
A TIME-SYNCHRONOUS PHONETIC DECODE
HIDDEN TRAJECTO

 
Xiaolong Li, Li Deng, Dong Y

 
Microsoft Research, One Microsoft Way,

{xiaolli, deng, dongyu, alex
 

ABSTRACT 
 
A novel time-synchronous decoder, designed specifically for a 
Hidden Trajectory Model (HTM) whose likelihood score 
computation depends on long-span phonetic contexts, is presented. 
HTM is a recently developed acoustic model aimed to capture the 
underlying dynamic structure of speech coarticulation and 
reduction using a compact set of parameters. The long-span nature 
of the HTM had posed a great technical challenge for developing 
efficient search algorithms for full evaluation of the model. Taking 
on the challenge, the decoding algorithm is developed to deal 
effectively with the exponentially increased search space by HTM-
specific techniques for hypothesis representation, word-ending 
recombination, and hypothesis pruning. Experimental results 
obtained on the TIMIT phonetic recognition task are reported, 
extending our earlier HTM evaluation paradigms based on N-best 
and A* lattice rescoring. 
Index Terms: Hidden Trajectory Model, time-synchronous 
decoding, trace-based hypothesis, TIMIT 

 
 

1. INTRODUCTION 
 
With similar motivations to the development of a structured 
language model where syntactic structure is exploited to represent 
long-distance relations among words in sentences [1], we recently 
developed a version of the structured speech model in which 
dynamic structure of speech is exploited to characterize long-span 
contextual influence among phonetic units in fluent speech 
utterances [2,3]. The particular version of the structured speech 
model developed, which we call hidden trajectory model (HTM), 
represents the speech structure in the unobserved (hidden) vocal 
tract resonance (VTR) domain, and an analytical nonlinear 
function is provided to map from the time-varying VTR vector to 
the observed cepstral vector.  Unlike the Hidden Markov Model 
(HMM) where (short-span) context dependency is achieved by 
non-parametrically enumerating adjacent phonetic contexts (e.g., 
triphone), our HTM employs parametric temporal filtering of VTR 
targets as the basis for the characterization of long-span 
coarticulation. The filtered VTR trajectories are treated as the 
hidden vector sequence, and a nonlinear prediction with statistical 
residuals, which are represented by a context-independent single-
Gaussian HMM, generates the cepstral vectors. The statistical 
characterization of this HTM allows straightforward computation 
of the model likelihood score for the cepstral observation data if 
the phone sequence and phone segment boundaries are given. 
   Previous evaluation of the HTM were based on N-best list 
rescoring [2], where each of the hypothesized phone sequences and 
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 segment boundaries are known. More recent evaluation 
ded the N-best rescoring paradigm to A*-based lattice 
ring where much richer hypotheses were made available for 
ation [6]. The research reported in this paper further extends 
valuation from the N-best/lattice rescoring paradigms to the 
 flexible time-synchronous search paradigm, and is aimed to 
 HTM with a full decoding capability. 

cause N-best or lattice rescoring is limited in the fixed phone 
daries given by the initial decoding results based on HMM, it 
not been able to exploit the full power of the HTM. In 
zing the error patterns in the phonetic recognition results 
 N-best rescoring, we found that when the phone boundaries 
 selectively shifted by up to 4 frames for the correct “oracle” 
theses, these hypotheses tend to give significantly higher 
s than most other competing hypotheses with and without 
dary shifts. This points to the possibility that the segment 
daries given by the HMM from either the N-best lists or 
es are not “optimal” and hence not adequate for HTM 
ring. This also suggests that a time-synchronous decoder for 
TM is highly desirable because it automatically determines 
ptimal segment boundaries for each phone in the sentence 
 searching for the optimal phone sequence. 

urrently the most successful time-synchronous decoding 
ithm for continuous speech recognition is based on Dynamic 
ramming (DP) [4], where the best word sequence is found by 
ively extending partial word-hypotheses frame-by-frame and 
mpeting word-hypotheses can be effectively pruned based on 
ame acoustic observations. When trying to borrow the same 
to carry out time-synchronous decoding for the HTM, 
ver, serious challenges would arise in hypothesis 
sentation and pruning because of the long-span nature of the 
 leading to a fast, exponential increase in the search space. 

y modifications to the classic DP-decoding paradigm are 
ssary to make the search space manageable, which we will 
ss in detail in this paper. 
is paper is organized as follows. Section 2 gives the basic 
ework for HTM-based time-synchronous decoding. Section 3 
nts several specific decoding challenges associated with the 
span nature of the HTM and our current solutions. We 
asize the key differences from the problems in conventional, 
-based time-synchronous decoder design. Section 4 

sses detailed data structures employed for the decoder’s 
lopment. Section 5 presents experimental evaluation results.  

2. DECODING ALGORITHM OUTLINE 
 

basic structure of the search algorithm developed in this work 
ovided in Figure 1, with three levels of search hypotheses--- 
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word, phone, and residual state.1The long-span nature of HTM 
requires that phone-level hypotheses are represented by a special 
data structure, which we call “trace” (see details in Section 3).  
And to simplify the design of the decoder, we adopt a linear 
lexicon instead of a lexical tree for the search organization. 
   As seen in Fig. 1, the general structure of the HTM decoding 
structure is similar to the classic DP-based algorithm for HMM 
[4,5]. At each frame during decoding, there are similar sub-
routines for 1) hypothesis-extension; 2) hypothesis-pruning and 3) 
word-ending recombination/pruning (including recording word-
hypotheses into back-tracing array). And at the last frame of a 
sentence, both HTM and HMM decoders perform back-tracing and 
output the recognized word sequence from the back-tracing array. 
However, as will be presented in the next section, critical 
differences between the HTM and HMM decoding algorithms are 
in the details of the above three subroutines. And in many places 
new solutions are necessary to deal with the long-time spanning of 
the HTM traces. In addition, a new subroutine, called “Merge the 
same next-time traces” (not needed in the HMM decoder) in Fig. 1, 
is carried out before extending new hypotheses so as to reduce the 
number of active traces. This makes the search space as compact as 
possible. 
 
For each sentence in the testing set 
  Initialization for t = 0 

For t = 1... Maximal_Frame_Number-1 
Merge the same next-time traces 

    Extend new traces/hypotheses by DP 
    Prune all state-level hypotheses and traces 
    Perform word end recombination and pruning 

End For 
Back-tracing and outputting word sequence 

End For 
Fig.1. Basic time-synchronous search algorithm for HTM 
 

3. SPECIFIC DECODING ISSUES RELATED TO HTM 
 

3.1. Representation of Hypotheses 
 
In the HMM-based decoding, the likelihood of each frame (usually 
10ms of speech) given the HMM state depends only on the 
acoustic observation of the current frame, making the 
representation of search hypotheses extremely simple. In contrast, 
in the HTM model, the likelihood of each frame (for the given 
residual state in a phone) depends not only on the observation and 
phone identity of current frame, but also on the phone identities 
associated with both previous and future D (D>0) frames (see [2] 
for a detailed mathematical description of such long-span 
dependency). In the current HTM model, we set D = 7. That is, 
each hypothesis has to record all the phone identities for a 15-
frame-long window centered at the current frame, and any 
difference in any phone identity within this (2D+1)-frame window 
will cause a difference of the acoustic likelihood score. In our 
current solution to representing this complex “variable-gram” 
dependency, each search hypothesis is made associated with a 
special data structure called “trace”. (Note here “trace” is 
obviously different from “Word Trace” concept in [7], which was 

                                                 
1 The residuals are the feature vectors that cannot be predicted by the 
HTM, and are represented by a three-state HMM with a regular left-right 
topology; see details in [2]. 

used
Each
15-fr
withi
is a 
state
level
the c
fram
and 
hypo
curre

Si
resid
organ
searc

Sta

Trac

t=7

Decodi
 Time

Fig. 
 

 
3.2. H
 
One 
algor
For 
lengt
that 
other
recom
cond
long-
grow
mana
   To
deve
using
synch
lattic
lattic
node
simil
Tran
1/2 
comp
by th
of se
   Sec
reduc
we a
w at 
If the
mode

INTERSPEECH 2006 - ICSLP

610
 to represent a word-level lattice based on traditional HMM.) 
 trace can be considered as a “super-state” and it includes a 
ame-long array that records the identities of all the phones 
n this time window. Further, associated with each trace there 
pointer to a small array that represents the active residual 

(s) for the phone hypothesis. Figure 2 illustrates these two-
 hypothesis presentation used in the HTM decoder. It shows 
hanges of phone identities when a trace proceeds from time 
e t = 7 into t = 9. Each residual model has 3 emitting states 
2 non-emitting states, and the size of the active state-level 
theses attached to each trace is dependent on the position of 
nt phone (the center, shaded block of the window).  
milar to the classic DP-based algorithm, all different traces, 
ual states, and word hypotheses activated at each frame are 
ized in arrays which enable direct access to any level of the 
h hypotheses. 

1
2

4te:

hh

(the first frame of phone hh)
(the last frame of phone sil)

e:

hh hh hh iy iy iy iysil

sil sil sil sil hh hh hh iy iy iy iy hh hh

(the second frame of phone hh)

hh hh hh iy iy iy iy hht=8

t=9

sil sil sil hhhh iyiy iysil sil sil sil iy hh

ng
1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 18 1912 170

1
2
3

sil sil sil sil sil sil sil

sil sil sil sil sil sil

sil sil

sil

sil hh

 
2. Trace and state-level hypotheses in the HTM decoder 

andling Exponentially Increasing Search Space 

critical difference between the time-synchronous decoding 
ithms for HTM and for HMM is the size of the search space. 
HMM, the search space grows essentially linearly with the 
h of the sentence. The linearity is due to the HMM property 
the frame likelihoods given the state are independent of each 
, which makes it possible to effectively employ word-ending 
bination to reduce the search space. In contrast, in HTM, this 

itional independence assumption no longer holds, and the 
span contextual influence makes the number of active traces 
 exponentially. It is very difficult, if not impossible, to 
ge this large search space using regular DP methods [4].  

 make the search space reduced and compact, we have 
loped and applied two techniques. First, the lattices generated 
 the regular triphone HMM system are used to constrain time-
ronous search using the HTM. Starting from the regular 
es generated from HTK, we do post-processing on these 
es by dropping time information at each node and merging the 
s that differ only in timing information. This procedure is very 
ar to the minimization processing of Weighted Finite State 
sducer (WFST), and the resulting lattice becomes only 1/3 to 
in the size compared with the original lattice. With the 
ressed lattice, the extension of new traces will be constrained 
e permitted path in the lattice, significantly reducing the size 
arch space to one with a manageable order of magnitude. 
ond, approximate word-ending recombination is exploited to 
e the search space. This technique is illustrated in Figure 3, 

ssume three different paths reaching the same word ending of 
time t = t1, and P3<P2<P1, where Pi is the path score for path i. 
 decoding were based on HMM with the within-word acoustic 
l and bigram language model, then word recombination 



would allow keeping only path 1, and paths 2 and 3 can be 
discarded without loss of search accuracy. However, in the HTM-
based decoding, such word recombination will produce search 
errors because path 2 and path 3 may gain a higher score than path 
1 in a near-future frame resulting from the 15-frame-long 
contextual window. To reduce the possibility of this search error, 
approximate word recombination is developed and adopted as 
follows: 1) pre-set a recombination threshold as Tw, and obtain the 
highest path score as Pbest among all those paths reaching w at time 
t1; 2) prune those paths if their scores are Pi < Pbest- Tw. In Figure 
3, assume P3<P1-5.0, P2>P1-5.0, and the recombination threshold 
is Tw=5.0. Then only path 3 will be pruned and paths 1 and 2 will 
be kept for further extension. 

Model-State
-

t = Time T

...
...

2
3

1
2
3

1

Ending of Word w

Approximate Word-End 
Recombination

1
3

2

2

1

0 1 2 3 4 5 ...... t= t1M
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M
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Fig.3. Approximate word-ending recombination. Assume path 
scores for paths 1, 2, 3 satisfy: P3<P2<P1, and P3<P1-5.0, P2>P1-
5.0. (and assume 5.0 as the recombination threshold). 
 
3.3. Frame-Incremental Extension of New Traces  
 
Figure 4 gives the algorithm for extending new traces at each frame 
of decoding. For each old trace in the trace list, the extension of 
new traces depends on the previous phone’s identity within the 15-
frame-long window of the old trace.  
 
For all active traces in trace list 

Get all new traces by extending the previous phone’s ID of old trace 
For all possible new traces 

Calculate HTM residual vectors 
For all active state-level hypotheses of old trace 

Calculate HTM state likelihood 
(Calculate HMM state likelihood; obtain combined score)2 
Perform state-level extension and recombination by DP 
Save the new hypotheses into the state hypotheses list 

End For 
Save those new traces into trace list 

End For 
End For 
Fig. 4. Algorithm for extending new traces by a new frame 

 
For the main loop in Figure 4, the major computational cost lies 

in computing HTM residual vectors and computing the HTM state 
likelihood. For detailed procedures of the computation, readers are 
referred to [2,3]. 

 
3.4. Pruning Methods 

                                                 
2 This is an optional step. We found in the experiments that the use of the 
combined HMM score significantly speeds up the search and improves the 
recognition accuracy. 
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ith classic DP-based time-synchronous HMM decoding, good 
ing methods are highly desirable to make the search space 
act while keeping the best path away from being pruned. Two 

rent pruning methods are used in HTM decoder, beam pruning 
nd histogram pruning [5],  for all state, phone and word 
s. Hence, in total, there are six tunable pruning parameters --- 
 beam, state histogram threshold, phone beam, phone 
gram threshold, word beam (or LM pruning beam), word 
gram threshold (or LM cut-off threshold). The three beam 
eters are expressed as the likelihood scores, and the three 

gram threshold parameters are expressed as the numbers of 
idates to be kept. 
ecial considerations are needed for setting the histogram 
hold pruning parameters for the HTM. We have observed that 
kelihood values are very close to each other among the many 
s that differ in only one phone identity among their 15-frame-
phone identities. Hence, if we were to set the histogram 

hold parameter N as the permitted number of highest scored 
idate paths, N would need to be extremely large (hundreds of 
ands) in order not to lose the correct hypothesis. This would 
 the pruning operations highly inefficient and would take 
listically large memory. We have devised an alternative 
ique to successfully circumvent these problems. The 
ique considers only the phones that are near the center of the 
ame-long phone identity array (i.e., near the “current” phone). 
 is, we ignore the phones in the two far ends of the array which 
 a minimum effect in the trace’s likelihood. In implementing 
technique, we attach each HTM trace with a triphone ID to 
sent the nearest left- and right-contexts of the current phone. 
, only the traces with different triphone IDs are counted as 
rent traces for pruning threshold setting of N.  

4. DATA STRCTURES 
 

lar to the DP algorithm used for HMM decoding [4], one 
r data structure used in HTM decoding is list (or array). There 
four lists used in the HTM decoder to store the active 
theses for traces, states, word-endings, and words in back-
g array, respectively. Figure 5 illustrates an example of the 

 list and state list used in the HTM decoder. We set a pointer 
ch trace pointing to the ending position of the state array for 
urrent trace. This makes it very easy to directly access any 
thesis. Figure 5 also shows some class members (defined in 
al C# language) that represent trace- and state-level 
theses. As an example, a one-byte-type, 15-element array 
d “code” in class Trace, is used to store 15-element phone 
ities of each trace. Among other members of class Trace, there 
“c_link” member as the current link of the lattice, and an 
nk” member as the next link of the lattice for the current trace. 
 of them are objects of class “LatLink”. Finally, there is a 
-type member “t_hmm” to represent the triphone ID 
sponding to current trace. 
 addition to the list, the data structure hash table is also used 
sively in designing our HTM decoder, and is responsible for 
ementing the functionalities of pruning and recombination. 
use of the simplicity of using hash table in Visual C# (class 
htable”), the pruning and recombination of different search 
theses are implemented with high efficiency. Also, one of key 
utines, “Merge the same next-time traces”, discussed in 
on 2 and shown in Figure 1, is implemented efficiently and 
eniently by hash table. Specifically, the active traces activated 



in the immediately previous time is merged when they have the 
same “next-time” phone identities (i.e., the same in all “code” class 
members except for code[0]), because they will be extended to the 
unique new trace.   

 
HypsTraces trace.HypIdx

sbyte code[15];
int HypIdx;
float score;
float lmscore;
LatLink c_link;
LatLink n_link;
string t_hmm;
…

Class Trace

sbyte sta;
float score;
int bkp;

Class StaHyp
Trace 0

Trace 1

Trace 2

...

Sta 1

Sta 2

Sta 3

Sta 1

Sta 2

Sta 4

...

 
Fig.5. Lists and class members used for traces and state-level 
hypotheses (in Visual C#). 
 

5. EVALUATION EXPERIMENTS 
 
In this section, experimental results on the standard TIMIT 
phonetic recognition task are reported. The HTM model 
parameters, including VTR target means and variances and 
cepstral-prediction residual parameters, are trained from the TIMIT 
training set as described in [2]. The test set is the standard core test 
set including 192 sentences consisting of 7333 phone-like units. 
The time-synchronous HTM decoder is constrained by lattices 
computed by HTK with crossword triphone HMMs, which has a 
baseline phone accuracy rate of 72.50%. The oracle accuracy for 
the lattices is 97.41%. The accuracy of A* based lattice rescoring 
using HTM model only is 74.3%, and when HTM combines with 
HMM for A* lattice rescoring, the accuracy reaches 75.07% [3]. 

 
Table 1. Phonetic recognition accuracy and relative HTM decoding 
CPU time/utterance as a function of the decoder’s pruning 
parameter settings 

Beam-Pruning 
Thresholds 

Histogram-Pruning 
Thresholds 

Relative 
Time 

Acc% 

10.0,     10.0,     10.0 50,       50,       20 1.0 17.22 
50.0,     50.0,     50.0 50,       50,       50 8.0 71.46 
100.0,   100.0,   100.0 500,     500,     200 10.2 73.57 
1000.0, 1000.0, 500.0 20000, 20000, 800 36.2 73.97 
3000.0, 3000.0, 1000.0 20000, 20000, 800 78.1 74.43 
3000.0, 3000.0, 1000.0 30000, 30000, 2000 138.1 74.68 
 

Table 1 summarizes a set of experimental results where the 
phonetic recognition accuracy and the relative HTM decoding 
CPU time (time was measured for a given TIMIT utterance) is 
shown as a function of the six tunable decoder pruning parameters 
as discussed earlier in the paper. These parameters include three 
beam pruning thresholds (state-, phone-, and word-level3), and 
three histogram pruning thresholds. The approximate word-ending 
recombination threshold is set as 10. The weights for the log-
HMM-likelihood, the log-HTM-likelihood, and the log-LM-
probability are set to be 5, 1, and 20, respectively. And the phone 
insertion penalty is set to be -40. We observe that as the threshold 
values are increasing and the fewer and fewer intermediate 
                                                 
3 For the phonetic recognition task, the word-level pruning differs from the 
phone-level pruning only in its use of the (bi-gram or bi-phone) LM. Our 
decoder software, however, has been written to handle general word 
lexicons. 
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theses are pruned, the recognition accuracy is progressively 
asing but at the expense of an increasingly greater 
utational cost.  

6. SUMMARY AND CONCLUSION 

is paper, a time-synchronous decoder designed for the long-
xtual-span HTM as a special type of structured speech model 
sented, which extends our previous work of HTM evaluation 
 on N-best list rescoring and lattice rescoring. The long-span 
e of the HTM poses serious challenges in hypotheses 
gement and in efficient pruning/recombination methods for 
P-based decoding algorithm. Novel approaches developed to 
ss these challenges include the trace-based contextual-phone 
thesis representation, the approximate word-ending 
bination technique, and the histogram-based hypothesis 

ing method. These innovations, together with the use of 
es as a constraint for the search, have successfully reduced the 
nentially increased search space to a manageable, moderately-
 space.  The experimental results on a standard TIMIT 
etic recognition task demonstrate the effectiveness of the 
ding algorithm, especially the new techniques developed 
n the algorithm to handle the otherwise unmanageably large 
h space. While the phonetic recognition accuracy achieved by 
current decoder is already higher than most techniques 
uding HMM techniques) published in the literature, further 
g of the decoder parameters, as well as improved HTM design 
raining, are expected to further improve the accuracy. Finally, 
ave been in the process of completing the development of the 
der for larger tasks of continuous speech recognition with 
 realistic “lexicon” than the trivial one in the phonetic 
nition task presented in this paper. Our future work will 
ve some larger scale evaluation of the HTM. 
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