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This paper presents a variable depth search for the nurse rostering problem. The algorithm 

works by chaining together single neighbourhood swaps into more effective compound 

moves. It achieves this by using heuristics to decide whether to continue extending a chain 

and which candidates to examine as the next potential link in the chain. As end users vary in 

how long they are willing to wait for solutions, a particular goal of this research was to create 

an algorithm that accepts a user specified computational time limit and uses it effectively. 

When compared against previously published approaches the results show that the algorithm 

is very competitive. 
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1 Introduction 

High quality nurse rosters benefit nurses, patients and managers. Patients receive 

better healthcare if nurses are able to spend more time with them and mistakes are less 

likely if nurses are not stressed, tired and overworked due to poor scheduling and 

understaffing. Improved rosters can not only decrease nurse fatigue but also help them 

maximise the use of their leisure time and satisfy more of their personal requests. 

From a management point of view, better and more flexible scheduling can help retain 

nurses and aid recruitment, reduce tardiness and absenteeism, increase morale and 

productivity and provide better patient service and safety. Costs can also be reduced 

through having to hire fewer agency nurses to fill gaps in rosters and lower staff 

turnover. 

Creating rosters, however, is a difficult and challenging search problem which 

requires the satisfaction of many constraints and the balancing of a variety of 

requirements. This time consuming and frustrating duty often falls to a head nurse 

who would rather be concentrating on their primary duty of caring for patients. 

Regular rescheduling may also be required to deal with staff sickness and absences. 

Computerised, automated rostering can remove a significant amount of this workload 

and provides a number of additional benefits including being able to create much 

higher quality schedules which are fair, impartial and which satisfy more preferences. 

Legal requirements can also be checked, management statistics collected and monthly 

reports generated, all reducing paperwork. Other advantages range from linking to 

payroll systems to emailing out rosters or publishing them on the web once they are 

created. 



Over the past 30-40 years, many different approaches have been used to solve nurse 

rostering problems of varying forms and complexity. Methods used include 

mathematical programming (Bard and Purnomo 2007, Jaumard et al. 1998, Mason 

and Smith 1998, Miller et al. 1976, Thornton and Sattar 1997, Warner 1976), 

constraint programming (Bourdais et al. 2003, Darmoni et al. 1995, Meisels et al. 

1995, Meyer auf'm Hofe 2000), goal programming and multi-objective approaches 

(Arthur and Ravindran 1981, Azaiez and Al Sharif 2005, Berrada et al. 1996, 

Jaszkiewicz 1997). Recent, novel approaches include case-based reasoning (Beddoe 

and Petrovic 2006, Beddoe and Petrovic 2007) and Bayesian optimisation algorithms 

(Aickelin et al. 2007, Aickelin and Li 2007). A great variety of  local search and 

metaheuristic approaches have also been applied to the problem. A few recent 

examples are represented by (Bellanti et al. 2004, Burke et al. 2001, Dias et al. 2003, 

Meisels and Schaerf 2003, Valouxis and Housos 2000). Many more can be found in 

the literature reviews of Burke et al. (Burke et al. 2004b) and Ernst et al. (Ernst et al. 

2004). There are, however, very few large-scale neighbourhood searches applied to 

nurse rostering problems. 

As mentioned in a recent survey paper by Ahuja et al. (Ahuja et al. 2002) many 

successful very-large scale neighbourhood search techniques have appeared in various 

forms in the field of operations research. They commented, for example, that the well 

known Lin-Kernighan algorithm for the travelling salesman problem can be viewed as 

a very large-scale neighbourhood search technique. Ahuja et al. categorised very 

large-scale neighbourhood methods into three similar classes, one of which are 

variable depth methods. Variable depth searches (including some ejection chain 

methods (Glover 1996)) have been effectively applied to a number of optimisation 

problems, for example the travelling salesman problem (Pesch and Glover 1997), the 

vehicle routing problem (Rego 1998) and the generalised assignment problem 

(Yagiura et al. 1999). Many more examples of successful very-large scale 

neighbourhood searches can be found in the survey paper of Ahuja et al (Ahuja et al. 

2002). More recent applications include educational timetabling (Abdullah et al. 

2007a, Abdullah et al. 2007b, Meyers and Orlin 2006). 

One paper that does introduce the application of such techniques to nurse rostering is 

that of Dowsland (Dowsland 1998). In her approach to providing an automated nurse 

rostering system, a tabu search is used that oscillates between decreasing cover 

violation and increasing the quality of schedules. In each of these phases, two types of 

ejection chains are used. The first consists of a sequence of on/off day swaps between 

nurses and the other is made up of sequences of swapping week long work patterns 

between nurses. The chains are able to escape from bad optima that single on/off day 

or pattern swaps would not be able to escape from. 

Another example of using such techniques in solving a nurse rostering problem is the 

method of Louw et al. (Louw et al. 2005) who also use an ejection chain approach. 

The compound move used is similar to Dowsland’s chain of on/off day swaps. They 

noted “the compound move was able to achieve far superior reductions in the 

objective function value when compared to any of the elementary move types”. 

Very large-scale neighbourhood searches face the problem of exploring an 

exponentially large neighbourhood. Therefore, the key to developing effective ones is 

identifying heuristics and other mechanisms which can efficiently narrow or direct the 



search. This paper presents a variable depth search for nurse rostering and describes 

the heuristics that make it successful. 

In developing this algorithm, we have also created test instances based on real world 

problems which are now publicly available and which are intended to become 

benchmark problems in this area. As has been mentioned in bibliographic surveys of 

nurse rostering problems, there is a great lack of test problems and benchmarks 

(Burke et al. 2004b) (particularly, real world benchmarks) and, as such, there is little 

comparative analysis of nurse rostering algorithms in the literature. Such analysis is 

very important to underpin scientific progress in this area. Although there are 

understandable reasons for this lack of publicly available problems (for example, 

there is no such thing as a typical nurse rostering problem and there is often an issue 

over the confidentiality of data) we hope our presentation of these problems goes 

some way to filling this void. 

In Section 2, the problem is introduced. Section 3 presents the variable depth search 

and Section 4 contains the results of comparing this approach against previously 

published algorithms. Finally, Section 5 discusses conclusions and potential future 

work.  

2 Problem Description 

 

The data for this problem is based on and is similar to the data used in (Burke et al. 

2001, Burke et al. 2004a, Burke et al. 1999). Some algorithms previously applied to 

this problem (Burke et al. 2001) were developed as part of a commercial system and 

as the data is from a real world environment it has been anonymized and any 

confidential information removed. Indeed, preserving confidentiality is the reason 

why the data is not identical to that used in (Burke et al. 2001, Burke et al. 2004a, 

Burke et al. 1999). 

 

The problem requires the production of non-cyclical schedules. Typically, there are so 

many conflicting constraints and requests that if they were all hard constraints, a 

feasible solution would not exist. Instead, nearly all are modelled as soft constraints 

and assigned priorities using weights. In practice, if a constraint should never be 

violated it is simply assigned a very high weight.  

2.1 Constraints 

The one hard constraint is the shift coverage. These requirements must be satisfied. 

For example, if a certain day requires three night shifts then there must be three 

employees present at that time to work during that shift. Over coverage is not 

permitted either. 

All other constraints are soft. Ideally they should be satisfied but it will almost always 

be necessary to violate some of them in order to provide a feasible solution (i.e. 

satisfy cover). When a soft constraint is broken, a penalty is incurred which is 

proportional to the importance of the constraint and the severity of its violation. The 

importance of each constraint is set using weights which are user-modifiable integer 

values. The higher the weight, the more important the constraint is. 



With permission each employee can specify which constraints they wish to see 

imposed on their work schedule and also the specific parameters associated with that 

constraint. For example, one nurse may request not to work more than five 

consecutive days whereas another may wish to work no more than four consecutive 

days. Alternatively, some nurses may have part time contracts which stipulate less 

work than full time employees and so on. The large number and variety of rules which 

can be imposed makes it a very flexible system which can be used in many different 

environments. It also makes it possible to create problem instances which vary 

significantly in size and complexity. Therefore a problem solver which is robust and 

effective over a range of instances is paramount. 

 

The soft constraints that have been implemented can be categorised into five groups: 

 

Constraints related to workload 

- Maximum number of shifts worked during the scheduling period. 

- Maximum number of hours worked during the scheduling period. 

- Minimum number of hours worked during the scheduling period. 

- Maximum number of hours worked per week. 

- Minimum number of hours worked per week. 

- Maximum number of a specific shift type worked. For example, maximum zero 

night shifts for the planning period or a maximum of seven early shifts. This 

constraint can also be specified for each week. For example, a nurse may request 

no late shifts for a certain week. 

- Maximum total number of assignments for all Mondays, Tuesdays, 

Wednesdays… For example, a nurse may request not to work on Wednesdays or 

may require to work a maximum of two Tuesdays during the scheduling period. 

- Avoid a secondary skill being used by a nurse. Sometimes a nurse may be able to 

cover a shift which requires a specific skill but they may be reluctant to do so as it 

is not their preferred duty. An example would be a head nurse not wanting to 

stand in for a regular nurse. 

 

Constraints related to sequences 
- Maximum number of consecutive working days. 

- Minimum number of consecutive working days. 

- Maximum number of consecutive non-working days. 

- Minimum number of consecutive non-working days. 

- Restrictions on the numbers of consecutive shift types. For example, three or four 

consecutive early shifts may be valid but two or five consecutive early shifts may 

not. 

- Shift type successions. For example, if shift rotation is allowed, is shift type A 

allowed to follow B the next day? 

 

Constraints related to weekends 
- Maximum number of weekends worked in four weeks (a weekend definition is 

also a user definable parameter i.e. Friday and/or Monday may be considered as 

part of the weekend). 

- Maximum number of consecutive weekends worked. 

- No split weekends, i.e. shifts on all days of the weekend or no shifts over the 

weekend. 



- Identical shift types over a weekend. For example, if a nurse has an early shift on 

Saturday then he/she may prefer to have a early shift on Sunday also. 

 

Constraints related to night shifts 
- No night shifts before a weekend off. 

- Minimum number of days off after night shifts. 

 

Constraints related to personal requests 
- Requests for days on or off or more specific requests for certain shifts on or off. 

Each request has an associated priority. For example, annual leave has a very high 

weight. 

- Tutorship or oppositely, requiring two employees not to work at the same time. 

(This constraint is sometimes referred to as a ‘vertical’ constraint).  

 

The definition and implementation of these constraints can be found in (Burke et al. 

2008b, Vanden Berghe 2002). The formulation is not reproduced here due to its 

considerable size but it is also available from the benchmark website.  

 

Let: 

penaltyr  = the penalty for roster r. 

penaltyr,n = the penalty for the schedule of nurse n in roster r. 

Nr = the number of nurses in roster r. 

rN

n

n r,r penaltypenalty
1

  

The problem objective is to minimize penaltyr for a given scheduling period with a 

fixed set of employees, cover requirements and a specific set of soft constraints and 

weights. 

 

The algorithms presented in this paper are tested on ten instances which vary in the 

number of nurses, cover requirements, shift types, constraint types and priorities, 

personal requests and planning horizon. Table 1 provides some more information on 

the instances. 

Table 1 Problem Instances 

Instance Nurses Shift types Skill levels Planning horizon 

BCV-1.8.1 8 4 2 28 days 

BCV-2.46.1 46 4 1 28 days 

BCV-3.46.1 46 3 1 26 days 

BCV-4.13.1 13 4 2 29 days 

BCV-5.4.1 4 4 1 28 days 

BCV-6.13.1 13 4 2 30 days 

BCV-7.10.1 10 6 1 28 days 

BCV-8.13.1 13 4 2 28 days 

BCV-A.12.1 12 4 2 31 days 

ORTEC01 16 4 1 31 days 

 

Data sets BCV-1 to BCV-8 are all based on real world data. Data set BCV-A.12.1 is a 

fictional test problem that uses all the possible constraint types available and contains 



many conflicting requests. ORTEC01 was originally presented in (Burke et al. 2008a) 

(an IP formulation of this instance can also be found in (Burke et al. 2008 (accepted 

for publication))). All these instances and the best known solutions are available at 

http://www.cs.nott.ac.uk/~tec/NRP/. 

3 The Variable Depth Search 

Before discussing the variable depth search we will first introduce the basic 

neighbourhood swaps which the variable depth search uses to the form compound 

moves. 

3.1 The Basic Search Neighbourhood 

This neighbourhood operator can de defined as swapping all the assignments between 

two nurses over one or more consecutive days. Examples of these swaps are given in 

Figures 1 to 4. The figures show a ten day section of a roster with the schedules of 

employees A, B, C and D visible. The labels D, E and N represent day, evening and 

night shifts respectively. For example, on the first day of the planning period, nurse A 

has a day off, nurse B has a night shift, nurse C a day shift etc. Figures 1 and 2 

illustrate swaps over a period of one day. Figure 3 shows a swap over a period of  

three consecutive days and Figure 4 illustrates a swap over a period of five 

consecutive days. The number of consecutive days to try can be regarded as a 

parameter which can range from one up to the length of the planning period. We refer 

to this parameter as block length due to the  block-like appearance of consecutive days 

in a roster. 

 

 

Figure 1 Example swap over one day 

 

Figure 2 Example swap over one day 

 

Figure 3 Example swap over three consecutive days 

http://www.cs.nott.ac.uk/~tec/NRP/


 

Figure 4 Example swap over five consecutive days 

3.2 The Variable Depth Search 

The first step of the algorithm is to create an initial roster. This is done using a 

randomised greedy assignment method. It operates as follows: for each shift which 

needs to be covered, assign it to the nurse who incurs the least gain in penalty for their 

schedule (or who receives the greatest decrease in penalty) on receiving this shift. In 

order to provide different starting solutions and allow the search to also be used with 

random restarts, the set of shifts to be assigned is shuffled. Once the initial roster is 

created, it is possible to proceed with the variable depth search. Figure 5 provides an 

outline of the algorithm. 

 

The search is similar to a method used when attempting to manually improve rosters. 

When improving rosters by hand it was observed that first we would try and improve 

one nurse’s individual schedule (that is lower the penalty for that nurse’s schedule). 

Improving this nurse’s schedule would usually be at the expense of another nurse so 

we then try and improve their schedule. If the second nurse’s schedule is improved it 

may be at the expense of a third nurse’s schedule so we then move on to the third 

nurse and so on until (hopefully) we have an overall roster penalty that is lower than 

the original penalty. If not, we would reverse all the changes we have just made and 

try a different first swap. This is the basic idea behind the algorithm. 

 



Let: 

penaltyr   = the penalty for roster r. 

penaltyr,n = the penalty for the schedule of nurse n in roster r. 

 
0.   set best roster    := the current roster 

     

1.   set current roster := an unvisited neighbour in neighbourhood 

                           for best roster 

         

2.   if no unvisited neighbour available 

         stop and return best roster 

         

3.   if penaltycurrent roster < penaltybest roster   

         goto 0. 

             

4.   if neither of the penalties decrease for the individual schedules of 

     the two employees involved in the swap OR maximum depth <= 1 

         goto 1. 

             

5.   set E1 := the employee with increased penalty 

     set current depth := 1 

            

6.   In the neighbourhood for the current roster where considering swaps  

     of blocks between employee E1 and all other employees (E2) 

 

     set current roster := neighbouring roster with lowest penalty where   

     penaltyneighbour < penaltybest roster or      

     penaltyneighbour - penaltyneighbour,E2 + penaltycurrent roster,E2  

     < penaltybest roster 
      

7.   if no such neighbour   

         goto 1. 

8.   else if current roster's penalty < best roster's penalty 

         goto 0. 

9.   else if current depth < a preset maximum depth 

         set E1 := E2 

         set current depth := current depth + 1; 

         goto 6. 

10.  else 

         goto 1. 

Figure 5 Variable depth search outline 

 

The neighbourhoods referred to in Figure 5 are identified by swaps of blocks up to a 

maximum block length (MBL). The neighbourhood at step 1 is defined by all possible 

swaps of blocks, on all days of the planning period, between all nurses. At step 6, the 

swaps are just between two nurses on all days of the planning period. It was found to 

be generally more efficient to set MBL at step 1 lower than at step 6 (e.g. at step 1, use 

two or three and at step 6, use five or six). 

 

Step 6 is the most important step in the algorithm. Step 6 specifies which moves to 

examine as potential candidates to be added to the current chain of moves and also 

defines the rule for deciding which one (if any) to select. As outlined in Figure 5, a 

swap is only selected as a potential move to add to the current chain if ignoring the 

change in E2's penalty, the neighbour’s penalty is less than the best roster's penalty. 

This rule is similar to, and inspired by, the ‘Gain Criterion’ of the Lin-Kernighan 

algorithm for the travelling salesman problem (Lin and Kernighan 1973).  

 



To further improve the performance of the algorithm another heuristic was developed 

to restrict the set of candidate swaps to add to the current chain. It works as follows: 

during penalty recalculations for a nurse’s schedule (e.g. after a swap), all days which 

need changing either through the removal, addition or changing of shift assignments, 

in order to remove a soft constraint violation are flagged. Only the swaps which 

involve at least one of these days are then tested. This heuristic is also applied at step 

1. 

3.3 Predefined Run Time 

The running time for the algorithm depends on the size of the neighbourhoods at steps 

1 and 6, the maximum depth used at step 9 and the structure of the instance being 

addressed. The size of the neighbourhoods at steps 1 and 6 depends upon the number 

of nurses, the number of days in the planning period and the maximum block length. 

The effects of the third factor (the instance structure) on the running time cannot be as 

easily predicted as factors such as the number of nurses and days. For some instances, 

it is possible that the structure (determined more by the soft constraints and their 

weights) is such that there is very often a valid neighbour found at step 6 with which 

to replace the current roster but which is not better than the best roster. This can mean 

that the chains examined reach great lengths which obviously affects the running 

time. 

To reduce this effect, a maximum depth which is set beforehand is used at step 9. 

Initially the depth was set using a trial and error method of running the algorithm for a 

short time and observing its progress on the particular instance. Then altering the 

maximum depth value until a suitable setting is found (that is estimated) will restrict 

the algorithm to a satisfactory running time. This is clearly not a suitable approach for 

practical use. Therefore, an additional mechanism was added which takes the 

preferred running time as a parameter and attempts to use that time efficiently. 

This mechanism works as follows: for the algorithm to finish, every neighbour in the 

neighbourhood at step 1 needs to be examined and potentially used as the first 

solution in a chain of moves. It is possible to calculate the size of the neighbourhood 

at step 1 using the number of nurses, the maximum block length and the number of 

days in the planning horizon. Given a preferred running time and the number of 

solutions to evaluate at step 1 (updated each time a new best solution is found), it is 

possible to calculate an average time to spend using each neighbour at step 1 as the 

first solution in a chain. Then at step 9, instead of testing whether a maximum depth 

will be exceeded in continuing the chain, we test whether the average time per chain 

will be exceeded if it continues.  

 

To illustrate the kind of compound move that may be executed Figure 6 shows an 

example of an improving chain. The change in the roster consists of seven moves 

which, when performed simultaneously, provide an overall reduction in the roster’s 

penalty. It can be seen that the second nurse of a swap is always the first nurse in the 

next swap. 

 



 

Figure 6 Example chain of swaps 

 

3.4 Hashing and Caching  

Increases in performance can be achieved as effectively through making the algorithm 

faster and more efficient as by using better heuristics. Therefore, we will briefly 

discuss some implementation issues which we found significantly improved 

performance. At step 6, there is a possibility that a neighbouring solution will be 

selected that has been visited previously and cycling could occur. To prevent this we 

use a Zobrist (Zobrist 1970) hashing method and maintain a hash table of all 

previously visited solutions. A Zobrist method is particularly suited to an algorithm 

which makes small incremental changes to a solution. As well as avoiding cycling by 

using a hash table of solutions examined there are also some other efficiency 

measures which are worth highlighting. Firstly, when a nurse’s schedule has been 

altered it is only necessary to re-evaluate their schedule. Secondly, by far the most 

time consuming operation is calculating penalties (i.e. soft constraint evaluations). If 

there is a likelihood that a solution will be returned to (e.g. when reversing a chain of 

swaps), then the algorithm caches penalties (and violation flags) to avoid having to 

recalculate them. Finally, some soft constraint calculations can be speeded up by 

using data structures that are modified as assignments are made. A simple example is 

to update the total number of hours worked when a shift is (un)assigned rather than to 

add all the hours up when calculating the penalty. Some of the more complicated 

constraints benefit from a similar approach. 

4 Results 

The algorithm was tested on the ten publicly available data sets introduced in Section 

2. To gauge the success of the approach we have compared it to a number of 



previously published approaches. The experiments were performed using a desktop 

PC with an Intel P4 2.4GHz processor. 

 

Brucker et al. (Brucker et al. 2009) developed a heuristic constructive approach and 

tested it on the benchmark instances. As it is a constructive method it is not possible 

to provide a comparison to the variable depth search by using the number of solutions 

examined metric. However, their experiments were performed on the same machine 

and a comparison can be provided by using computation times. The results in Table 2 

are Brucker et al’s best results from all experiments. The total computation time in 

obtaining these solutions for each instance was then set as the maximum run time for 

the variable depth search.  

Burke et al’s (Burke et al. 2008a) result for ORTEC01 using the hybrid variable 

neighbourhood search had a computation time of twelve hours. The result for the 

variable depth search on this instance is the best of five, five minute tests. 

Table 2  Comparison of VDS with two other algorithms 

 Time 

(Brucker et al. 

2009) 

(Burke et al. 

2008a) Variable depth search 

ORTEC01 12 hrs - 541 360 

BCV-1.8.1 136 sec 323 - 253 

BCV-2.46.1 3424 sec   1594 - 1572 

BCV-3.46.1 2888 sec 3601 - 3324 

BCV-4.13.1 208 sec 18 - 10 

BCV-5.4.1 16 sec 200 - 48 

BCV-6.13.1 304 sec 890 - 768 

BCV-7.10.1 216 sec 396 - 381 

BCV-8.13.1 224 sec 148 - 148 

BCV-A.12.1 944 sec 3335 - 1843 

 

As can be seen, the variable depth search outperforms the constructive method, over 

the same computation times, on all instances except one, on which they are equal. It 

also beats the hybrid method of Burke et al. on instance ORTEC01. 

 

To provide further comparisons, the hybrid tabu search of Burke et al. (Burke et al. 

2001, Burke et al. 1999) was implemented and tested on the benchmark data sets. The 

best version of their tabu search (TS2) was applied five times to each instance. Table 

3 contains the best and average results. The average execution time on each instance 

was also recorded. The variable depth search was then set a maximum run time 

identical to that used by the tabu search for each instance. Five repeats of the variable 

depth search were then performed to obtain average and best results. 

Table 3  Comparison of the variable depth search with a hybrid tabu search 

  

TS2 (Burke et al. 2001, Burke et 

al. 1999) Variable depth search   

Instance Best Average Avg. Evals. Best Average Avg. Evals. Time (secs) 

ORTEC01 1581 3201 2,363,828 480 1120 1,852,788 108 

BCV-1.8.1 293 350 140,690 262 269 159,379 9 

BCV-2.46.1 1573 1596 1,557,905 1574 1593 1,563,865 167 

BCV-3.46.1 3410 3453 5,088,206 3334 3346 4,486,399 427 

BCV-4.13.1 11 25 150,639 10 11 152,182 9 

BCV-5.4.1 48 48 17,580 48 48 21,208 1 



BCV-6.13.1 1010 1154 345,595 769 817 356,891 24 

BCV-7.10.1 391 458 93,817 381 427 117,224 7 

BCV-8.13.1 148 165 215,524 148 148 248,927 15 

BCV-A.12.1 2065 2831 718,354 1835 1942 649,926 108 

 

As shown in Table 2 and Table 3 the variable depth search nearly always outperforms 

or equals the other methods in comparable tests over all instances. The only time it 

was beaten was when TS2 found a best solution for BCV-2.46.1 with penalty 1573. The 

variable depth search could still manage a best with penalty 1574 though. Note also 

that the variable depth search is actually dynamically adjusting to the run time of the 

other approaches.  

 

For a final comparison, the variable depth search was compared against the memetic 

algorithm, MEH, of Burke et al (Burke et al. 2001). MEH is a hybrid approach which 

performs a tabu search on individuals in the population between generations and a 

greedy shuffling step on the best solution at the end. It was shown to be a robust 

approach and the best method on more difficult instances. The same settings as 

described in the original paper were used (underlying memetic algorithm ME4, 

population size of twelve and stop criterion of no improvement during two 

generations). Five repeats of the algorithm were executed and the best and average 

solutions and average computation times were recorded. The variable depth search 

was then assigned a pre-defined maximum run time equal to the average time used by 

MEH for each instance and five runs also performed. The best and average results for 

both algorithms are shown in Table 4. 

Table 4 Comparison of the variable depth search with a memetic algorithm 

 

MEH (Burke et al. 

2001) Variable depth search  

Instance Best Average Best Average Time (secs.) 

ORTEC01 1580 2904 355 377 3351 

BCV-1.8.1 275 285 252 260 99 

BCV-2.46.1 1574 1589 1572 1592 2560 

BCV-3.46.1 3439 3471 3290 3313 10714 

BCV-4.13.1 12 19 10 11 93 

BCV-5.4.1 48 48 48 48 27 

BCV-6.13.1 815 959 768 768 385 

BCV-7.10.1 381 390 381 438 66 

BCV-8.13.1 148 166 148 148 219 

BCV-A.12.1 1990 2349 1495 1694 929 

 

Comparing against MEH using average results, the variable depth search outperforms 

on seven of the ten instances, is equal on one and worse on the other two. Using best 

results, VDS is better on seven out of ten instances and equal on three. Again, the 

variable depth search is very competitive even when adjusting to the run times of the 

other algorithm. 

5 Conclusions 

This paper has presented a variable depth search for the nurse rostering problem. 

Variable depth search can be classified as a very large-scale neighbourhood search. 

It’s basic operation is to chain together smaller neighbourhood swap operators in 



order to escape the local optima they would otherwise be limited to. The key to its 

success are the rules and heuristics for deciding whether to continue a chain and 

which candidate swaps to examine as the next link in the chain. When compared 

against previously published algorithms using real world benchmark data sets it has 

been shown to be a very effective approach. To make the algorithm even more 

applicable to practice, we have suggested a simple but effective mechanism that 

dynamically adjusts the algorithm to a pre-defined maximum run time. 

Although we believe the algorithm is relatively straightforward to understand it 

should also be noted it is not trivial to implement and has a significant potential for 

bugs. However, we have highlighted some ideas which we used to achieve a fast and 

efficient implementation. 

 

There also a few possibilities for future work. It may be possible to develop a more 

powerful algorithm by using the variable depth search as the improvement method in 

a population based approach such as a memetic algorithm (Krasnogor and Smith 

2005) or a scatter search (Glover et al. 2000). Additionally, we observed specific 

swap block lengths are particularly effective on certain instances. A method which 

can exploit this by, for example, intelligently selecting this parameter, may be able to 

contribute gains in performance. One possibility may be an algorithm which runs 

some short preliminary tests on the instance, testing different values in order to 

estimate the best parameter. An alternative approach may be to dynamically adjust the 

algorithm’s parameters as the search progresses. This is somewhat akin to 

hyperheuristics (Burke et al. 2003, Ross 2005).  

All the test instances and best solutions are publicly available at the research website: 

http://www.cs.nott.ac.uk/~tec/NRP/. We also plan to create more data sets 

taken from real world rostering scenarios which along with any new best known 

solutions will be published at the same location. 
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