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Stephen D. Holland, Ph.D.

Cornell University 2002

We describe a time-resolved method for measuring nonlinear ultrasonic

phenomena. Conventional approaches to the measurement of nonlinear

phenomena utilize narrowband measurements of harmonic generation. These

measurements are fundamentally narrowband and hence have poor time

resolution. In contrast, our method utilizes a series of narrowband bursts that

can be combined to form a composite time-resolved broadband impulse.

Simultaneous time resolution and harmonic isolation are thereby obtained. The

composite impulse can then be used to perform time-resolved measurements of

weakly nonlinear phenomena. Such time-resolved measurements have the

potential to dramatically improve the capability and performance of

nondestructive testing systems that use acoustic nonlinearity to detect flaws.

We develop a mathematical theory by which these measurements can be

explained, and describe an algorithm for performing the measurements. To

evaluate the method and its utility, we present several demonstrative

experiments. We also perform numerical simulations analogous to the

experiments and apply theory in order to better understand the measurements

and the underlying phenomena.
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CHAPTER 1

INTRODUCTION

The nonlinear acoustic behavior of materials exposed to high (finite) amplitude

sound waves has been studied for several hundred years. Many studies have

focused on the quantitative measurement of harmonic generation with the goal of

determining higher-order elastic constants, e.g. Breazeale [5], and Breazeale and

Philip [6]. Measurements of harmonic generation and nonlinear mixing have been

widely deployed as a tool for non-destructive testing. Other researchers have

begun to look at more exotic effects such as instability and chaos in the stronger

nonlinearity from higher amplitude waves. This dissertation takes an

intermediate approach. We look for more data than is normally collected in a

measurement of harmonic generation, but we eschew the complexity of strong

nonlinearity. Our goal is to use information from weak nonlinearity as a

supplement to linear characterization of a medium.

We characterize a linear medium by measuring its impulse response (Green’s

function). We will propose a model for a weakly nonlinear medium based on the

conventional linear impulse response with the addition of higher order ‘impulse

responses’ to characterize the nonlinearity. We will use this model as the basis for

an experimental method that measures these ‘impulse responses’, and we will

demonstrate their use in studying a nonlinear medium.

Nonlinear phenomena are widely used for nondestructive testing applications

because material nonlinearity is an extremely sensitive indicator of damage,

fatigue, and cracking [15]. Conventional measurements of harmonic generation in

weakly nonlinear media use narrowband bursts and narrowband detection to

1



2

isolate harmonics from each other and from the fundamental frequency.

Concomitant with the use of narrowband bursts is poor time resolution and the

potential for interference. Without time resolution it is impossible to distinguish

adjacent echos from a complex specimen. For this reason, and because absolute

amplitude measurements are error-prone, conventional nonlinear nondestructive

testing techniques focus on integrating the total nonlinearity observed in a

sample. The total nonlinearity is compared with calibrations from known-good

and known-bad samples to reach a go/no-go conclusion. A time-resolved

measurement would permit a much more detailed examination of the sample.

Arrival times of different echos can be directly observed, and their

second-harmonic components compared. A known-linear behavior such as a

direct reflection from a surface could be used in place of a known-good sample for

calibration. Time-resolved nonlinear measurements have the potential to

dramatically improve the state-of-the-art in nondestructive testing.

While we have not yet achieved such advances in nondestructive testing, we have

developed a first-generation system for time-resolved measurements of nonlinear

harmonic generation. Our method uses a series of narrowband bursts at different

frequencies to construct a virtual, time-resolved impulse that is used to probe the

medium. The summed responses, measured at frequency multiples (harmonics),

provide linear and second harmonic ‘impulse responses’.

We have performed two demonstrative experiments to show the capability and

applicability of this model and measurement method: Measurement of harmonic

generation in water, and measurement of Contact Acoustic Nonlinearity (CAN)

of two dry-coupled aluminum blocks.
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Compared with single frequency burst measurements of harmonic generation, our

method collects far more information by using a wide range of frequencies. The

additional information, from the different frequencies used for measurement,

provides much more time resolution in the recorded signal. High time resolution

allows accurate distance or wavespeed measurements, as well as readily

interpretable signals free from interference between nearby arrivals. High time

resolution also means that this method can be used on higher attenuation

samples where only a few wavelengths can propagate before the signal is

substantially attenuated. With a single frequency burst measurement, one often

obtains uninterpretable interference between multiple echos of reverberation

within a small sample. In contrast, using our broadband method one can obtain

separate and non-interfering echos. Our focus is on the measurement, not on the

physics. The physical phenomena that we measure are well known and have been

studied many times before. We have developed a better experimental method for

measuring and analyzing these phenomena.

The primary drawback of our method is that the time required for data collection

is necessarily increased by the additional information we must gather. Instead of

one pulse-echo experiment, we must perform hundreds to thousands at different

frequencies. Limitations of the equipment currently in use increase the number of

experiments required further, to the hundreds of thousands. Furthermore, our

method imposes much stiffer requirements on the analog transducers, amplifiers,

and other hardware than single frequency burst measurements. With a single

frequency in use, one can use narrowband high-efficiency transducers,

narrowband amplifiers, and analog filters to measure the signal at that one

frequency and improve isolation and signal-to-noise ratio. In our broadband
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system, we must use less efficient broadband transducers and unfiltered

broadband amplifiers. These reduce signal strength and increase the difficulty of

identifying low amplitude harmonics buried under high amplitude signals. The

result is that it is in general more difficult to measure a particular nonlinear

phenomenon using our method than with conventional single-frequency burst

harmonic measurement. Nevertheless, the improvements in resolution and

interpretability, along with the potential for dramatic advances in ultrasonic

nondestructive testing, make this method a superior choice for the measurement

of acoustic harmonic generation from nonlinear materials or interfaces.



CHAPTER 2

EXPERIMENTAL METHODS IN NONLINEAR ACOUSTICS

Strike a bell, and the bell rings at its resonance modes. Strike it

harder and the bell rings with the same tone, only louder. Now

imagine a small crack in the bell, perhaps invisible to the eye. We

strike the bell gently and it rings normally. Striking it harder we find,

to our surprise, that the tone drops in frequency ever so slightly.

Striking it even harder, the tone drops farther down in frequency. The

frequency shift is a manifestation of nonlinearity due to the presence

of the crack. 1

Nonlinearity creates a paradigm shift in measurement. As scientists, we have

been trained in the tools of linearity. We assume proportional behavior. When a

butterfly flaps its wings in Florida, why should it change the weather in New

York? When we study nonlinear systems, we must be prepared to encounter

phenomena fundamentally different from those we have been trained to expect.

Consider the bell once again. Suppose we apply a pair of arbitrary (high

amplitude) tones, perhaps 440 and 8000 Hz, to the bell using an audio speaker.

Our undamaged (linear) bell rings at only the two frequencies, 440 and 8000 Hz.

In contrast, the damaged (nonlinear) bell rings at a large number of frequencies

in addition to those applied. We detect vibration at frequency multiples,

harmonics, of the applied tones: 880, 1320, and 1740 Hz; and 16000, 24000, and

32000 Hz. We also detect mixing between the tones: 8000+440 Hz and 8000-440

Hz [15]. Still higher harmonics and higher order mixing occur, but at much

smaller amplitude. Nonlinearity can be a sensitive indicator of flaws or damage

[2]. Nonlinearity is readily detectable because nonlinear phenomena, such as

1Johnson [15]

5
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harmonic generation or mixing, are distinct and different from those possible

within a linear medium.

2.1 History

Theories of finite amplitude wave propagation were developed in the 18th and

early 19th centuries by Euler, Poisson, and Lagrange [4]. Investigation was

continued in the 19th century by Earnshaw [9]. In 1935 Thuras et al. [27]

discussed harmonic generation phenomena in air.

In the late 1950’s, interest in nonlinear acoustics began to increase. Krassilnikov

et al. [16] published an enumeration of nonlinear elastic parameters of fluids in

1957. Romanenko [21] performed experimental studies of finite amplitude

spherical waves in 1959. Ryan et al. [22] measured harmonic content as a

function of propagation distance in 1962. Studies of harmonic generation in

solids began in the early 1960’s. Breazeale and Thompson [7] and Hikata et al.

[13] measured harmonic generation in aluminum in 1963, setting off a flurry of

interest. The development of nonlinear acoustics has been widely reviewed, for

example by Bjørnø [4] and by Breazeale and Philip [6]. Of particular importance

was the discovery in the early 1970’s by Gits et al. [11] of the correlation of

fatigue damage in aluminum with nonlinear distortion of ultrasonic waves.

2.2 Standard experimental technique

In most investigations of harmonic generation or mixing phenomena, narrowband

bursts or continuous waves are applied to the sample. Then some measurement
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of the response spectrum is performed. Such measurements are commonly

referred to as Nonlinear Elastic Wave Spectroscopy (NEWS).

Over the years, a standardized technique was developed for performing what we

might today call “traditional” ultrasonic nonlinearity measurements. The

technique has been embodied in commercial off-the-shelf measurement systems

such as the Ritec RAM-5000 [19]. A continuous-wave (CW) or tone burst signal

is applied to the material under test. A high-power amplifier provides the large

signal levels required to observe nonlinearity. Narrowband transducers made from

piezoelectric materials such as quartz or lithium niobate and cut to resonate at

the frequencies of interest are used for excitation and detection. Measurement is

performed with a heterodyne or superheterodyne receiver that downconverts the

desired receive frequency to DC. The amplitude of the selected frequency is

determined by integrating the quadrature phase components of the

downconverted signal. By using this method, maximum frequency selectivity can

be obtained, and measurements can be performed at the fundamental frequency

and various harmonics to quantitatively determine harmonic generation in the

medium under test. In recent years, the heterodyne receiver has been commonly

replaced by a digitizer and Fourier transform algorithm to measure the spectrum

directly, e.g. Delsanto et al. [8].

Two specific modern techniques, widely used in non-destructive testing

applications, are worthy of note. Nonlinear Resonant Ultrasound Spectroscopy

(NRUS) involves observing nonlinear behaviors in a sample excited at an acoustic

resonance [1]. These include shifts in resonant frequency, harmonic generation,

and damping characteristics. The second modern non-destructive testing
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technique is known as Nonlinear Wave Modulation Spectroscopy (NWMS) [2].

NWMS involves the application of CW signals or tone bursts of different

frequencies to the sample. Nonlinearity in the medium causes multiplicative

effects that are observed as generated sum and difference frequency signals in the

sample. This method dates back to the work of Rollins et al. [20], who studied

phonon-phonon scattering as a function of the angles and frequencies of the

incoming and scattered phonons. NWMS has an advantage over measurements of

harmonic generation because interference from nonlinearity in the equipment can

be more easily rejected. If the signal generation circuitry, amplification circuitry,

and transducers for the two excitation frequencies are separated, nonlinear

mixing in the excitation signal is eliminated. Therefore, if NWMS is used

properly, nonlinearity in the excitation equipment becomes irrelevant and the

components of the sound wave at f1 + f2 and f1 − f2 can only come from

nonlinearity in the medium.

Much recent interest has developed in the exotic nonlinear phenomena that

appear when extremely high amplitude excitation is applied. Solodov [24], [25]

has been studying contact acoustic nonlinearity (CAN) and the instability and

chaos that can result from very high amplitude excitation given such a

nonlinearity.

2.3 Our technique

We build upon the standard experimental technique for measurement of

harmonic generation. The basis of our equipment is the measurement system by

Ritec [19] that was built to perform conventional harmonic generation and
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mixing measurements. However, we use it in a dramatically different way. We are

interested in making broadband, time-resolved measurements. Instead of using

narrowband resonance transducers, we use broadband damped transducers.

These have much lower efficiency, but allow us to make measurements over a

wide range of frequencies. Instead of using a single continuous wave or tone

burst, we apply a tone burst at a wide range of frequencies and use an algorithm

to build up composite waveforms showing the linear and second harmonic

responses of the medium. We use the same superheterodyne receiver and

integrator as in the standard technique, but we apply it in a much more

advanced way and collect far more information. This information is condensed

into readily interpretable time-resolved waveforms for the fundamental frequency

and the second harmonic. We extract maximum information from the sample,

but bound the complexity by limiting ourselves to quadratic nonlinearity. We

thereby obtain time-resolved waveforms that have the potential to dramatically

improve the state-of-the-art in nondestructive testing.

2.4 Other phenomena

It is important to mention in closing that there are many nonlinear acoustic

phenomena other than just those mentioned above. There is an entire field of

study related to shock waves and sonic booms, and the concomitant specialized

experimental apparatus. Nonlinear mixing phenomena generate highly directed

sound waves at the sum and difference frequencies. This has uses both in audio

applications such as the “Audio Spotlight” [18] and in medical applications where

“harmonic imaging” with directed beams has dramatically improved spatial

resolution and image quality [28].



CHAPTER 3

A MODEL OF A WEAKLY NONLINEAR MEDIUM

Recall the cracked bell of the previous chapter. We applied an excitation with

frequencies 440 Hz and 8000 Hz. Then we observed the response of the bell, and

identified a large number of frequencies present:

• The applied frequencies: 440 Hz and 8000 Hz

• Harmonics of 440 Hz: 880, 1320, and 1740 Hz (second harmonic, third

harmonic and fourth harmonic).

• Harmonics of 8000 Hz: 16000, 24000, and 32000 Hz (second harmonic, third

harmonic and fourth harmonic).

• Mixing frequencies: 8000+440 Hz and 8000-440 Hz.

A very simple analysis can explain the frequencies that appear. Suppose the

cracked bell has a quadratic (squaring) property. We apply 440 Hz and 8000 Hz

superimposed:

cos(2π8000t) + cos(2π440t) (3.1)

Then the quadratic behavior is:

[cos(2π8000t) + cos(2π440t)]2 (3.2)

or

cos2(2π8000t) + 2 cos(2π8000t) cos(2π440t) + cos2(2π440t) (3.3)

10
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or, using the identities cos2(θ) = 1

2
+ 1

2
cos(2θ) and

2 cos(α) cos(β) = cos(α + β) + cos(α − β),

1+
1

2
cos(2π16000t)+ cos(2π(8000+440)t)+ cos(2π(8000− 440)t)+

1

2
cos(2π880t)

(3.4)

We find that squaring an applied (440 Hz + 8000 Hz) signal gives us the

additional frequencies 880, 16000, and 8000 ± 440 Hz. This most simple analysis,

which assumes only that the nonlinearity has the effect of multiplying the wave

by itself, predicts most of the observed frequencies (the higher harmonics come

from cubing, or higher, effects). So we hypothesize that perhaps a Taylor

expansion will allow us to model the dynamic response of the bell.

3.1 Impulse response

We will start by proposing a model for the nonlinear acoustic medium. This will

be a simplistic model; it will apply only when amplitudes are small enough that

behavior is weakly nonlinear. We will further limit it by explicitly ignoring many

potentially significant terms to limit the required information that must be

collected. Nevertheless, this model provides a mathematical justification for our

measurement, and provides a basis for interpreting the measured waveforms.

Linear systems are usually modeled by their impulse response (Green’s function).

Impulse response precisely characterizes a time-invariant linear system. It is

time-resolved, broadband, and easy to analyze. Our approach to modeling

weakly nonlinear systems will be analogous. We will define the second harmonic
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impulse response to go along with the linear impulse response. We might also

define third and higher order responses, but we will not discuss those here.

3.2 Volterra expansion

Consider a weakly nonlinear system that maps a function f(t) to g(t). If we

make various assumptions about continuity and differentiability of the mapping,

we can write the Taylor Series for this mapping, discretized in time by subscripts:

ĝi =
∂gi

∂fj

∣

∣

∣

∣

∣

f=0

fj +
1

2!

∂2gi

∂fj∂fk

∣

∣

∣

∣

∣

f=0

fjfk +
1

3!

∂3gi

∂fj∂fk∂fl

∣

∣

∣

∣

∣

f=0

fjfkfl + ...(3.5)









sum over

j, k, l, etc.









This particular Taylor series is also known as a discrete-time Volterra expansion

[23], [29]. We begin our approximation of the output of the map at time i, ĝi, by

evaluating the partial derivative of gi with respect to the input of the map at

some other time j, fj, and multiplying the evaluated partial derivative by the

actual value of the input of the map at time j. This gives us the linearized

dependence of the approximated gi on fj. To combine the linearized effect of f

on the approximated gi at different times j, we must sum over possible values of

j. Of course, each time i in g must be considered independently. This gives us a

matrix of constants ∂gi

∂fj
. The quadratic term relates gi to each possible

combination fjfk, and is summed over all j and k. Higher terms can be analyzed

similarly. It can be readily confirmed that eq. 3.5 is indeed the Taylor series for

the f → g mapping by evaluating the first few derivatives of eq. 3.5 at f = 0.

Those derivatives match the actual derivatives of g with respect to f . This is

demonstrated in appendix A.1.
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3.3 Reduced Volterra expansion/Taylor series

A linearized (impulse response) model includes only the first term ∂gi

∂fj
fj of the

above Volterra expansion. For our nonlinear model, we will use the first term,

plus selected parts of the second. In particular, we would like to reduce the

second term from n3 coefficients to n2 coefficients. We can do this by assuming

that the signal never interacts nonlinearly with a time shifted version of itself.

That is, we assume ∂2gi

∂fj∂fk

∣

∣

∣ = 0 for j 6= k. We keep only the terms for which

j = k. Now we only have two subscripts and therefore n2 coefficients. Thus, our

model ĝi for gi is:

ĝi =
∂gi

∂fj

∣

∣

∣

∣

∣

f=0

fj +
1

2!

∂2gi

∂f 2
j

∣

∣

∣

∣

∣

f=0

f 2

j (3.6)

This model ignores all third and higher order terms. It also ignores second order

terms involving time-shifted self interaction. We are assuming all nonlinear

interaction to be of the form (f(t))2, and not of the form f(t)f(t + ∆). This

assumption is of the utmost importance. It both makes this method viable, and

restricts the domain of problems to which this method can be applied. If the

physical nonlinearity to be measured comes from interaction of the wave with

itself at the same time, then this method may be applicable.

3.4 Representation of the model as a convolution

∂gi

∂fj

∣

∣

∣

f=0
is a set of constant numbers with two indices. We can write it as a matrix

Aij. Similarly, 1

2!

∂2gi

∂f2

j

∣

∣

∣

∣

f=0

can be denoted as a matrix Bij. Now our model can be
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rewritten using matrix notation:

ĝi = Aijfj + Bijf
2

j sum over j (3.7)

or in vectorized notation,

ĝ = Af + Bf 2 (3.8)

We assume our nonlinear system is time-independent. That is, if we run our

experiment in an hour, or tomorrow, we will get the same results as running it

now. Therefore our model is not consistent with slow dynamics or hysteresis

behavior such as that described by Ten Cate and Shankland [26]. Since we

assume our system to be time-independent, the matrices Aij and Bij must have

the form of convolutions.

Let us return to continuous time, now denoting our convolutions as A and B.

Our modeled signal can be written as:

ĝ = A⊗ f(t) + B⊗ f 2(t) (3.9)

We will refer to the convolutions A and B as the linear impulse response and

second harmonic impulse response respectively. A characterizes the linear (small

signal) behavior of the system, and B characterizes quadratic nonlinearity of the

system. A is also sometimes referred to as the first order Volterra kernel of the

system, and B is a reduced version of the second order Volterra kernel of the

system.
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3.5 Restrictions of the model

The model restricts the domain of nonlinear behavior we can analyze. Using only

the first two terms of the Taylor expansion limits us to the analysis of weakly

nonlinear phenomena and limited excitation amplitude (in addition, the

continuity, differentiability, and convergence requirements of the Taylor series

may be violated in the case of strongly nonlinear phenomena or very large

excitation amplitude). Ignoring time-shifted self interaction restricts us from

being able to consider situations in which an acoustic wave is nonlinearly

interacting with a delayed version of itself. For example, it restricts us from using

this method to study dispersive media. It might also be a problem for situations

in which the excitation burst is long enough that echos superimpose, but

experimentally this does not appear to be a problem. The model also assumes

that there is no convolution or filtering of the signal before the nonlinearity of the

medium is encountered. In practice, the signal is always filtered by at least the

transducer impulse response before it reaches the acoustic nonlinearity. Our

method can generally be meaningfully applied to a nonlinear medium provided

time-shifted self interaction is not expected and the excitation is small enough

that the nonlinearity is weak.

3.6 Amplitude sensitivity

An important observation to draw from this model is the amplitude sensitivity of

the nonlinearity. The nonlinear term of equation 3.9 is proportional to the square

of the applied signal f . This means that measured nonlinearity will be a strong



16

function of input amplitude; doubling the input amplitude will quadruple the

nonlinearity. This observation is especially critical from an experimental

standpoint, since it implies that for weak phenomena, excitation amplitude is

critical. Further, it warns that if too powerful a signal is applied, there is the risk

of violating the ‘weak nonlinearity’ assumptions of the model.

3.7 Weak nonlinearity

In the above analysis, we have referred to weak nonlinearity without discussing

exactly what we mean by “weak”. If one propagates a tone burst through a

linear medium, the measured burst is a filtered version of the excitation burst. If

a very small amount of nonlinearity is added to the medium, then a small

spectral image will appear at 2f in the measured signal. As the nonlinearity is

increased, the amplitude of the 2f harmonic will increase, and spectral images

will also appear at higher harmonics – 3f , 4f , etc. As the nonlinearity (or

equivalently the excitation amplitude) is increased further, shock waves develop.

At still higher levels of nonlinearity the behavior becomes very complicated and

difficult to analyze. We define weak nonlinearity as the second case outlined

above: A small component at 2f is detected in the measured signal. Our

derivations rely on this assumption. Nevertheless, we suspect that our method is

applicable even in the presence of higher harmonics, provided the amplitude of

the harmonic signals remain small relative to the fundamental.



CHAPTER 4

MEASUREMENT ALGORITHM

4.1 Mathematical justification

We would like to characterize a nonlinear medium by applying the model of the

previous chapter, equation 3.9:

ĝ = A⊗ f(t) + B⊗ f 2(t) (3.9)

To characterize the medium, we must evaluate the convolutions A and B. We

start by remarking that in equation 3.9, A is linear in f(t), and B is linear in

f 2(t). If we want to use the tools of linearity to help in our measurement of A

and B, all we need to do is perform the measurement so that the terms of

equation 3.9 are distinguished. Let us attempt to apply a signal s(t) for f(t),

such that A and B can be distinguished in the measurement. If the measurement

is performed by a receiver filter R, then the receiver signal is:

A⊗ s(t)⊗R + B⊗ s2(t)⊗R (4.1)

The criterion of distinguishing A from B is then equivalent to selecting s(t) and

R such that s(t)⊗R is non-zero while s2(t)⊗R is (approximately) zero or

vice-versa. That is, we can distinguish A and B if we can distinguish the terms

in equation 4.1. s(t) and R need to be constructed so that we can distinguish

these terms.

We will apply tone bursts for s(t) and the impulse response of R. s2(t) will be a

frequency-doubled tone burst (+ DC). When we convolve with R, frequencies not

present in the impulse response of R become zero. By selecting the frequency of

the receiver filter R to be f or 2f , we can select either of the two terms in eq. 4.1.

17
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If s(t) is a modulated tone burst and R has an impulse response similar to s(−t),

then s
2(t) ⊗ R is approximately zero and we extract only the first term and

obtain information about A. On the other hand, if R has an impulse response

similar to s
2(−t), then s(t) ⊗ R is approximately zero and we extract only the

second term and obtain information about B. That is, with a modulated tone

burst s(t), we can selectively probe A with s(t) ⊗ s(−t) or B with s
2(t) ⊗ s

2(−t)

by selecting the frequency of R. We use narrowband probing signals so that it is

possible to distinguish A and B.

Recalling from above that equation 3.9 is linear in A and B, the principle of

superposition can be applied. We can construct thousands of different tone

bursts s(t) ⊗ s(−t) and superimpose them to effectively probe A with

∑
i si(t) ⊗ si(−t). Given a wide frequency band and small frequency steps,

∑
i si(t) ⊗ si(−t) will be very similar to a bandlimited delta function (a sinc

function) because its components are autocorrelations and hence zero phase.

Similarly, we can measure B with
∑

i s
2

i
(t) ⊗ s

2

i
(−t) by performing a series of

measurements and adding the results. Because we use very narrowband signals

for si(t), we must probe at a large number of frequencies in order to obtain a flat

frequency response for the composite signal.

To recap, we measure A and B by applying a large number of narrowband bursts

at different frequencies, then applying linear superposition. This is graphically

illustrated in figure 4.1. The bursts add in the time domain to a bandlimited

impulse, or in the frequency domain to a uniform response within the selected

frequency band.
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Frequency

domain:
Frequency

domain:
Time

Figure 4.1: Construction of a broadband impulse from a series of narrowband

bursts.

4.2 Measurement procedure

Our procedure for measuring linear and second harmonic impulse responses

follows:

1. Apply burst

Apply a modulated tone burst s(t) = W1(t) cos(ωt). (Fig. 4.2a).

2. Measure acoustic response

The response of the nonlinear system is A ⊗ s(t) plus the frequency

doubled term B ⊗ s
2(t). (Fig. 4.2b).

3. Correlate with W2 cos(nωt)

We convolve (correlate in negative time) the measured response with the

receiver filter R. The impulse response of R is a modulated burst

r(t) = W2(t) cos(−nωt). This process extracts the nth (1st or 2nd) term of

Eq. 4.1. (Fig. 4.2c).
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(c) Received signal correlated with receiver burst W cos(n   t) ω
2

(a) High−power excitation burst

(b) Signal measured by receiver

(d) Result from adding correlated bursts from all frequencies

Figure 4.2: Burst processing demonstration.
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4. Add correlated waveforms from bursts at a wide range of

frequencies

Repeating the above steps for many different frequencies, and adding the

correlated waveforms (from Fig. 4.2c) gives our estimate of A or B. (Fig.

4.2d).

4.3 Interference and Error

The measurement algorithm described above appears reasonably simple and

straightforward, but there are numerous potential sources of interference and

error. Some come from imperfections or non-ideal behavior in equipment. Other

interference comes from the algorithm itself.

4.3.1 Non-ideal behavior

The goal of the measurements is to extract information about the material being

tested. In our model, we assume that we apply a perfect tone burst to the

material, and measure it perfectly. Of course this is impossible. The excitation

waveform always has some amount of harmonic distortion, generated by the

waveform generator or amplifier, which will propagate linearly through the

medium and be measured as part of the second harmonic impulse response. The

transducers themselves can generate harmonics within the piezoelectric crystal,

or at the interface with the wear plate or the couplant to the sample. The power

amplifier for the excitation can generate switching transients that could be

measured as a valid signal. The receiver transducer and electronics also can
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generate harmonic distortion that will be measured as part of the second

harmonic impulse response. Careful design can minimize, but not eliminate,

these phenomena, which we will address further in chapter 5. Conventional

measurements of harmonic generation phenomena use resonant narrowband

transducers and multipole filters to reduce the effect of harmonic distortion in

the equipment. Such workarounds are unavailable to us because we must make

broadband measurements.

4.3.2 Algorithmic interference

The measurement algorithm described above relies on two flawed assumptions:

That a series of tone bursts at different frequencies adds to a bandlimited

impulse (sinc function), and that tone bursts at f and 2f are orthogonal.

Consider adding the tone bursts in the frequency domain, as illustrated at the

bottom of figure 4.1. The sum always has some periodicity in frequency ∆f . In

the time domain, this will appear as a periodicity of 1/∆f . Our measured

time-domain response will have images of the measured signal at t = ± 1

∆f
. While

these images cannot be removed1, the amplitude of these images can be reduced

by minimizing the frequency spacing between bursts. In addition, dithering the

frequency spacing spreads the images over a large range in time so that they

appear as random noise that can be averaged away. Transforming the error to

noise in this fashion entirely eliminates this form of error as a practical concern.

The other flawed assumption is that the f and 2f bursts are orthogonal. Let us

1One might think that it is possible to eliminate these images by adjusting the
burst envelope. This was tried, but has not worked well in experiments so far.
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look at the frequency components of a raised-cosine burst of duration ∆t (time

domain):

[

1

2
+

1

2
cos

(

2π

∆t
t
)] [

u
(

t +
∆t

2

)

− u
(

t −
∆t

2

)]

cos(2πft) (4.2)

The primary frequency components present are ±f and ±f ± 1/∆t. These

frequencies are convolved in frequency with the sinc function that is the Fourier

transform of the boxcar u
(

t + ∆t

2

)

− u
(

t − ∆t

2

)

. Each of these frequencies is

thereby spread out over all frequency-space according to (at worst) the sinc

function of width 1/∆t.

Suppose a measurement is performed on a linear medium. A burst such as that

of eq. 4.2 is applied to the medium. To measure the second harmonic impulse

response, a frequency doubled burst is convolved in time – multiplied in

frequency – with the measured signal. The overlap of the sidebands of the

frequency doubled burst with the original leads to interference that is measured

as part of the second harmonic impulse response. The bursts at f and 2f are not

entirely orthogonal, and the nonorthogonality causes interference.

Experimentally, it has been determined that this interference manifests itself as a

pair of pulses in the second harmonic impulse response that are separated in time

by exactly half the burst width. The absence of the dual-pulse signature implies

that f vs. 2f interference is not present. We have used several techniques to

reduce the interference. Using longer bursts reduces interference because a larger

∆t narrows the sinc function. Using an optimal window for the excitation and/or

receiver bursts also reduces the interference.
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4.4 Relation to other techniques

4.4.1 Conventional CW or burst harmonic generation

measurements

In materials testing, the traditional approach to the measurement of nonlinear

phenomena has been the use of narrowband CW or burst harmonic generation

measurements. It has been widely described, such as by Ryan et al. [22] and

Breazeale [6]. Unfortunately, these methods give either no time resolution or

poor time resolution. Our approach is an extension of traditional harmonic

generation measurements that provides much better time resolution by using a

broadband signal.

However, our method has several disadvantages when compared to traditional

methods. One is that our method requires much more precise and powerful

measurement hardware. Traditional methods use high-efficiency narrowband

resonance transducers. We must use low-efficiency damped broadband

transducers, and therefore in general must be able to apply much higher power in

order to observe nonlinear phenomena. Another disadvantage is that our method

requires isolation of harmonic frequencies from the fundamental that is

independent of the frequency in use. Traditional methods can use multiple filters

and narrowband transducers to improve harmonic isolation.



25

4.4.2 “Vibroseis” method

Our method is related to the Vibroseis method [30] which is commonly used in

seismic studies as an alternative to the use of explosive sources. In the Vibroseis

method, a heavy truck consisting primarily of a hydraulic jack is vibrated up and

down in a frequency sweep. Signals recorded at geophones are cross-correlated

with the frequency sweep. The resulting waveform is equivalent to that recorded

by the geophone, given an impulse source at the location of the truck. In our

method, a series of tone bursts at different frequencies is used in place of a

frequency sweep. The processing is essentially the same – the measured waveform

for each burst is cross-correlated – except we allow second harmonic measurement

by cross correlating with the frequency doubled burst. Also, our use of a series of

tone bursts rather than a long frequency sweep allows the use of a single

transducer in pulse-echo mode with a T/R switch. Nonlinearity and harmonic

generation are sometimes observed in Vibroseis surveys. Because the nonlinearity

typically comes from near-surface effects it is undesirable and treated as noise.



CHAPTER 5

IMPLEMENTATION OF THE MEASUREMENT ALGORITHM

5.1 Implementation with an analog signal processing

system

Analog systems have long promised and delivered signal processing devices with

excellent frequency selectivity for minimum interference. The archetypical analog

signal processing device is the heterodyne radio receiver. Analog radios have long

been able to isolate a particular frequency band, even in the presence of strong

interference elsewhere in the spectrum. Isolation of such a band is exactly the

requirement for the measurement of a weak nonlinear component of a strong

signal. For our experiments, we obtained a Ritec RAM-5000 system [19],

containing two high power signal generators/amplifiers and an analog

superheterodyne receiver unit.

The goal of the analog receiver system is to convolve/correlate the received signal

with a receiver filter W2 cos(nωt) as in step 3 of the measurement algorithm. The

RAM-5000 uses a superheterodyne receiver circuit to minimize (coherent)

harmonic interference. The received signal passes first through a pre-amplifier,

then to an analog multiplier. It is multiplied in time by a harmonic wave at the

desired receive frequency plus 20 MHz. This shifts signals at the receive

frequency to 20 MHz. The shifted signal is then filtered and multiplied by 20

MHz signals at quadrature phase (0◦ and 90◦), shifting the signal to the

baseband while retaining phase information. The RAM-5000 contains gated

26
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integrators for the quadrature components (denoted ‘real’ and ‘imaginary’) and

16 bit ADC’s on the integrator outputs.

We are trying to measure the cross correlation of the measured signal m(t) with

W2 cos(nωt). That is,

∫
∞

−∞

W2(τ − t) cos(nω(τ − t))m(τ)dτ

(t indexes the cross-correlation, while τ denotes measurement time) If we let

u = τ − t:
∫

∞

−∞

W2(u) cos(nω(u))m(u + t)du

If we restrict W2(t) to being a boxcar function of width l (i.e. 1 for

−l/2 < t < l/2, 0 otherwise), then:

∫ l/2

u=−l/2

cos(nω(u))m(u + t)du

Returning to t and τ :

∫ t+l/2

τ=t−l/2

cos(nωτ − nωt)m(τ)dτ (5.1)

Equation 5.1 is the expression we need to measure in order to determine one

point in the cross-correlation of m(t) with W2 cos(nωt).

When we use the RAM-5000 receiver, the actual effect of the superheterodyne

multipliers is to measure (ignoring filtering):

(cos(nωτ) + isin(nωτ))m(τ)

or in complex notation:

einωτm(τ)
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We would like to translate this into the expression to be measured, eq. 5.1. If we

select the integrator gates to be at t− l/2 and t + l/2, then we measure

∫ t+l/2

τ=t−l/2

einωτm(τ)dτ

The result of this integral – real and imaginary parts – is what the RAM-5000

measures and is recorded into the computer using the 16 bit DAC’s. If these

values are multiplied by e−nωt then the result is:

∫ t+l/2

τ=t−l/2

einωτ−inωtm(τ)dτ

If the real part is taken, then we have:

∫ t+l/2

τ=t−l/2

cos(nωτ − nωt)m(τ)dτ

This is the same as eq. 5.1, hence we can measure one time sample of the desired

cross-correlation by using the analog heterodyne receiver in the RAM-5000. The

entire cross-correlation can be recorded by repeating with different values of t,

over the time range in which a waveform is desired.

5.2 Experimental techniques

5.2.1 System design

The overall hardware design is shown in figure 5.1, and a photograph of the

apparatus can be seen in figure 5.2. The RAM-5000 was rewired internally to

support an external modulation input. An HP 33120 arbitrary waveform

generator was used to provide the modulation envelope of the excitation bursts.

One piezoelectric transducer transforms the electrical signals from the high power
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Superheterodyne
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Generator
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Figure 5.1: Diagram of the hardware used for the time-resolved nonlinear

method.
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Figure 5.2: Photograph of the hardware used to carry out the time-resolved

nonlinear measurements. The RAM-5000 system is the large

device near the bottom of the rack.
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Data Collection Program
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file on disk

Figure 5.3: Diagram of the software used for the time-resolved nonlinear

method.

amplifier in the RAM-5000 into ultrasonic waves within the specimen. Another

transducer measures the ultrasonic vibrations in the sample and transmits an

electrical signal to the receiver. A Daedal motion control unit and Instron testing

machine were also connected under computer control as appropriate for a

particular experiment.

The challenging part of the implementation of this project was the software. The

software had to implement the measurement algorithm described here. It had to

be flexible enough to allow for algorithmic experimentation without requiring

rewrites or leading to spaghetti code. Some method of handling the large number

of parameters was required. The software had to be reconfigurable for different

experiments; one experiment might require controlling a motion control device,

while the next might use an Instron testing machine and load cell. Moreover, the
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software had to take into account the various idiosyncrasies of the different

hardware devices. For example, the signal generators in the RAM-5000 reference

their initial phase from the amplifier gate (turn-on) time. However, the phase

must be preset one trigger early. Since the gate time is dithered randomly to

average away switching transients, the phase must be reprogrammed with every

trigger, with the appropriate information corresponding to the succeeding trigger.

Needless to say, idiosyncrasies such as this dramatically increase the complexity

of the control software.

Figure 5.3 shows the overall software architecture. The “Experimental Control”

module is replaceable and different for different experiments. It accepts

parameters from the standardized parameter management routines and passes the

relevant parameters on to the collection algorithm. A finite difference simulator,

discussed in detail in chapter 6, can be used in place of the measurement

hardware. The simulator is engineered to share as much code as possible with the

collection algorithm, so that the simulation is as similar as possible to the actual

experiments. The RAM-5000 hardware is controlled over TCP/IP using firmware

that we developed, as discussed in appendix B. The measured data from

experiments – samples of the downconverted cross-correlation waveforms – are

recorded in an ASCII data file. The data file is post-processed using Matlab

scripts to obtain the composite time-resolved waveforms.

5.2.2 Frequency step dithering

There are some subtle points about the measurement system that bear mention.

One major issue is the flatness of the frequency response of the applied wavelet –
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the sum of the applied bursts. This issue was discussed in section 4.3.2. The

problem is that the sum of applied bursts inherently has frequency domain

periodicity corresponding to the frequency step spacing. The frequency domain

periodicity corresponds to shifted impulse images in the time domain. Minimizing

the frequency step size ∆f helps reduce the amplitude of these images. Selecting

a modulation window such that the frequency domain signals add to very nearly

a flat line could also help. To eliminate these images completely, we add a dither

to the frequency step size. The dither spreads the energy of these impulse images

throughout the time and frequency domains as noise.

5.2.3 Amplifier gate time dithering

It is most critical in the measurement to reduce and eliminate coherent noise.

While incoherent noise can be averaged out, coherent noise is more difficult to

eliminate. The high power gated amplifier used for excitation generates

broadband switching transients when it switches on and off immediately before

and immediately after a burst. These transients, unless eliminated, will generate

coherent noise in the excitation signal. When the signal is measured, they will

translate into phase error. We dither the gated amplifier turn on and turn off

times, typically by ±2µs, so that phase error from the switching transients will

average to zero over all the measurements for a particular frequency.
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5.3 Typical wavelet

In our experimental configuration, one input of the measurement system is

always used to monitor the excitation. This allows us to measure the wavelet

(bandlimited impulse) we use to probe the system, using the same superposition

algorithm as for the measured data. Both the linear impulse response and the

second harmonic impulse response of this wavelet can be measured. While the

second harmonic impulse response of this wavelet would ideally be zero, because

of the interference and error phenomena described above in sect. 4.3, a second

harmonic impulse response signal is always measured. By evaluating this signal,

it is possible to quantify the interference/error/noise level of the second harmonic

signal relative to the linear signal. Figure 5.4 shows typical excitation wavelets

from experiment and simulation from the water experiment that will be discussed

in chapter 7. The excitation time t0 is 4 µs. The experimental signal appears

500 ns late primarily due to group delay in the receiver filters. Figure 5.5 shows

the measured second harmonic impulse response, scaled up by a factor of 100, of

the wavelets of figure 5.4. The second harmonic content of the composite wavelet

bounds the sensitivity with which second harmonic signals can be detected. The

dual pulse signature of algorithmic interference that was discussed in section

4.3.2 can be seen clearly in the second harmonic content of the simulated wavelet

at t = 4 µs and t = 7 µs. The spacing of the interference pulses is 3 µs, or

exactly half the burst width of 6 µs. The same dual pulse signature can be seen

among the noise of the experimental waveform at t = 4.5 µs and t = 7.5 µs.
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5.4 Implementation with a digital signal processing

system (proposed)

While the above analog system demonstrated the viability of our measurement

system, it ultimately proved inadequate for performing the rapid high-SNR

measurements that would be needed to demonstrate the utility of this

measurement system for the non-destructive testing of materials. The signal

generators/amplifiers have turned out moderately well, but the receiver unit has

been a disappointment. In particular, the receiver unit uses noisy amplifiers and

has problems with signal leakage from other parts of the system. In the one

characteristic for which the analog system should excel – extraction of a weak

signal buried in a strong signal – it fails miserably. A signal just 40 dB – 1% –

below the peak is already buried in noise by the front-end amplifier! Even an

8-bit digital system can have a lower noise level. While an optimal analog

measurement system might in theory work better for this application, a digital

system might be more practical for future work. Nevertheless, we have used this

Ritec analog system for the proof-of-concept measurements in this dissertation.

Several particular limitations of the analog equipment were identified:

• Noisy analog electronics The Ritec analog front-end is very noisy, with

an SNR no better than 40 dB. This broadband noise carries through all

stages, although the SNR is improved by the narrowband detection and

filtering. Other stages may also have serious noise problems, but the

front-end noise seems to dominate.

• Inefficient performance Because the superheterodyne receiver can only
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measure one point in the cross-correlation per trigger and other limitations,

more than 100 triggers are required per frequency. Ideally, only 1 trigger is

required per frequency.

• Harmonic distortion in the frequency synthesizer The Ritec

frequency synthesizer uses 8 bit digital synthesis and generates harmonics

internally at -40 to -50 dB. These harmonics are then amplified along with

the fundamental and during measurement are indistinguishable from

harmonic generation within the sample.

To address these issues, an upgraded system using digital synthesis and digital

heterodyne detection was designed. In this system, a 12 bit DAC card, such as

GAGE CompuGen 1100 [10], would be used as a signal source as input to the

Ritec gated amplifiers. This would reduce harmonic distortion to -65 dB or

better. A noise shaping algorithm could further be used to improve precision and

reduce harmonic distortion. Acoustic waveforms would be recorded with a

high-speed high-precision ADC (e.g. GAGE CompuScope 12100 [10]). The

recorded waveforms would be digitally cross-correlated with the actual excitation

waveform, and with the square of the actual excitation waveform. This would

provide lower noise measurement (-65 dB or better dynamic range/SNR) and

much faster measurement times. With digital measurement, only one trigger is

required per frequency to capture and correlate the entire waveform. This would

lead to 100x faster performance. While the benefits of a digital measurement

system are clear, financial support for it was never obtained and it was never

implemented.
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5.5 Limiting factors of the measurement

The most fundamental limitation of the measurement system is time – the time

required to measure a composite waveform. Most of the factors involved in

measurement quality reduce in some way to the time required for the

measurement. With the current analog system, typical measurement times range

from 15 minutes to 4 hours depending upon the settings used. The most

important factor in measurement quality is the dynamic range of the receiver.

Because harmonic signals tend to be buried many dB below the fundamental, the

receiver must be capable of avoiding clipping the fundamental signal without

burying the second harmonic signal in noise. Increased measurement time allows

more averaging, which decreases the effective noise level of the receiver. Other

factors involved in measurement quality also translate into longer measurement

time. For example, reducing “f vs. 2f” interference requires using longer tone

bursts. Because the duty cycle of the gated amplifier is limited, a lower repetition

frequency must be used, and the total measurement time is proportionally longer.

Because the practical utility of a system such as this is fundamentally linked to

measurement time, reducing it is of the utmost importance. A digital system

such as that described in section 5.4 would go a long way toward this goal. The

digital system can measure an entire cross-correlation in one trigger, while the

analog system is limited to one of 50-100 points in the correlation per trigger.

Some limiting factors of the measurement cannot be corrected by increasing

measurement time. Reducing them instead requires improving equipment or

modifying the measurement algorithm or implementation. Coherent noise or

harmonic distortion coming from the excitation or receiver circuitry cannot be
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reduced by using a longer measurement time, nor can harmonic generation within

the transducers or coupling media. However, while not all sources of noise or

error translate into longer measurement time requirements, the quality of

measurement with the current system translates directly to the time permitted

for the measurement.



CHAPTER 6

SIMULATION

6.1 A tool for verification

A simulation environment for weakly nonlinear media was developed and

integrated into the data collection system. The idea is that a computational

model for the experimental system can be constructed. Then the collection

algorithm and processing routines can operate on either physical hardware or the

simulation environment. This provides an opportunity to confirm and verify that

the system behaves as expected on a model environment. By carefully analyzing

the simulation, we can gain important insights into both the behavior of the

measurement algorithm and the underlying physics of the simulated experiments.

We can also use the simulation as an idealized platform on which to study the

interference and error limitations of our measurement algorithm, such as those

discussed in section 4.3 and observed in section 5.3 and figures 5.4 and 5.5.

Finally, the simulation allows us to directly compare experimental and simulated

results, and to use this as a tool for evaluating both the measurement system and

the experiment itself.

6.2 Finite difference model

We model a 1-dimensional nonlinear medium with a discrete series of masses and

nonlinear springs as shown in figure 6.1 with a dashpot at the boundary to

40
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Figure 6.1: Finite difference model of a nonlinear medium.

provide an absorptive end condition. This model (ignoring boundaries) is

expressed by the discrete time difference equation (see appendix A.2):

m

(∆t)2
(yt+∆t

x
− 2yt

x
+ yt−∆t

x
) = (6.1)

k1(y
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x
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k2

2
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)

In the limit as ∆x and ∆t approach zero, equation 6.1 becomes the nonlinear

one-dimensional PDE (appendix A.3):

∂2y

∂t2
=

E1

ρ

∂2y

∂x2
+ 2

E2

ρ

∂y

∂x

∂2y

∂x2
(6.2)

where E1 = k1∆x

A
, E2 = k2(∆x)2

4A
, and ρ = m

A∆x
.

The nonlinear wave equation, eq. 6.2, can also be derived from F = ma and the

nonlinear elastic constitutive law (appendix A.4):

σ = E1ǫ + E2ǫ
2 (6.3)

Hence, our difference equation (eq. 6.1) with sufficiently small ∆x and ∆t can be

used to model a continuous one-dimensional system with the simple nonlinear

constitutive law of eq. 6.3. This difference equation contains exactly one term

yt+∆t

x
referencing the future, and can therefore be iterated in time to solve the

PDE given initial conditions and boundary conditions.
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6.3 Convergence issues and ∆x

∆t

Obviously for the difference equation (6.1) to converge, ∆x and ∆t must

approach zero. Properties of the convergence turn out to be highly dependent

upon the ratio
∆x
∆t

. Based on an analysis of the linear equation, we will conclude

that ∆x
∆t

should be slightly larger than the small signal wavespeed.

If we linearize the difference equation (6.1) and let c =
√

E1

ρ
, and c∆ = ∆x

∆t
, the

equation reduces to (appendix A.5):

yt+∆t
x − 2yt

x + yt−∆t
x =

c2

c2
∆

(yt
x+∆x + yt

x−∆x − 2yt
x) (6.4)

A 2-D Z-transform – or equivalently substituting y = eik(x−cpht) – gives (appendix

A.5):

c∆

c
=

sin(ωc∆∆t/2cph)

sin(ω∆t/2)
(6.5)

This can be nondimensionalized by defining the step size factor rstep = c∆
c

, the

wavespeed ratio rspeed =
cph

c
, and the oversampling factor rover = fs

2fmeas
= π

ω∆t
.

Therefore,

rstep =
sin( πrstep

2rspeedrover
)

sin( π
2rover

)
(6.6)

This can be solved for rspeed:

rspeed =
πrstep

2roverarcsin[rstep sin( π
2rover

)]
(6.7)

In particular, rspeed is a function of rstep and rover! That is, the discretized wave

equation has become dispersive. Since in the linearized model, there should be no

dispersion, it makes sense to select step sizes ∆x and ∆t to minimize the

dispersion. We can plot rspeed as a function of rstep and rover to investigate the
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Figure 6.3: Finite difference modeling of a dry contact or crack.

dispersion. Figure 6.2 shows rspeed (grayscale) as a function of rstep and rover,

from eq. 6.7. Since the simulation should exhibit no dispersion (rspeed = 1.0), we

can select the simulation parameters rstep and rover from fig. 6.2 to minimize

dispersion. From the figure, we clearly want rstep = 1 + ǫ (that is, ∆x
∆t

slightly

larger than c) and rover as large as possible. The worst case parameters for the

water simulation experiment that will be discussed in chapter 7 are marked with

a cross on figure 6.2.

6.4 Model of a crack or dry contact

We use a dry contact between two pieces of material as an experimental model

for a crack. In order to properly simulate such an experiment, an elastic model

for the crack or dry contact is needed. We use an array of pins (compressive

springs) between rigid plates as shown in figure 6.3 to model the dry contact.

The equilibrium pin length is a normally distributed random quantity. This



45

model is inserted between two masses in place of a spring in the finite difference

model. Given a displacement from nominal length y, the force F given by this

model is (appendix A.6):

F =
yAE

2L
erfc

(

y
√

2σ

)

−

σAE

L
√

2π
e−

y
2

2σ2 (6.8)

where σ is the standard deviation of the pin length and L is the amount of

physical length required by the dry contact model. In our simulation, we let

L = ∆x and define a dimensionless parameter α = σ

L
that describes the

roughness or randomness of the surface. Putting this all together, we obtain a

relatively simple stress-strain relation:

stress =
1

2
ǫE erfc

(

ǫ
√

2α

)

+
Eα
√

2π
e−

ǫ
2

2α2 (6.9)

To model the nonlinearity, we insert equation 6.9 into the finite difference model

eq. 6.1 at a point, replacing a spring. Unfortunately, because the width of the

nonlinearity is defined by the spatial step size ∆x, the behavior of the simulation

is not independent of ∆x. Therefore convergence testing of the simulation by

reducing ∆x and ∆t cannot be performed. Instead we must rely on convergence

testing from a system with no nonlinearity.

The stress-strain relation, eq. 6.9, for E = 70 GPa, α = .045, and ∆x = 28.5µm

is shown in figure 6.4. As one would expect for a dry contact between two

aluminum specimens, it is linear with a modulus of 70 GPa under large

compression, but exhibits no stiffness under tension.

6.5 Integration with data collection

In order to be useful and relevant to the measurements discussed here, it must be

possible to apply the same series of tone bursts to the simulator as to the
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Figure 6.4: Stress-strain relation of nonlinear contact model.

physical sample, and then to perform the analog processing of the Ritec receiver

unit, and finally to simulate the normal data collection procedure. For this

reason, the simulator has been integrated into the data collection program. A

single parameter selects whether a real experiment is to be performed or a

simulation should be run. All other settings are shared by the simulator and data

collection routines. Much of the same data collection code is used. The data file

formats are the same. All of the post-processing is identical. This way, the

simulator is very useful for testing data collection and processing codes and

procedures as well as being an experimental tool.



47

0 2 4 6 8
−1.5

−1

−0.5

0

0.5

1

a)  x = 0 cm

Time domain waveform
Frequency spectrum (shifted)

0 2 4 6 8
−1.5

−1

−0.5

0

0.5

1

b)  x = 8 cm

0 2 4 6 8
−1.5

−1

−0.5

0

0.5

1

c)  x = 16 cm
0 2 4 6 8

−1.5

−1

−0.5

0

0.5

1

d)  x = 24 cm

A
m

pl
itu

de
 (

ar
bi

tr
ar

y 
un

its
)

Evolution of a burst propagating in a nonlinear medium

Time (  s) or Frequency (MHz)

(simulated)

µ

Figure 6.5: Demonstration of simulated wave propagation in a nonlinear

medium.
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6.6 Nonlinear wave propagation demonstration

While specific results relevant to the time-resolved nonlinear process will be

discussed along with the corresponding experiments, here we demonstrate the

finite difference simulation by propagating a tone burst through a nonlinear

medium. The excitation is a f = 1.5MHz tone burst in a 6µs raised-cosine

envelope, applied as an external force to the end of the simulated nonlinear

medium. The response of the medium is measured by a velocity sensor with a

variable position. The evolution of the tone burst can be seen in figure 6.5.

Figure 6.5 (a) shows the burst at the excitation point in the time and frequency

domains. Figure 6.5 (b), (c), and (d) show the burst after propagating through 8

cm, 16 cm, and 24 cm of the nonlinear medium of equation 6.3 respectively.

Fig. 6.5a shows no nonlinearity. There is a signal only at the excitation

frequency. After a short distance of propagation, a small amount of nonlinear

self-interaction has occurred, leading to the second harmonic shown in Fig. 6.5b.

More propagation distance leads to higher order harmonics and larger amplitudes

of the harmonics, as can be seen in Figs 6.5c and 6.5d. Propagation over larger

distances could lead to shock generation and more exotic nonlinear phenomena.



CHAPTER 7

EXPERIMENT: HARMONIC GENERATION IN WATER

7.1 Experimental configuration

As a simple test of the time-resolved nonlinear method, we chose to apply the

method to measure harmonic generation in water. The nonlinear acoustic

acoustic behavior of water is well known and well characterized, e.g. Beyer [3]

and Krassilnikov et al. [16]. Figure 7.1 gives the results from Krassilnikov et al.

[16] showing second harmonic generation (not time-resolved) for water and

transformer oil. Curves 1, 2, and 3 correspond to harmonic generation in water

for excitation amplitudes of 500 V, 1 kV, and 2 kV respectively applied to a

piezoelectric transducer at 1.5 MHz. Curve 4 (and the right hand voltage scale)

corresponds to 2 kV excitation at 1.5 MHz in transformer oil. In a simple weakly

nonlinear medium, we would expect harmonic generation to be proportional to

the distance traveled, as shown in curve 1 of figure 7.1. Curves 2 and 3 do not

show this beyond 20 cm. Most likely the criterion of weak nonlinearity is being

violated by these experiments, because otherwise these results are inconsistent

with with well established and verified theory ([17] and see below).

We demonstrated a similar experiment using the time-resolved method. In this

experiment, separate source and receiver immersion transducers were used to

measure an ultrasonic wave propagating in the water. The axial separation

between source and receiver was varied using a motion-control system, as shown

in figure 7.2. We measured the linear and second harmonic impulse responses at

each separation for source frequencies from 0.86 to 7.25 MHz, in steps averaging

49
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Figure 7.1: Results from Krassilnikov et al. [16] showing harmonic genera-

tion at 3 MHz from 1.5 MHz ultrasound propagating in water

and transformer oil.

Curves 1, 2, and 3 correspond to propagation in water at 500 V, 1

kV, and 2 kV excitation levels respectively. Curve 4 corresponds

to propagation in transformer oil with 2 kV excitation. The left

scale on the voltage axis corresponds to the water experiments;

the right scale corresponds to the transformer oil experiments. ×

and ◦ correspond to different measurement methods.

ReceiverSource

harmonic generation

Water path

Figure 7.2: Illustration of experiment showing harmonic generation in water.
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Figure 7.3: Sample waveforms, harmonic generation in water, propagation

distance=4 mm.

38.5 kHz (fundamental) or 19.2 kHz (second harmonic). Off-the-shelf commercial

immersion transducers were used for this experiment (3 MHz Ultran L50-3 source

and 5 MHz Panametrics V310 receiver). Since wave propagation over a longer

distance would tend to give more harmonic generation, we expected the

amplitude of the second harmonic to increase proportionally with distance. In

contrast, we expected the amplitude of the linear pulse to remain approximately

constant.

7.2 Experimental results

Two experiments were performed, at relative excitation amplitudes 1.00 and 2.49.

Figure 7.3 shows sample waveforms corresponding to d = 4 mm separation, 2.49
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Two experiments were run at relative excitation amplitudes of

2.49 and 1.00.
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distance is varied.

The ratio of the slopes of the second harmonics of the experi-

ments at 2.49 and 1.00 excitation amplitudes is 6.81. sqrt(slope

ratio)=2.61.
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amplitude. These waveforms are the linear and second harmonic impulse

responses as measured according to the procedure described in chapters 4 and 5.

The direct arrival can be seen at t = 7µs and a reverberation between source and

receiver transducers appears at t = 12µs. It is important to note that the burst

width for this experiment was 6 µs. Compare that to the 1 µs width of the

impulses in fig. 7.3 to see the improvement in time resolution resulting from our

method. Figure 7.4 shows the linear impulse response waveforms as a function of

separation for a relative excitation amplitude of 2.49. Figure 7.5 shows the

corresponding second harmonic impulse response waveforms. The peak

amplitudes from figures 7.4 and 7.5 were extracted along with those from the

1.00 rel. amplitude experiment. The peak amplitudes of the linear impulse

response are shown in Figure 7.6 and the second harmonic amplitudes are shown

in figure 7.7. We see that the amplitude of the linear impulse response remains

relatively constant, while the amplitude of the second harmonic increases linearly

with propagation distance, as expected.

From theory (Lamb [17] and see below), we expect the second harmonic impulse

response to vary with the square of the excitation amplitude. From the two runs

at different amplitudes, this can be easily verified. The excitation amplitude ratio

(and linear impulse response ratio) of the two experiments is 2.49. We would

expect the square root of the ratio of the slopes of the second harmonic impulse

responses to approximately match this. In fact, it does. The ratio of of the slopes

is 6.81. The square root of that is 2.61, within reasonable error of the amplitude

ratio of 2.49. This is also approximately consistent with the ratios of the initial

slopes of the second harmonic curves 1, 2, and 3 from Krassilnikov [16] (fig. 7.1).
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7.3 Simulation results

To further verify and understand our method, we decided to repeat the above

experiment in simulation. We implemented the finite-difference simulator with a

nonlinear constitutive law as discussed in chapter 6. We simulated a source and

receiver and varied the distance between them. Parameters were selected so as to

operate in the same regime of weak nonlinearity as the physical experiments

carried out in water. The same data collection program used for the physical

experiments was used to collect the simulation data, but with the simulator

‘plugged in’ in place of physical hardware. Step sizes of ∆x and ∆t were selected

according to the criteria discussed above in section 6.3. Additional experiments,

with scaled ∆x and ∆t values, generated identical results to those shown below,

confirming convergence of the simulation.

Figures 7.8, 7.9, 7.10, and 7.11 show the results of the finite difference

simulations of harmonic generation in water. Precisely the same phenomena

observed in the experiments are seen here. Nonlinearity grows proportionally

with distance and with the square of the excitation amplitude.

7.4 An analytic solution

We follow the analysis of Lamb [17] to demonstrate an approximate analytic

solution for harmonic generation in water. Consider the nonlinear

one-dimensional PDE of equation 6.2:

∂2y

∂t2
=

E1

ρ

∂2y

∂x2
+ 2

E2

ρ

∂y

∂x

∂2y

∂x2
(6.2)
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If we were to omit the nonlinear term, then the D’Alembert solution

y = f
(

t−
√

ρ

E1

x
)

, where f(t) is the solution for x = 0, would apply. If we

substitute the D’Alembert solution into the nonlinear term of the above PDE, we

obtain a new PDE (appendix A.7):

∂2y

∂t2
=

E1

ρ

∂2y

∂x2
+

E2

E1

∂

∂x





[

f ′

(

t−

√

ρ

E1

x

)]

2


 (7.1)

This new PDE has the solution (appendix A.7):

y = f

(

t−

√

ρ

E1

x

)

−

E2ρ

2E2

1

x

[

f ′

(

t−

√

ρ

E1

x

)]

2

(7.2)

Equation 7.2 is an approximate solution for the original PDE eq. 6.2. In effect,

we have substituted the whole of eq. 7.2 into the first two terms of eq. 6.2, but

only the D’Alembert solution into the final (nonlinear) term of eq. 6.2. These

substitutions solve eq. 6.2 but with residual error because the nonlinear term of

eq. 7.2 was never substituted into the nonlinear term of eq. 6.2. It is argued that

in the case of weak nonlinearity, the nonlinear terms are both small and hence

the error is negligible. If the nonlinear terms are smaller than the linear terms by

a factor of ǫ, the error will be O(ǫ2), while the largest terms of interest are O(ǫ).

Equation 7.2 has two terms: the ‘D’Alembert term’ f
(

t−
√

ρ

E1

x
)

that solves the

linear equation, and the ‘nonlinear term’, −E2ρ

2E2

1

x
[

f ′

(

t−
√

ρ

E1

x
)]

2

. The first and

most important characteristic of eq. 7.2 is that it shows the behavior of the

nonlinear term. In particular, the amplitude of the nonlinear term is proportional

to both the propagation distance x and the square of the excitation amplitude f .

This is the fundamental behavior – amplitude proportionality with distance and

excitation2 – that we have seen in both the experiments and the simulation, and

it is clearly reflected in the analytic solution.
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We would like like to make a detailed comparison between the analytic solution

eq. 7.2 and the results from simulation. To simplify the analysis, we will modify

the analytic solution to reflect the physical methods of excitation and detection

modeled in the simulation. In particular, excitation is applied with a force

actuator, and detection is performed with a velocity sensor. The displacement

waveform excited in the medium by a force actuator is proportional to the

integral of the force waveform. So if we keep f as the externally applied signal,

our solution is (replacing each f in eq. 7.2 with
∫

f dt):

y =
∫

f

(

t −

√

ρ

E1

x

)

dt −
E2ρ

2E2

1

x

[

f

(

t −

√

ρ

E1

x

)]

2

(7.3)

If we measure y with a velocity sensor, we obtain g = ∂y/∂t (using g to represent

the measured signal, as in chapter 3). So the modified analytic solution is:

g = f

(

t −

√

ρ

E1

x

)

−
E2ρ

2E2

1

x
∂

∂t





[

f

(

t −

√

ρ

E1

x

)]

2


 (7.4)

The only difference between equations 7.2 and 7.4 is that the squaring and

differentiation operations on the nonlinear term are interchanged.

We recall our model from chapter 3, eq. 3.9:

ĝ = A ⊗ f(t) + B ⊗ f 2(t) (3.9)

We can now analyze our analytic solution, eq. 7.4, in terms of this model by

inspection. Clearly (see appendix A.8),

A = δ

(

t −

√

ρ

E1

x

)

(7.5)

and

B = −
E2ρ

2E2

1

x
∂

∂t
δ

(

t −

√

ρ

E1

x

)

(7.6)



61

We can also look at the frequency spectra of A and B. Since A is a time-shifted

delta function, it will have a frequency spectrum of uniform magnitude. The

term B, being the derivative of a delta function, will have frequency spectrum

magnitude proportional to frequency. Recall that A and B are the idealized

non-band-limited linear and second harmonic impulse responses, respectively.

Figure 7.12 shows fundamental and second harmonic impulse responses from the

simulation at x = 21 mm, in the time and frequency domains (the third

waveform will be discussed below). Recall that when we measure A, we measure

it by probing it with the composite f , a band-limited impulse. You can see that

in fig. 7.12. The solid curve is equivalently our linear impulse response or our

bandlimited impulse, time shifted according to eq. 7.5. In the frequency domain,

it is zero except over the frequency range of the bursts used to compose it, and it

has constant magnitude over that range. Similarly, the dashed curve in fig. 7.12

shows the second harmonic impulse response. From the theory above, we would

expect B to be proportional to frequency, but bandlimited. That is exactly what

we see in the dashed curve of fig. 7.12.

The third curve in fig. 7.12, denoted by dashes and dots, was calculated by

differentiating the square of the linear impulse response. This is the nonlinear

component of the signal we would obtain by applying the entire composite

impulse to the nonlinear system. You can see that it is essentially the same as

the second harmonic impulse response waveform, except that it has been filtered.

The filtering comes from squaring a function that is band limited. If we take a

boxcar in frequency, such as the solid line in fig. 7.12b, and square it in the time

domain (convolve it with itself in the frequency domain), we obtain an
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(approximately) triangular frequency spectrum. It is this triangular f 2 that is

used to probe B. If we had applied the composite impulse directly to the

nonlinear medium, we would have probed B with this triangular spectrum rather

than a flat spectrum. Differentiating the triangular spectrum in the time-domain

(multiplying by frequency in the frequency domain), as happens when B is

applied to f 2, gives the spectrum that is the dash-dot curve in fig 7.12b. It is the

same waveform as the second harmonic impulse response, only measured by an

impulse with different spectral content.

So the difference between what we measure as the second harmonic impulse

response, and the actual quadratic nonlinearity component one would obtain by

applying an actual bandlimited impulse, is just a difference in filtering! Moreover,

if we were to somehow apply a perfect non-band-limited impulse to the nonlinear

system, then the measured quadratic nonlinearity would be a non-band-limited

version of the second harmonic impulse response as we measure it1.

In short, we have shown that in certain specialized conditions we can analytically

determine the second harmonic impulse response. We have further shown that

for this particular experiment, what we measure as “second harmonic impulse

response” is a bandlimited representation of the actual quadratic nonlinearity

from a broadband impulse.

1Assuming we don’t violate the approximation of small nonlinearity in the
derivation of eq. 7.2



CHAPTER 8

EXPERIMENT: MEASUREMENTS ON A CRACK

The initial motivations for the time-resolved measurement system were the

potential applications to non-destructive testing problems. The use of bulk

nonlinearity as a flaw or fatigue detector is well established [2], and individual

macroscopic cracks are also known to generate harmonics [25]. Here we describe

an experiment involving an actual fatigue crack in a block of titanium. This

experiment did not work, in the sense that it did not yield any measurable trend

in the recorded waveforms. However, it does provide an instructive example that

demonstrates limitations and suggests improvements. Furthermore, this failed

experiment motivated the successful measurements of contact acoustic

nonlinearity that are discussed in the succeeding chapter.

8.1 Experimental configuration

We obtained a titanium specimen containing a fatigue crack. A diagram of the

specimen and transducers is shown in figure 8.1. A photograph of the specimen is

shown in figure 8.2. A 3 MHz custom built lithium niobate longitudinal wave

transducer, honey-coupled, was used as the source. A Panametrics V121 7.5 MHz

wideband transducer was used as the receiver. A specially designed jig, described

in appendix C, held the source and receiver transducers spring-loaded against the

sample. The specimen was placed in an Instron testing machine. The testing

machine was used to apply a force and displacement, causing the crack to open.

We applied our algorithm, with a burst width of 4 µs and excitation frequency

64
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Applied force/displacement

Source Receiver

63.5 mm

82.6 mm

(25.4 mm thick)

9.7 mm (back)
5.1 mm (front)

Figure 8.1: Diagram showing the cracked titanium sample and transducer

positioning.

Figure 8.2: Photograph of the cracked titanium sample.
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Figure 8.3: Reflected signals from the crack, fundamental (linear) impulse

response.

range of 0.5− 5.5 MHz to measure the the linear and second harmonic impulse

responses a function of applied displacement and force.

8.2 Results

The measured waveforms as a function of applied load are shown in figures 8.3

(fundamental) and 8.4 (second harmonic). No trend can immediately be seen.

Residuals, waveforms calculated by subtracting the minimum force waveforms

from all others, are shown in figures 8.5 and 8.6. Still, no trend appears. There is

no measurable change in the linear or second harmonic waveform that correlates

with applied load.
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Figure 8.5: Fundamental (linear) impulse response residual.
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8.3 Analysis

What is wrong? Why can’t we measure a change in nonlinearity from the crack

as it opens? We have measured nonlinear response, but it might not be from the

crack, it might be from the equipment or other noise/interference sources.

A free surface does not generate acoustic nonlinearity. Perhaps we measured in

the wrong place and measured only the free surface, not the crack tip or other

areas of nonlinear contact. Perhaps the nonlinear echo came off at an angle and

missed the receiver transducer. Even if we were to measure nonlinearity from the

crack, what trend would we expect as we apply displacement? It is not clear how

the linear and second harmonic impulse response waveforms should change with

crack-opening displacement or force.
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There are many potential sources of nonlinearity in the experiment, only one of

which is the sample. The signal generator which creates the excitations bursts

generates harmonics internally. The high power amplifiers can generate

harmonics. The transducers or coupling can generate harmonics too. Finally,

algorithmic interference can create phantom nonlinearity as described in section

4.3.2. In order to know a-priori that the measured nonlinearity comes from the

sample and not from one of these other sources, each of the above interference

sources must be analyzed and rejected. This was not done, because it is

extremely complicated and time-consuming if it is possible at all.

In general the interference from one of these sources is difficult or impossible to

calculate in advance. Nonlinearity in the transducer couplant, for example, will

depend on how much couplant was used and exactly how the transducer was

placed on the sample. Nonlinearity in the equipment will be a function of all of

the settings, including frequency. In order to reject these interference sources,

their amplitudes must be measured and found to be orders of magnitude smaller

than the phenomena being measured. With current equipment, interference

phenomena are generally on the same order, or slightly smaller, than the

nonlinear acoustic phenomena. For viable single-shot nonlinearity measurements,

much better and more refined equipment is needed. Because of the large number

of potential error sources and the complete lack of positive results, we decided

not to pursue this experiment further and instead focus on more controlled

experiments.

The problems in this experiment with a crack motivated our further studies of

contact acoustic nonlinearity. By measuring harmonic generation at a simple and
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flat dry interface under load, we can avoid many of the problems described here.

In the case of the dry interface, we have a much more controlled experiment.

Solodov [24] gives us an estimate for how the nonlinearity should vary as the load

is increased. If the nonlinearity does indeed vary in this fashion, we can know for

certain that the measured nonlinearity did not arise from problems in the

equipment because of the way the measured nonlinearity varies with the load.



CHAPTER 9

EXPERIMENT: HARMONIC GENERATION AT A DRY

CONTACT

9.1 Experimental configuration

We wish to investigate in a more robust manner whether the time-resolved

nonlinear method can be applied to the nondestructive detection of cracks and

flaws. The experiment described in the previous chapter with an actual crack was

not well controlled because of the complexity of the crack. The crack has a tip. It

also has jagged surfaces and complicated topography. In this experiment, we use

a dry contact between the flat surfaces of two aluminum bars as a simplistic

representation of a crack. Then we attempt to apply the time-resolved method to

measure harmonic generation from that interface, a contact acoustic nonlinearity

(CAN).

Figure 9.1 shows results from a similar, but not time-resolved, experiment from

Solodov [24]. This experiment was at much lower frequency – 300 Hz – but was

otherwise similar in nature to the experiment we describe below. A dry contact

between two metal rods was put under compressive load and the second

harmonic generation was measured as a function of applied load. The horizontal

axis of fig. 9.1 is compressive load (unspecified units). The vertical axis is second

harmonic amplitude for samples with: (△) polished contact surfaces and (•)

surfaces finished with grinding.

We take two aluminum bars and put them in contact over a small area (21.6 mm

x 25.4 mm), as illustrated in figure 9.2. The upper bar is 38mm thick and the
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Figure 9.1: Results from Solodov [24].

Second harmonic amplitude is shown as a function of compres-

sive load. (△) corresponds to a polished contact surface; (•)

corresponds to a contact surface finished with grinding.

Source

Receiver

Applied compressive load

Applied compressive load

at interface

Harmonic
generation

σ

ε

Applying compressive
load moves bias point
away from nonlinear 
bend.

Figure 9.2: Diagram of Contact Acoustic Nonlinearity (CAN) experiment.
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lower bar is 25.4mm thick. We will vary the compressive load on the contact

interface. Since the interface can support compression but not tension it is a

point nonlinearity in the stress-strain relation. As the applied load varies, the

‘bias point’ of the acoustic vibrations on the stress-strain curve varies, causing the

measured nonlinearity to change as illustrated on the right hand side of figure 9.2.

The contact surfaces were prepared by grinding. Spring loaded transducers and

honey couplant were used to provide a qualitatively repeatable measurement. We

used custom built broadband transducers with a lithium niobate element for

maximum bandwidth and minimum transducer nonlinearity. The transducers

were manufactured by Valpey Fisher. We measured the transmission of the

fundamental and second harmonic frequencies through the interface as a function

of applied load. We used a burst width of 4 MHz and a frequency range of 0.5-5.5

MHz, with an average frequency step of 37.3 kHz (fundamental) or 18.6 kHz

(second harmonic).

9.2 Experimental results

Figure 9.3 shows sample waveforms corresponding to a compressive load of

11.4 MPa. The direct arrival can be seen at 14 µs and reverberations in the

aluminum bars appear at 22.5 and 26 µs. Figure 9.4 shows the entire set of

composite fundamental waveforms, and fig. 9.5 shows the entire set of second

harmonic waveforms as a function of applied load. The first arrival amplitudes of

the waveforms in figs. 9.4 and 9.5 are shown in fig. 9.6. We note that as the

applied compressive load increases, the measured fundamental component

increases linearly, while the measured second harmonic component increases
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Figure 9.3: Sample contact acoustic nonlinearity waveforms,

Force/Area=11.4 MPa.
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nonlinearity as a function of applied load.
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nonlinearity) as a function of applied load.
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linearly initially, but stops increasing with higher loads. This is both plausible

and consistent with published results such as Solodov [24] (fig. 9.1). At no load,

no signal is transmitted through the interface because the contact area is very

small because of surface roughness, so the measured fundamental and second

harmonic signals are zero. As a load is applied, both fundamental and second

harmonic signals increase proportionally. As the load continues to increase, the

second harmonic signal decreases relative to the fundamental signal because the

compressive load biases the system away from the nonlinear regime. With

sufficient load, the amplitude of the fundamental signal should approach a

constant, and the amplitude of the second harmonic signal should approach zero.

9.3 Simulation results

Unfortunately, the maximum force applied in the above experiment was limited

by the strength of the jig supporting the transducers and experiment. To get a

better understanding of the phenomena and measurement issues involved, we

simulated the experimental system using the finite difference model described in

chapter 6.

The stress-strain relation of the nonlinear contact model was given in eq. 6.9 and

shown in figure 6.4. Here, we will focus on the region in the stress-strain curve in

which stress is on the order of the amplitude of the simulated elastic stress wave.

Figure 9.7 shows the stress-strain curve of the nonlinear contact model for

stresses between −80 and 0 MPa. For comparison the peak to peak amplitude

selected for the simulated elastic waves was 9 MPa.



77

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 8  10  12  14  16  18

S
tr

es
s 

(M
P

a)

Strain (%)

Stress-strain relation of contact nonlinearity model

σ(ε,E=70GPa,α=.045)

Sample bias point and
amplitude of elastic wave

Figure 9.7: Stress-strain relation of nonlinear contact model for small stress.

It is important to emphasize that no claim whatsoever is made that the

simulation parameters reflect the above experiments quantitatively. The

simulation parameters, α, ∆x, and elastic wave amplitude, were tuned so that

they qualitatively match the observed experimental data over the range of the

experiment.

From figure 9.7 it is directly possible to see where the nonlinearity comes from.

The applied compressive load sets the vertical position of the bias point marked

in fig. 9.7. The simulated elastic wave modulates ±4.5 MPa about the bias

point. Nonlinearity comes from the curvature of the stress-strain curve within

that ±4.5 MPa of the bias point. As can be seen in figure 9.7, the more

compressive load is applied, the less curvature exists within the ±4.5 MPa, so
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Figure 9.8: Amplitude of fundamental and second harmonic signals from sim-

ulation experiment.

the less relative nonlinearity would be observed.

A simulation experiment was performed with conditions similar to the physical

experiments described in the previous section. Figure 9.8 shows the measured

amplitudes of the linear impulse response and the second harmonic impulse

response from the simulation. The decrease in nonlinearity under large load is

clearly visible in these results. Figure 9.9 shows the amplitudes over a range of

stress analogous to the experimental results shown above in figure 9.6. The

plausible contact nonlinearity model we developed in chapter 6 shows behavior

consistent with our expectations, our experimental results, and previous work

such as that by Solodov [24] (figure 9.1).
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CHAPTER 10

A BLUEPRINT FOR FUTURE DEVELOPMENT

While we have very successfully developed and demonstrated a technique for

time-resolved measurements of nonlinearity, the technique will remain an

academic exercise until it is refined to the point of practical utility.

Time-resolved measurements of nonlinearity have the potential to dramatically

enhance non-destructive testing by providing information on nonlinearity while

still using the same measurement methodologies used today.

In order to transform our method from a laboratory curiosity to a commercially

viable nondestructive testing tool, several critical improvements are needed.

First, more ‘headroom’ is needed. The equipment must have a large usable

dynamic range. Whenever a nonlinear signal is detected, there must be no

question that the nonlinearity came from the sample, not the equipment. Second,

the speed of the measurement must be increased. The time required to obtain a

waveform must be reduced from hours to seconds or minutes.

Fortunately, there are a large number of potential improvements that are at least

moderately straightforward. Implementing the proposed digital system of section

5.4 would provide major increments in both headroom and performance. In

addition, measurement time could be substantially reduced by reducing the burst

width proportionally with higher frequencies. Reducing the burst width both

directly allows faster measurements – the repetition rate is limited according to

the burst width to prevent amplifier overheating – and reduces the number of

frequency steps required because narrower bursts have wider bandwidth.

Furthermore, the excitation and receiver bursts could be optimized to give a flat
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frequency response of the composite impulse at wider burst frequency spacing.

This would reduce the number of frequency steps required per measurement and

further reduce the measurement time.

It would also be worthwhile to redevelop the algorithm to use nonlinear mixing of

two frequencies rather than harmonic generation. Instead of applying a single

frequency to the sample and measuring harmonic generation, we can apply two

frequencies, with different amplifiers and a multi-element transducer, and

measure the nonlinear mixing. Measurement of mixing is much less sensitive to

nonlinearity in the equipment and transducers because the two probe frequencies

can be kept separate until they reach the sample being tested. Furthermore, one

of the probe frequencies can be fixed while the other is varied. This means that a

narrowband transducer can be used for the fixed probe. Narrowband transducers

are much more efficient, so the signal amplitude will be higher, making the

nonlinearity proportionally easier to detect.

We suspect that the above improvements will allow sufficient headroom and

sufficiently fast measurements for this technique to be useful in practical

nondestructive testing applications. The extra information this technique

captures has the potential to create a dramatic improvement in nondestructive

measurements of materials.



CHAPTER 11

CONCLUSIONS

We have developed a new method for studying materials and systems exposed to

finite amplitude sound waves. By superimposing a series of narrowband bursts to

form a composite impulse, we are able to make time-resolved measurements of

nonlinear harmonic generation phenomena. Such measurements have the

potential for great practical utility in the field of nondestructive testing. We have

developed and described a mathematical justification for our method, and

discussed its benefits and limitations. We built a measurement system capable of

testing the method and performed several demonstrative experiments. A

simulation environment was developed to cross-check the experiments and study

noise and artifacts.

We demonstrated harmonic generation in in water as a function of transducer

distance, and showed a match between theory, simulation, and experiment. We

demonstrated harmonic generation at a dry contact nonlinearity, and showed a

match between simulation, experiment, and previously published results. We

have not yet demonstrated specific experiments that would be impossible to

perform using conventional narrowband harmonic generation experiments, but we

have demonstrated experiments in which the interpretation was far easier and

less vulnerable to interference due to our method. We have also discussed how

time-resolved measurements of nonlinear phenomena could be used to enhance

the nondestructive testing of materials. Our time-resolved method allows

time-domain, easy to interpret measurements of nonlinear acoustic phenomena.
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APPENDIX A

DERIVATIONS

A.1 Demonstration that the discrete time Volterra

expansion is a Taylor series

We shall show in this section that discrete time Volterra expansion given in eq.

3.5 is a Taylor series. The discrete time Volterra expansion was given as:

ĝi =
∂gi

∂fj

∣

∣

∣

∣

∣

f=0

fj +
1

2!

∂2gi

∂fj∂fk

∣

∣

∣

∣

∣

f=0

fjfk +
1

3!

∂3gi

∂fj∂fk∂fl

∣

∣

∣

∣

∣

f=0

fjfkfl + ...(3.5)









sum over

j, k, l, etc.









Since a Taylor series approximates a function by matching its value and

derivatives at a particular point, we can show that eq. 3.5 is a Taylor series by

confirming that the functional values and derivatives of g and ĝ match at f = 0.

At fi = 0 (∀i), ĝi = 0. Since it is assumed that the system provides no response

to zero input, this is consistent with gi = 0. Consider the first derivatives:

∂ĝi

∂fm

=
∂gi

∂fj

∣

∣

∣

∣

∣

f=0

∂fj

∂fm

+
1

2!

∂2gi

∂fj∂fk

∣

∣

∣

∣

∣

f=0

(

fj

∂fk

∂fm

+ fk

∂fj

∂fm

)

+ H.O.T . . . (A.1)

(sum over repeated indices in this section)

Assuming the time samples of f are independent, ∂fk

∂fm
= δkm.

∂ĝi

∂fm

=
∂gi

∂fj

∣

∣

∣

∣

∣

f=0

δjm +
1

2!

∂2gi

∂fj∂fk

∣

∣

∣

∣

∣

f=0

fjδkm +
1

2!

∂2gi

∂fj∂fk

∣

∣

∣

∣

∣

f=0

fkδjm + H.O.T . . .

=
∂gi

∂fm

∣

∣

∣

∣

∣

f=0

+
1

2!

∂2gi

∂fj∂fm

∣

∣

∣

∣

∣

f=0

fj +
1

2!

∂2gi

∂fm∂fk

∣

∣

∣

∣

∣

f=0

fk + H.O.T . . . (A.2)
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Evaluating at f = 0:

∂ĝi

∂fm

∣

∣

∣

∣

∣

f=0

=
∂gi

∂fm

∣

∣

∣

∣

∣

f=0

(A.3)

So the first derivatives match at f = 0. Now consider the second derivatives:

∂2ĝi

∂fm∂fp

=
1

2!

∂2gi

∂fj∂fm

∣

∣

∣

∣

∣

f=0

∂fj

∂fp

+
1

2!

∂2gi

∂fm∂fk

∣

∣

∣

∣

∣

f=0

∂fk

∂fp

+ H.O.T . . . (A.4)

Once again, since ∂fk

∂fm
= δkm:

∂2ĝi

∂fm∂fp

=
1

2!

∂2gi

∂fj∂fm

∣

∣

∣

∣

∣

f=0

δjp +
1

2!

∂2gi

∂fm∂fk

∣

∣

∣

∣

∣

f=0

δkp + H.O.T . . .

=
1

2!

∂2gi

∂fp∂fm

∣

∣

∣

∣

∣

f=0

+
1

2!

∂2gi

∂fm∂fp

∣

∣

∣

∣

∣

f=0

+ H.O.T . . . (A.5)

Assuming ∂2gi

∂fp∂fm
= ∂2gi

∂fm∂fp
:

∂2ĝi

∂fm∂fp

=
∂2gi

∂fm∂fp

∣

∣

∣

∣

∣

f=0

+ H.O.T . . . (A.6)

Evaluated at f = 0:

∂2ĝi

∂fm∂fp

∣

∣

∣

∣

∣

f=0

=
∂2gi

∂fm∂fp

∣

∣

∣

∣

∣

f=0

(A.7)

The second derivatives of ĝ with respect to f also match the second derivatives of

g with respect to f at f = 0. We have therefore confirmed that equation 3.5 is

indeed a Taylor series for the mapping of f onto g, at least up to the quadratic

terms. A similar procedure can be applied to the cubic and higher terms.

A.2 Difference equation of a weakly nonlinear medium

We derive the discrete time difference equation (eq. 6.1) used to simulate a

nonlinear medium.

Consider the nonlinear spring from fig. 6.1: F = k1y + 1

2
k2y

2 (F is defined as the

force applied to the spring, not the force applied by the spring). Consider a mass
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at position x. The displacement from nominal length of the spring on the left is

yt
x − yt

x−∆x. The displacement of the spring on the right is yt
x+∆x − yt

x. The force

on the left to the left is:

k1(y
t
x − yt

x−∆x) +
1

2
k2

[

(yt
x)

2
− 2yt

xy
t
x−∆x + (yt

x−∆x)
2
]

(A.8)

The force on the right to the right is:

k1(y
t
x+∆x − yt

x) +
1

2
k2

[

(yt
x+∆x)

2
− 2yt

xy
t
x+∆x + (yt

x)
2)

]

(A.9)

The net force to the right on the mass is the difference of eq. A.9 and eq. A.8:

F = k1(y
t
x+∆x − 2yt

x + yt
x−∆x) +

1

2
k2

[

(yt
x+∆x)

2
− (yt

x−∆x)
2
− 2yt

x(y
t
x+∆x − yt

x−∆x)
]

(A.10)

The difference of squares can be factored into (yt
x+∆x − yt

x−∆x)(y
t
x+∆x + yt

x−∆x).

Now each of the k2 terms of equation A.10 has a factor of yt
x+∆x − yt

x−∆x. These

can be factored out, obtaining a simple form for the net force on the mass:

F = k1(y
t
x+∆x− 2yt

x + yt
x−∆x) +

1

2
k2(y

t
x+∆x− yt

x−∆x)(y
t
x+∆x + yt

x−∆x− 2yt
x) (A.11)

All that remains at this point is to write F = ma with discretized time. If we

have a time step ∆t, then the acceleration at
x is:

at
x =

vt+∆t/2
x − vt−∆t/2

x

∆t
(A.12)

in terms of the velocity v. The velocity vt+∆t/2
x is (yt+∆t

x − yt
x)/∆t. The velocity

at t−∆t/2 is vt−∆t/2
x = (yt

x − yt−∆t
x )/∆t. Putting this together, the acceleration

becomes:

at
x =

yt+∆t
x − 2yt

x + yt−∆t
x

(∆t)2
(A.13)
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Writing ma = F with the acceleration of eq. A.13 and force of eq. A.11 gives the

difference equation, eq. 6.1:

m

(∆t)2
(yt+∆t

x − 2yt
x + yt−∆t

x ) = (6.1)

k1(y
t
x+∆x + yt

x−∆x − 2yt
x) +

k2

2
(yt

x+∆x − yt
x−∆x)(y

t
x+∆x + yt

x−∆x − 2yt
x)

A.3 Derivation of the nonlinear PDE from the discrete

time difference equation

We start with the discrete-time nonlinear difference equation, eq. 6.1:

m

(∆t)2
(yt+∆t

x − 2yt
x + yt−∆t

x ) = (6.1)

k1(y
t
x+∆x + yt

x−∆x − 2yt
x) +

k2

2
(yt

x+∆x − yt
x−∆ x)(y

t
x+∆x + yt

x−∆x − 2yt
x)

and wish to turn this into a PDE by taking the limit as ∆x and ∆t go to zero.

m





yt+∆t

x −yt

x

∆t
−

yt

x
−yt−∆t

x

∆t

∆t



 = (A.14)

k1(∆x)2





yt

x+∆x
−yt

x

∆x
−

yt

x
−yt

x−∆x

∆x

∆x





+
k2(∆x)3

2

(

yt
x+∆x − yt

x−∆x

∆x

)





yt

x+∆x
−yt

x

∆x
−

yt

x
−yt

x−∆x

∆x

∆x





As ∆x and ∆t → 0,

m







∂y

∂t

∣

∣

∣

x,t+∆t

2

−
∂y

∂t

∣

∣

∣

x,t−∆t

2

∆t





 = (A.15)

k1(∆x)2







∂y

∂x

∣

∣

∣

x+∆x

2
,t
−

∂y

∂x

∣

∣

∣

x−∆x

2
,t

∆x







+
k2(∆x)3

2

∂y

∂x

∣

∣

∣

∣

∣

x,t







∂y

∂x

∣

∣

∣

x+∆x

2
,t
−

∂y

∂x

∣

∣

∣

x−∆x

2
,t

∆x
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m
∂2y

∂t2

∣

∣

∣

∣

∣

x,t

= k1(∆x)2 ∂2y

∂x2

∣

∣

∣

∣

∣

x,t

+
k2(∆x)3

2

∂y

∂x

∣

∣

∣

∣

∣

x,t

∂2y

∂x2

∣

∣

∣

∣

∣

x,t

(A.16)

m
∂2y

∂t2
= k1(∆x)2 ∂2y

∂x2
+

k2(∆x)3

2

∂y

∂x

∂2y

∂x2
(A.17)

If we let k1 = E1A
∆x

, k2 = 4E2A
(∆x)2

, and m = ρA∆x, we obtain the PDE, eq. 6.2:

∂2y

∂t2
=

E1

ρ

∂2y

∂x2
+ 2

E2

ρ

∂y

∂x

∂2y

∂x2
(6.2)

A.4 Derivation of the nonlinear PDE from the nonlinear

elastic constitutive law

We derive the nonlinear PDE of equation 6.2 from the constitutive law of eq. 6.3:

σ = E1ǫ + E2ǫ
2 (6.3)

Consider an infinitesimal slice (width δ, mass ρAδ) of a nonlinear

one-dimensional medium with the above constitutive law. The strain on the right

can be evaluated as ∂y
∂x

∣

∣

∣

x+δ/2
. The strain on the left can be evaluated as ∂y

∂x

∣

∣

∣

x−δ/2
.

The corresponding stresses can be evaluated through the constitutive law as

E1
∂y
∂x

∣

∣

∣

x+δ/2
+ E2

[

∂y
∂x

∣

∣

∣

x+δ/2

]2

and E1
∂y
∂x

∣

∣

∣

x−δ/2
+ E2

[

∂y
∂x

∣

∣

∣

x−δ/2

]2

respectively. The

net force per area on our infinitesimal slice comes from the difference in stress:

F/A = E1





∂y

∂x

∣

∣

∣

∣

∣

x+δ/2

−

∂y

∂x

∣

∣

∣

∣

∣

x−δ/2



 + E2











∂y

∂x

∣

∣

∣

∣

∣

x+δ/2





2

−





∂y

∂x

∣

∣

∣

∣

∣

x−δ/2





2




 (A.18)

The difference of squares in the E2 term can be factored:

F/A = E1





∂y

∂x

∣

∣

∣

∣

∣

x+δ/2

−

∂y

∂x

∣

∣

∣

∣

∣

x−δ/2





+E2





∂y

∂x

∣

∣

∣

∣

∣

x+δ/2

−

∂y

∂x

∣

∣

∣

∣

∣

x−δ/2









∂y

∂x

∣

∣

∣

∣

∣

x+δ/2

+
∂y

∂x

∣

∣

∣

∣

∣

x−δ/2



 (A.19)
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Divide through by δ:

F/(Aδ) = (A.20)

E1

(

∂y
∂x

∣

∣

∣

x+δ/2
−

∂y
∂x

∣

∣

∣

x−δ/2

)

δ
+ E2

(

∂y
∂x

∣

∣

∣

x+δ/2
−

∂y
∂x

∣

∣

∣

x−δ/2

)

δ





∂y

∂x

∣

∣

∣

∣

∣

x+δ/2

+
∂y

∂x

∣

∣

∣

∣

∣

x−δ/2





Assume δ is small:

F/(Aδ) = E1

∂2y

∂x2
+ E2

∂2y

∂x2

(

2
∂y

∂x

)

(A.21)

Substitute into F = ma:

ρAδ
∂2y

∂t2
= Aδ

(

E1

∂2y

∂x2
+ 2E2

∂2y

∂x2

∂y

∂x

)

(A.22)

Dividing through by ρAδ gives the PDE of equation 6.2:

∂2y

∂t2
=

E1

ρ

∂2y

∂x2
+ 2

E2

ρ

∂y

∂x

∂2y

∂x2
(6.2)

A.5 Dispersive behavior of the linearized difference

equation

The linear wave equation is non-dispersive. However, if we take the difference

equation, eq. 6.1, and linearize it to be analogous to the linear wave equation, we

obtain eq. 6.4:

yt+∆t
x − 2yt

x + yt−∆t
x =

c2

c2
∆

(yt
x+∆x + yt

x−∆x − 2yt
x) (6.4)

where c is the wavespeed given by
√

E1

ρ
and c∆ is the ratio ∆x

∆t
. Eq. 6.4 turns out

to be dispersive! The dispersion is dependent upon the ∆x and ∆t. To determine
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the dispersion, we substitute y = eik(x−cpht) into eq. 6.4. This is equivalent to

taking a 2-D Z-transform.

eik(x−cph(t+∆t))
− 2eik(x−cpht) + eik(x−cph(t−∆t)) =

c2

c2
∆

(

eik(x+∆x−cpht) + eik(x−∆x−cpht)
− 2eik(x−cpht)

)

(A.23)

eikcph∆teik(x−cpht)
− 2eik(x−cpht) + e−ikcph∆teik(x−cpht) =

c2

c2
∆

(

eik∆xeik(x−cpht) + e−ik∆xeik(x−cpht)
− 2eik(x−cpht)

)

(A.24)

eikcph∆t
− 2 + e−ikcph∆t =

c2

c2
∆

(

eik∆x + e−ik∆x
− 2

)

(A.25)

Since cos(θ) = eiθ+e−iθ

2
,

2 cos(kcph∆t)− 2 =
c2

c2
∆

(2 cos(k∆x)− 2) (A.26)

Since cos(θ)− 1 = −2 sin2(θ/2),

sin2(kcph∆t/2) =
c2

c2
∆

sin2(k∆x/2) (A.27)

or,

c∆

c
=

sin(k∆x/2)

sin(kcph∆t/2)
(A.28)

We can replace k with ω/cph and ∆x with c∆∆t to obtain eq. 6.5:

c∆

c
=

sin(ωc∆∆t/2cph)

sin(ω∆t/2)
(6.5)

This equation implicitly determines the phase velocity cph as a function of

frequency ω and the simulation parameters. It can be solved explicity for cph to

determine the dispersion:

cph =
ωc∆∆t

2arcsin
[

c∆
c

sin
(

ω∆t
2

)] (A.29)
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A.6 Derivation of the force-displacement equation for the

dry-contact model

The dry-contact model uses an array of pins of random length pressed between

flat surfaces as a model for a crack or dry contact. Figure 6.3 illustrates this

behavior. We assume that the force-displacement relation of the dry contact

follows the expectation of the force in terms of displacement for this stochastic

model.

We assume the pins have normally distributed length, with average length L.

The probability density function for the length l of a particular pin is:

fl(l, σ
2) = 1√

2πσ
e−

(l−L)2

2σ2 .

Given a displacement of y (positive y ∼ increasing separation) relative to the

nominal distance L between the two surfaces, the force in the particular pin (area

A, length l) is (positive tensile):

F =















AE(y − (l − L))/L if y < l − L

0 otherwise
(A.30)

We would like to find the probability density function (PDF) for F so that we

can determine the expectation of F. We will do this by first determining the

cumulative density functions (CDF’s):

P (l < l0) = Fl(l0) =
∫

l0

−∞
fl(l)dl (A.31)

P (F < F0) = FF (F0) =
∫

F0

−∞
fF (F )dF (A.32)

where l0 and F0 are particular lengths of and forces in the pin, respectively. If
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l < y − L, then l = y + L − FL
AE

and l0 = y + L − F0L
AE

follow from eq. A.30.

Therefore,

P (l < l0) ≡ P

({

y + L −
FL

AE

}

<

{

y + L −
F0L

AE

})

(A.33)

and

P (l < l0) = P (−F < −F0)

= P (F > F0)

= 1 − P (F < F0) (A.34)

We can substitute the right hand sides of eqns. A.31 and A.32 into this equation

under the condition l0 = y + L − F0L
AE

. Now:

∫ l0

−∞

fl(l)dl = 1 −

∫ F0

−∞

fF (F )dF (A.35)

Substituting in for l0,

∫ y+L−
F0L

AE

−∞

fl(l)dl = 1 −

∫ F0

−∞

fF (F )dF (A.36)

We take the derivative of both sides with respect to F0:

−
L

AE
fl

(

y + L −
F0L

AE

)

= −fF (F0) (A.37)

So, the PDF for F (still restricted to l < y − L or F < 0) is:

fF (F ) =
L

AE
fl

(

y + L −
FL

AE

)

(A.38)

=
L

AE

1
√

2πσ
e−

(y− FL
AE )

2

2σ2 (A.39)

(using the definition of fl(l).)

We would like to calculate the expectation EF =
∫

∞

−∞
FfF (F )dF . So we have

EF =
L

AE

1
√

2πσ

∫

0

−∞

Fe−
(y− FL

AE )
2

2σ2 dF (A.40)
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We have taken care of the l >= y − L case here by limiting the bounds of

integration. If there is no contact on a pin, the force is zero. Because of the F

factor in the integral, there is no contribution to the expectation from pins that

hold no force.

We substitute u = y −
FL
AE

and dF = −AE
L

du within the integral, replacing F with

u as the variable over which we integrate:

EF =
L

AE

1
√

2πσ

∫ y

∞

AE

L
(y − u)e−

u
2

2σ2

−AE

L
du (A.41)

simplify:

EF =
AE

L

1
√

2πσ

∫ ∞

y
(y − u)e−

u
2

2σ2 du (A.42)

split the integral:

EF =
AE

L

1
√

2πσ

∫ ∞

y
ye−

u
2

2σ2 du −

AE

L

1
√

2πσ

∫ ∞

y
ue−

u
2

2σ2 du (A.43)

let v = u√
2σ

and w = −
u2

2σ2 .

EF =
yAE

2L

∫ ∞

y
√

2σ

2
√

π
e−v2

dv +
AE

L

σ
√

2π

∫ −∞

− y2

2σ2

ewdw (A.44)

Finally, evaluating the integrals and assuming the force is equal to its

expectation gives equation 6.8:

F =
yAE

2L
erfc

(

y
√

2σ

)

−

σAE

L
√

2π
e−

y
2

2σ2 (6.8)

A.7 Demonstration of the analytic solution

We demonstrate how the analytic solution, equation 7.2:

y = f

(

t −

√

ρ

E1

x

)

−

E2ρ

2E2

1

x

[

f ′

(

t −

√

ρ

E1

x

)]

2

(7.2)
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approximately solves the nonlinear PDE of equation 6.2:

∂2y

∂t2
=

E1

ρ

∂2y

∂x2
+ 2

E2

ρ

∂y

∂x

∂2y

∂x2
(6.2)

We start by applying the D’Alembert solution to the nonlinear term 2E2

ρ
∂y
∂x

∂2y
∂x2 of

the PDE. The D’Alembert solution is y = f
(

t−
√

ρ
E1

x
)

.

∂y

∂x
= f ′

(

t−

√

ρ

E1

x

)(

−

√

ρ

E1

)

(A.45)

∂2y

∂x2
= f ′′

(
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√

ρ

E1

x

)

(

ρ

E1
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(A.46)
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So the nonlinear term of the PDE, after substitution is:
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E1

x

)]

2
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and the PDE as a whole, with the D’Alembert solution substituted into the

nonlinear term is eq. 7.1:

∂2y
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ρ
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E2
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∂
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[
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(
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x
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2


 (7.1)

Lamb’s solution to this is eq. 7.2 [17]:

y = f

(
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√

ρ

E1

x

)

−

E2ρ

2E2

1

x

[

f ′

(

t−

√

ρ

E1

x

)]

2

(7.2)

We substitute Lamb’s solution into the linear terms of the PDE. Up to here, we

have only substituted the D’Alembert solution into the nonlinear term of the

PDE.
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Put it all together:
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0 = 0 (A.56)

Therefore eq. 7.2 solves eq. 7.1 and approximately solves the nonlinear PDE of

eq. 6.2.

A.8 Demonstration of mapping the analytic solution to

our model

In section 7.4, we claimed that we could map the modified analytic solution eq.

7.4:
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2
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onto our model from chapter 3:

ĝ = A ⊗ f(t) + B ⊗ f 2(t) (3.9)

by applying:

A = δ
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x

)

(7.5)

and

B = −
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1

x
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x

)

(7.6)

This can be demonstrated by substitution of A and B into eq. 3.9:
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which is the same as eq. 7.4:
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APPENDIX B

CONTROL FIRMWARE FOR AN ULTRASONIC MEASUREMENT

SYSTEM

The Ritec RAM-5000 measurement system, as we obtained it, was without a

useful means of automatic control. For a complex measurement algorithm such

as the one we have described, automatic computer control of the measurement is

needed. The RAM-5000 has no physical front panel controls. It came with a

computer program in BASIC that simulates front panel controls. This program

directly manipulates control registers in the RAM-5000 unit through a digital

I/O card. Unfortunately, these registers are write-only, so the state of the unit is

known only by the BASIC program. This effectively precludes external control of

the RAM-5000.

Because of the complexity of the measurement algorithm described in this thesis,

kludging the required automatic control into the BASIC program was not an

option. Therefore we entered into a cooperative agreement with the

manufacturer to develop both an improved control program and a virtual

front-panel that would allow effective remote control of the instrument.

B.1 An Internet-enabled client/server laboratory

instrument

The standard control interface for laboratory instrumentation is the General

Purpose Interface Bus (GPIB), also known by the designation IEEE-488. By

modern standards, GPIB is costly and slow. We designed our control firmware to
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be based on the TCP/IP networking standard. TCP/IP allows the instrument to

be controlled transparently from the local host or over the Internet. The control

firmware is based on a client/server architecture. Clients, such as the virtual

front panel or an automated control program, send commands and status queries

to the server. The server manages the internal state of the equipment. The

virtual front panel, which can run as an independent application or as a Java

applet within a web browser, provides an intuitive interface to controlling the

hardware functions.

In principle, the server and client could be provided on an embedded computer

within the RAM-5000 case. This computer could have an embedded display that

runs the virtual front panel, or it could use a web server to download the virtual

front panel to clients over the network.

B.2 The RAM-5000 control server

We developed the RAM-5000 control server in the C language. It accepts

commands and queries over TCP/IP connections. The commands and queries are

in human-readable text format, similar to the format commonly used with GPIB.

Any telnet client can be used to manually issue commands and queries by

connecting to the server port (typically 1647). A few of the possible commands

are listed in table B.1. Security is handled through plaintext authorization codes

that are required for access (in a hostile network environment it would be wise to

tunnel network accesses through a secure protocol, such as Secure Sockets Layer

(SSL) or Secure Shell (SSH)). The server responds to commands by manipulating

control registers and updating its internal representation of the state of the
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Sample RAM-5000 server commands

SYS:TRIGGER Perform computer trigger

TIMING:FREQ<i> Frequency selection

GA<i>:DELAY Desired gated amplifier delay

GA<i>:WIDTH Desired gated amplifier width

ALC:GA<i>:BURSTWIDTH Hardware gated amplifier burst

width

SYS:GA<i>:RFLEVEL Gated amplifier RF level

LOCKOUT Lock out all other clients

TIMING:REPRATE Set internal repetition rate

RECV:IN<i>:FREQ Receiver frequency

RECV:IN<i>:FREQN Receiver frequency tracking ex-

pression

RECV:IN<i>:GAIN Receiver gain

SYS:INTRE Read real part of integrator

output

SYS:INTIM Read imaginary part of integra-

tor output

RECV:IN<i>:HIGHPASS High pass filter selection

RECV:IN<i>:INTDELAY Integrator gate delay

RECV:IN<i>:INTWIDTH Integrator gate width

RECV:IN<i>:LOWPASS Low pass filter selection

QUIT Disconnect from ram-server

Table B.1: Partial list of server commands.
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goliath% telnet localhost 1647
Trying 127.0.0.1...

Connected to localhost.

Escape character is ’]̂’.

auth xyzzy
200 0008 AUTH OK

ga1:delay 1.2 ms
200 0018 GA1:DELAY 1200 us

ga1:width 14 200 0016 GA1:WIDTH 14 us recv:in2:gain?
200 0020 RECV:IN2:GAIN 22 dB

recv:in1:gnai
504 0022 ERROR INVALID COMMAND

recv:in1:freqn 2*ga1*cos(ga2)
200 0030 RECV:IN1:FREQN 2*ga1*cos(ga2)

recv:in1:freq?
200 0031 RECV:IN1:FREQ 1.7551651275 MHz

timing:freq1 14.7
200 0036 TIMING:FREQ1 14.699999991501681 MHz

recv:in1:freq?
200 0032 RECV:IN1:FREQ 25.8009271803 MHz

quit
Connection closed by foreign host.

goliath%

Figure B.1: A sample transcript of direct communication with the server

using telnet.

Commands typed by the user are in boldface and the responses

from the server are in typewriter font.
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Figure B.2: Screenshot of the virtual front panel controls.

instrument. Since the hardware registers are write-only, it responds to queries by

reporting its internal representation of the state of the instrument. The server

also enforces safety criteria to prevent the hardware from exceeding its design

specifications.

B.3 The virtual front panel

The RAM-5000 virtual front panel is a Graphical User Interface (GUI) to the

underlying functions of the control server. Figure B.2 shows a screenshot of the

virtual front panel. Each control maps directly to an underlying server command.

The tabs along the top select different control panes. The virtual front panel

provides direct control of hardware settings, macro control of hardware settings,
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result monitoring, hardware diagnostic readout, and a frequency sweep function

for making complex measurements. The virtual front panel was written in Java

with the Swing toolkit and has an object-oriented architecture that maps GUI

widget sets directly to commands on the control server.

B.4 Conclusions

The control server/firmware we developed for the Ritec RAM-5000 allowed both

far more flexible automatic control, and easier manual control than the original

software. Our text-based control interface provided an abstraction layer that

isolated our implementation of the time-resolved measurement algorithm both

from the details of the underlying hardware and from manual control

requirements. For purposes of comparison, the RAM-5000 control server and

GUI are about 16,000 lines of C and Java. This complexity is isolated from the

7,500 lines of C and C++ in our time-resolved measurement software.

Implementing the time-resolved measurement algorithm would have been an

almost impossible, complex task without a control interface and abstraction layer

such as this firmware.



APPENDIX C

DESIGN OF A JIG TO HOLD TRANSDUCERS FOR

MEASUREMENT OF THE CRACKED TITANIUM SAMPLE

In order to measure waveforms from the cracked titanium sample of chapter 8, it

was necessary to build a jig to hold the transducers in place. In order to hold the

source and receiver transducers in place, the jig had to attach to the sample and

hold the transducers tightly in place. For repeatable contact force, the

transducers had to be spring-loaded to the sample. To allow for multiple

experiments under different conditions, the jig had to be able to hold many

different types of transducers, each with their own physical dimensions. The jig

was designed to use interlocking Teflon inserts to tightly hold a wide variety of

possible transducers. Figure C.1 shows the jig design and figure C.2 shows the

design of the Teflon inserts. A photograph is given in figure C.3.
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Stephen D. Holland 11/7/2000

1.0

1/2

31/32

1/4−20 tapped

.25" diameter hole. Both of 

Revision 1

Changes since revision 0:
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Figure C.1: Design of a jig to hold transducers for the measurement of a

cracked titanium sample.



105

Note: Opening penetrates to core,
but does not pass through back side

Note: Opening penetrates to core,
but does not pass through back side

1.0

1/4
1/2

1/8
1 1/4

.1375

.705

.725

1.0

.0425

.4

φ=5/8

0.5

13/16

.3

.45

φ=.705

φ=.725

0.65

.095

0.25

0.67

.325

1.0

0.25

0.7"

0.71"

1.0

φ=0.70

φ=0.71

0.5

5/8
.27" 3/8

.355"

.05

0.5
0.25

.095

5/8"

0.225

0.5

φ=.25

0.25

3/8

1.0

0.5

φ=.355

Material: Teflon

All dimensions in inches

1.0

1.0

.05

0.5

Note: Opening penetrates to core,
but does not pass through back side

0.25

.095

A B

C D

Transducer Sleeves

Sleeve A, mated with any of sleeves B, C, or D, should be able to slide smoothly into
the transducer jig (separate drawing). The precise outer diameter of all 4 sleeves
should be determined based on this criterion.

Stephen D. Holland 11/7/2000
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Figure C.2: Design of Teflon transducer-holding inserts for a jig to hold trans-

ducers for the measurement of a cracked titanium sample.
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Figure C.3: Photograph of the transducer jig with two inserts and two trans-

ducers.
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