Downloaded 07/22/13 to 128.100.3.42. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. COMPUT. © 1987 Society for Industrial and Applied Mathematics
Vol. 16, No. 1, February 1987 007

A TIME-SPACE TRADEOFF FOR ELEMENT DISTINCTNESS*
A. BORODIN{Y!, F. FICH}!, F. MEYER AUF DER HEIDE$§!, E. UPFALY] AND A. WIGDERSON*!

Abstract. In A time space tradeoff for sorting on non-oblivious machines, Borodin et al. [J. Comput.
System Sci., 22 (1981), pp. 351-364] proved that to sort n elements requires TS = Q(n?) where T =time and
S =space on a comparison based branching program. Although element distinctness and sorting are
equivalent problems on a computation tree, the stated tradeoff result does not immediately follow for element
distinctness or indeed for any decision problem. In this paper, we are able to show that TS = Q(n*%/Iog n)
for deciding element distinctness (or the sign of a permutation).

Key words. time-space tradeoffs, computational complexity, time lower bounds, space lower bounds

AMS(MOS) subject classification. 68Q25

1. Introduction. Time-space tradeoffs are one of the more classical issues in
complexity studies. Cobham’s [C-66] seminal paper establishes such tradeofls for the
restricted Boolean model of one-tape Turing machines. A number of time-space
tradeoffs were established for both the Boolean and arithmetic circuit models (see
Tompa [T-80]). Within these models, merging was essentially as difficult as sorting.
For the problem of sorting {x,, x,, - - -, x,,} from an arbitrary linearly ordered set, the
appropriate model is the comparison based branching program. Such programs are
labelled directed acyclic graphs derived from comparison computation trees by identify-
ing common subtrees. Following Cobham, space (or capacity) is measured as the log,
(# of nodes) in the program and time (as for computation trees) is the length of the
longest path. Borodin, Fischer, Kirkpatrick, Lynch and Tompa [B-81] established the
“near optimal” bound of TS = Q(n?) for sorting but were not able to establish a similar
result for any decision problem, conjecturing that such a result should hold for the
problem of determining element distinctness (i.e. f(x;, X5, - - -, x,) = true iff x; # x; for
all i #j).

We are not able to establish the result as conjectured, but we are able to show
TS = Q(n*?). Since there is no need to output during the computation, we need to
find an appropriate notion of progress and show how this progress is constricted by
a bound on the space. It turns out that once the appropriate progress notion is made,
the basic outline of proof parallels the development in the sorting result.

2. The model and proof of the main result. Let {x,, x,, - - -, x,} be elements chosen
from an arbitrary linear order [D, =]. A comparison branching program is a labelled
directed acyclic graph. Each nonsink node has outdegree three and is labelled by a
comparison X;: x;, with one branch for each of the three possible outcomes <, =, >.
The sinks are labelled accept and reject. An input (x;, x5, - -+, x,,) € D" follows a path
in a program P in the obvious way determined by the comparisons, and we define
acceptance of a set L< D" as usual.

We consider the set L={(x,, X,, - -, X,}| x; # x;}. We say that (x,, x,,- -, x,)€ L
is ordered by the permutation 7 if x,.(;) < X2y < * * < X,(n). It is clear that 77 determines

* Received by the editors August 29, 1985; accepted for publication (in revised form) March 13, 1986.

1 University of Toronto, Toronto, Ontario, Canada M5S1A4.

¥ University of Washington, Seattle, Washington 98195.

§ Johann Wolgang Goethe Universitat Frankfurt a. M., Federal Republic of Germany.

1 IBM Research Laboratory, San Jose, California 95120.

* Mathematical Science Research Institute, Berkeley, California 94720.

! This work was done while the authors were visiting the IBM Research Laboratory, San Jose, California
95120.

97

Downloaded 07/22/13 to 128.100.3.42. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

98 BORODIN, FICH, AUF DER HEIDE, UPFAL, WIGDERSON

the comparison path 7 that (x,, x,, - * -, x,,) follows in any comparison tree or branching
program. Clearly, 7 must terminate in an accepting node. Moreover, it is easy to see
that 7 must contain a comparison for every “adjacent” pair X, X ¢+1), 1= i=n—1.
Otherwise, we can set X, +1) = X,(; and still follow the same path 7 (and erroneously
accept). The number of adjacent pairs tested on a path will measure the progress for
any . Once we establish the following main lemma, we can follow the same proof
structure as in Borodin et al. [B-81].

MaIN LEMMA. Let T be a comparison computation tree of height (= time) t. If
t=+/'ns/16e then for all S the fraction p of input permutations for which = follows a
path containing more than S comparisons of adjacent pairs is bounded by p = (3)5.

Proof of Main Lemma. Let T be a computation path of length t =+ sn/16e. There
are at most r =2t elements x; that are involved in some comparison in 7. 7 determines
a partial order on r elements. We will compute the fraction of permutations = following
7 for which we have made at least S comparisons X, : X,.+1).- Let o be any total
order of the r elements consistent with . We bound the fraction for each o as follows:

There are at most (;) ways to assign ranks to the accessed elements. We now
bound the number of rank assignments under the constraint that at least S adjacent
pairs have been tested. There are (5) ways to choose the S pairs and then ((,.”s)) ways
to assign ranks to the r elements. (If x; <x, is one of the S adjacent pairs, fixing the
rank of x; fixes the rank of x;.)

Hence,

p

§(-;>((r—nS)>=(t) r(r=1)- -+ (r—S8+1)

(n) S/(n=r+8) - (n—r+1)
,

s s(ﬁ)l(l)s
=t (n—r)s=(4e) W) =\3) - 0

With the main lemma now established, we proceed exactly as in Borodin et al.
[B-81].

THEOREM. Let P be a time T, space S comparison branching program for deciding
element distinctness on n elements. Then T>S = Q(n>) and TS = Q(n**Vlog n).

Proof. Consider P in stages, where each stage represents t =3v/n steps. Without
loss of generality, S=log n, since each of the possible comparisons appears at least
once in the program, which therefore has at least (3) nodes.

Let g; be the fraction of input permutations (of distinct elements) for which P
has compared at least iS adjacent pairs by the end of the ith stage. Using the main
lemma, we will show that ¢; =i(3)°. Hence ¢; <1 for i=n/S. This in turn implies that
there must be at least n/S stages so that T=(n/4S)vn. Otherwise, there will be a
permutation for which some adjacent pair has not been tested, forcing a contradiction
as previously explained. Thus T2S =Q(n’). As S=logn, TS =Q(n**/log n).

To establish the claimed bound for ¢;, we can consider each of the 2° nodes at
the end of stage i to be the root of a subtree of height . That is, expand the branching
program for stage i+ 1 into at most 2° computation trees. For each such tree at most
a fraction (3)° of all n! permutations can have more than S adjacent pairs tested.
(Note that this is independent of the permutations that actually arrived at the root of
this tree.) By the main lemma, the fraction of permutation for which P compared at
least S adjacent pairs in the jth step is = (3)°. Hence, the fraction of permutations for
which P compared at least iS adjacent pairs in the first i stages is i(3)°. O

Downloaded 07/22/13 to 128.100.3.42. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

A TIME-SPACE TRADEOFF FOR ELEMENT DISTINCTNESS 99

It is easy to see that the same proof establishes the same bound for determining
the sign of a permutation. In this case, if not all adjacent pairs have been tested, we
can change the ordering of some pair and thereby change the sign.

3. The obvious open questions. Since we do not know how to improve the known
upper bound of TS = O(n’log n) for element distinctness (this upper bound holding
even for sorting [B-81]), the most obvious open question is whether TS =Q(n?). To
see why the existing proof techniques do not extend, we note that we are only exploiting
the space bound at the start of each stage. If we allow a stage to be O(n) steps (as in
the sorting lower bound), then we can decide distinctness in O(log” n) stages using
only constant width at the beginning of each stage. (Simply partition the elements into
O(log n) blocks of size O(n/log n), and then each stage can test a pair of blocks for
distinctness by sorting.) We still conjecture that TS = Q(n?) holds for deciding distinct-
ness but any proof will have to frequently exploit the space bound.

Perhaps the most important extension of our results is to the Boolean branching
program model. In Borodin and Cook [BC-82] the sorting lower bound is extended
to the setting of sorting n integers in the range [1, n°], the input represented by a string
of 2n log n bits. This lower bound is made possible since we have an explicit notion
of progress, namely how many ranks have been established. Our comparison lower
bound exploits the fact that we could also find a “monotone” concept of progress,
that of “adjacent pairs tested.” For the Boolean or “R-way model” (see Borodin and
Cook [BC-82]) this concept does not apply. The difficulty of this issue is realized when
one notes that in the comparison model, “silent sorting” (i.e. being able to infer the
sort from the comparison paths) is equivalent to deciding element distinctness (see
Reingold [R-72]) whereas in the Boolean or R-way model, silent sorting is trivial
(simply look at each input once). Thus far, we still have not established a nontrivial
time-space lower bound for any specific decision problem in the Boolean setting.

Acknowledgments. We wish to thank D. Coppersmith and M. Tompa for comments
on an earlier version of this paper including an improvement of vlog n to our previous
lower bound.

REFERENCES

[BC-82] A. BORODIN AND S. COOK, A time-space tradeoff for sorting on a general sequential model of
computation, this Journal, 11 (1982), pp. 287-297.

[B-81] A. BORODIN, M. FISCHER, D. KIRKPATRICK, N. LYNCH AND M. TOMPA, A time-space tradeoff
for sorting on non-oblivious machines, J. Comput. System Sci., 22 (1981), pp. 351-364.

[C-66] A.CoBHAM, The recognition problem for the set of perfect squares, Research Paper RC-1704, IBM
Watson Research Center, Yorktown Heights, NY, April 1966.

[R-72] E. REINGOLD, On the optimality of some set algorithms, Assoc. Comput. Mach., 19 (1972), pp.
649-659.

[T-80] M. ToMmPA, Time-space tradeoffs for computing functions using connectivity properties of their circuits,
J. Comp. System Sci., 20 (1980), pp. 118-132.

