,’’ IEEE Trans. Softw. Eng., vol. 27, no. 8, pp. 728–748, Aug. 2001.

[27] H. Boucheneb and K. Barkaoui, ‘‘Stubborn sets for time Petri nets,’’ ACM

Trans. Embedded Comput. Syst., vol. 14, no. 1, pp. 1–25, Jan. 2015.

[28] K. Klai, ‘‘Timed aggregate graph: A finite graph preserving event-and

state-based quantitative properties of time Petri nets,’’ in Transactions on

Petri Nets and Other Models of Concurrency, vol. 9410. Berlin, Germany:

Springer, 2015, pp. 34–54.

[29] H. Boucheneb, D. Lime, B. Parquier, O. H. Roux, and C. Seidner, ‘‘Optimal

reachability in cost time Petri nets,’’ in Formal Modeling and Analysis of

Timed Systems, vol. 10419. Berlin, Germany: Springer, 2017, pp. 58–73.

[30] A. Janiak, W. Janiak, and R. Januszkiewicz, ‘‘Algorithms for parallel

processor scheduling with distinct due windows and unit-time jobs,’’ Bull.

Polish Acad. Sci., Tech. Sci., vol. 57, no. 3, pp. 209–215, Jan. 2009.

[31] M. A. Weber, R. Leisten, and M. A.Weber, ‘‘Minimizing Total Time Devi-

ation from Due Windows for Jobs with Multiple Delivery Due Windows

Using Lot-streaming in Permutation Flow Shops,’’ Int. J. Oper. Quant.

Manage., vol. 23, no. 3, pp. 161–185, 2017.

[32] E. Taillard, ‘‘Benchmarks for basic scheduling problems,’’ Eur. J. Oper.

Res., vol. 64, no. 2, pp. 278–285, 1993.

[33] C. Pan, M. Zhou, Y. Qiao, and N. Wu, ‘‘Scheduling cluster tools in

semiconductor manufacturing: Recent advances and challenges,’’ IEEE

Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 586–601, Apr. 2018.

[34] H. Alhussian, N. Zakaria, A. Patel, A. Jaradat, S. J. Abdulkadir,

A. Y. Ahmed, H. T. Bahbouh, S. O. Fageeri, A. A. Elsheikh, and J. Watada,

‘‘Investigating the schedulability of periodic real-time tasks in virtualized

cloud environment,’’ IEEE Access, vol. 7, pp. 29533–29542, 2019.

[35] K. Gao, Z. Cao, L. Zhang, Z. Chen, Y. Han, and Q. Pan, ‘‘A review on

swarm intelligence and evolutionary algorithms for solving flexible job

shop scheduling problems,’’ IEEE/CAA J. Automatica Sinica, vol. 6, no. 4,

pp. 904–916, Jul. 2019.

[36] J. Bengtsson and W. Yi, ‘‘Timed automata: Semantics, algorithms and

tools,’’ in Lectures on Concurrency and Petri Nets, vol. 3098. Berlin,

Germany: Springer, pp. 87–124, 2004.

[37] D. Dill, ‘‘Timing assumptions and verification of finite-state concurrent

systems,’’ Proc. Workshop Comput. Aided Verification Methods Finite

State Syst., vol. 407. Berlin, Germany: Springer, pp. 197–212, 1989.

LI PAN received the M.S. degree in computer

software and theory from Sun Yat-sen University,

Guangzhou, China, in 2004, and the Ph.D. degree

in computer applied technology from Tongji Uni-

versity, Shanghai, China, in 2009. He is currently a

Professor with the Department of Information Sci-

ence and Engineering, Hunan Institute of Science

and Technology, China. He has published more

than 30 articles in refereed journals and conference

proceedings. His main research interests include

Petri nets and computational intelligence.

BO YANG received the B.Sc. degree inmechanical

engineering from Zhengzhou University, China,

in 1996, the M.Sc. degree in computer applica-

tion technology from Xiangtan University, China,

in 2004, and the Ph.D. degree in mechanical and

electronic engineering from Central South Univer-

sity, China, in 2010. Since 2012, he has been an

Associate Professor with the College of Informa-

tion Science and Technology, Hunan Institute of

Science and Technology. His main research inter-

ests include MR brain image analysis, statistical pattern recognition, and

machine learning.

JUNQIANG JIANG received the Ph.D. degree

in software engineering from Hunan University,

Changsha, China, in 2017. He is currently aMaster

Supervisor with the School of Information Science

and Engineering, Hunan Institute of Science and

Technology, China. His main research interests

include cloud computing, parallel computing and

workflow scheduling, and machine learning. He is

a member of China Computer Federation.

MENGCHU ZHOU (Fellow, IEEE) received the

B.S. degree in control engineering from the

Nanjing University of Science and Technology,

Nanjing, China, in 1983, the M.S. degree in auto-

matic control from the Beijing Institute of Tech-

nology, Beijing, China, in 1986, and the Ph.D.

degree in computer and system engineering from

the Rensselaer Polytechnic Institute, Troy, NY,

USA, in 1990.

In 1990, he joined the New Jersey Institute of

Technology, Newark, NJ, USA, where he is currently a Distinguished Pro-

fessor of electrical and computer engineering. He has authored or coauthored

over 640 publications, including 12 books, over 330 journal articles (majority

in the IEEE TRANSACTIONS), and 28 book chapters. His current research

interests include Petri nets, manufacturing, transportation, the Internet of

Things, big data, web service, sensor networks, and energy systems.

Dr. Zhou is a Fellow of the International Federation of Automatic Control

and American Association for the Advancement of Science. In 1999, he

served as the President of the Chinese Association for Science and Technol-

ogy, USA, where he is currently a Life Member. He received the Humboldt

Research Award for U.S. Senior Scientists, the Franklin V. Taylor Memorial

Award, and the Norbert Wiener Award from the IEEE Systems, Man, and

Cybernetics Society. He is the Founding Editor of the IEEE Press Book

Series on Systems Science and Engineering.

46492 VOLUME 8, 2020

http://dx.doi.org/10.1109/TAC.2019.2907413

	INTRODUCTION
	THE EXISTING SEMANTICS MODELS
	TIME PETRI NETS
	STRONG SEMANTICS MODELS
	WEAK SEMANTICS MODELS
	MIXED SEMANTICS MODELS

	RELAXED MIXED SEMANTICS MODEL
	FORMAL SEMANTICS
	MODEL PROPERTIES
	TIMED LANGUAGE ACCEPTANCE
	TURING EQUIVALENCE

	STATE CLASS METHOD
	SCHEDULING PROBLEM WITH DUE WINDOWS
	CONCLUSION
	REFERENCES
	Biographies
	LI PAN
	BO YANG
	JUNQIANG JIANG
	MENGCHU ZHOU


