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Abstract: Cardiovascular disease (CVD) poses a serious health and economic burden worldwide.
Modifiable lifestyle factors are a focus of research into reducing the burden of CVD, with diet as one
of the most investigated factors. Specifically, the timing and regularity of food intake is an emerging
research area, with approaches such as time-restricted eating (TRE) receiving much attention. TRE
involves shortening the time available to eat across the day and is associated with improved CVD
outcomes compared with longer eating windows. However, studies that have examined TRE have not
considered the impact of sleep on CVD outcomes despite recent evidence showing that sleep duration
can influence the timing and amount of food eaten. In this article, we argue that as TRE and sleep
influence each other, and influence the same cardiometabolic parameters, experiencing inadequate
sleep may attenuate any positive impact TRE has on CVD. We examine the relationship between TRE
and CVD, with sleep as a potential mediator in this relationship, and propose a research agenda to
investigate this relationship. This will provide necessary evidence to inform future interventions
aimed at reducing the burden of CVD.

Keywords: chrono-nutrition; meal timing; eating habits; metabolic health; cardiovascular; sleep
timing; circadian disruption; night shift

1. Introduction: Cardiometabolic Risk and Chronobiology

Cardiovascular disease (CVD) is an umbrella term used to describe medical conditions
that affect the heart, blood vessels, and cardiometabolic health [1,2]. CVD is the leading
cause of death globally [3,4] and, importantly, is largely preventable [5]. Modifiable lifestyle
factors, including sub-optimal diet, physical inactivity, excessive alcohol consumption, and
smoking, account for up to 90% of the risk factors associated with CVD [2].

The Heart Foundation Australia [2] emphasises a need to focus on modifiable lifestyle
factors as part of future research into reducing the burden of CVD. When investigating how
modifiable lifestyle factors influence CVD, research to date has focused on factors such as
diet, physical activity, smoking, and alcohol consumption [1,5–7]. However, as the rates of
CVD continue to grow [2,4], the focus of research has widened to include other lifestyle
factors that could also be important contributors to CVD risk, such as sleep [8–10]. Attention
has also turned to exploring possible interactions between lifestyle factors to identify novel
approaches to reducing CVD risk. While sub-optimal diet is a well-established risk factor for
CVD [11–13], a new focus is emerging on the timing and regularity of food intake [14–16].
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Given that the timing and regularity of sleep is also a consideration in relation to CVD risk
factors [8,17], the next step is to explore the timing of both sleep and food intake, alongside
our expanding understanding of biological timing systems.

Identifying the mechanisms underlying CVD is integral to reducing the burden of
disease [18,19]. Disruption to our circadian rhythms is one such mechanism that has
received scientific attention, with several key reviews demonstrating the relationship
between circadian disruption and cardiometabolic health [9,18,20,21]. Circadian rhythms
are biological and behavioural rhythms with a period of approximately 24 h [22,23]. While
it is well-established that the circadian system, controlled by a central clock located in the
suprachiasmatic nucleus in the brain, is influenced by light [24], more recent evidence
demonstrates that peripheral clocks throughout our body are influenced by other external
behaviours, such as meal timing [25,26]. Furthermore, while sleep timing affects light
exposure and therefore the central clock, the timing of sleep has also been linked to the
timing of peripheral clocks [18].

Optimal functioning of the circadian system is essential for good health [27]. Cir-
cadian disruption occurs when our sleep–wake and eating–fasting rhythms are not ap-
propriately timed; that is, they do not align with our light–dark cycle [18,28]. One of
the leading causes of circadian disruption is working non-standard hours including shift
work [9]. Shift work disrupts the usual sleep–wake cycle as workers may be on shift
during times when the body is primed to be sleeping (i.e., at night), attempting sleep when
the body is primed to be awake (i.e., during the day), or woken during a sleep period
when working an on-call schedule [29,30]. This leads to inadequate sleep in shift work
populations [31,32], contributing to circadian disruption, which is recognised as a major
contributor to CVD risk in shift workers [9]. As a result of circadian disruption, natural
physiological processes, such as metabolism, digestion, energy expenditure, and blood
pressure, are misaligned [9,20,23,24,26,33–39]. This misalignment is proposed to play a
critical role in the development of long-term health problems, such as CVD [1,9].

Eating at a time when our body is not primed to digest food is a challenge to multiple
physiological systems, including the circadian system [14]. The typical eating window (the
time from first to last time of energy consumption across the day) spans 14 h of the day
in healthy, synchronised individuals [40,41]. Spreading eating events across the day (i.e.,
beyond the 14 h eating window) to include eating late at night is associated with weight
gain and increased insulin resistance [42], which are two markers of CVD. Importantly,
the typical eating window may be longer in obese populations [43]. In response to these
novel findings, time-restricted eating (TRE), whereby the eating window is shortened [44],
has been proposed to manage weight and cardiometabolic health. Indeed, several recent
studies investigating TRE and cardiometabolic health [14,45–51] have demonstrated im-
proved cardiometabolic outcomes with TRE, including reductions in systolic and diastolic
blood pressure, reductions in fat mass, and improved insulin sensitivity [50–52]. While
some of these studies measured sleep as an outcome after a TRE intervention [53], they
did not consider sleep as a predictor of cardiometabolic health outcomes and therefore
missed the opportunity to control for or to consider the impact of chronic inadequate sleep.
This is potentially problematic as circadian disruption resulting from inadequate sleep
may independently influence the same cardiovascular outcomes influenced by TRE [8,54].
Furthermore, there is a known relationship between food intake and sleep [55–57] such
that inadequate sleep can lead to altered meal timing [55,58] and increased cravings for
certain foods [59,60], and different foods and nutrients can impact sleep quality [61,62].
These interactions highlight the need to better understand the relationships between eating
patterns, such as TRE, sleep, circadian misalignment, and cardiometabolic health.

In this review, these relationships are proposed to follow a mediator model, recog-
nising that inadequate sleep may partially mediate the relationship between TRE and
cardiometabolic outcomes. The relationship between cardiometabolic health and TRE will
be discussed, followed by the relationship between cardiometabolic health and sleep in
the context of the timing of eating. It will be argued that sleep mediates the relationship
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between TRE and improved cardiometabolic outcomes, and an agenda for a proposed
program of research will be outlined.

2. Time-Restricted Eating, Circadian Disruption, and Cardiometabolic Health

Eating habits are a well-researched lifestyle factor contributing to CVD [63]. Poor
eating habits, such as poor diet quality, have been linked to key cardiometabolic risk factors
for CVD [11,12,64,65], including increased blood pressure, body mass index, serum lipids,
total cholesterol, and low-density lipoprotein cholesterol [12,66,67]. As such, improving
eating habits is a critical part of reducing CVD risk [13,68]. However, it has become apparent
that the timing of food intake is also an important consideration [38], primarily due to the
burden of altered eating patterns on the circadian system [14].

Eating at times when our body is not primed to digest food (e.g., at night [16]) can
compromise metabolism and thus lead to an increase in the likelihood of developing
CVD [38,44]. Indeed, observational studies have reported a relationship between irregular
eating patterns and increased risk for metabolic syndrome [69–71], in addition to a rela-
tionship between habitual night eating and arterial stiffness, a preclinical sign of CVD [72].
Altered eating patterns are characteristic of shift work [55,73–75], with shift workers report-
ing that they change the timing of eating to accommodate their shift schedule; for example,
eating during the night when working night shifts [55]. Misalignment of eating rhythms
with the internal circadian system is thought to contribute to the relationship between shift
work and CVD [73]. Research in non-shift workers has shown that erratic eating patterns
are associated with increased CVD risk after controlling for dietary composition [76]; thus,
highlighting that in addition to ‘what is eaten’, ‘when eating occurs’ also influences CVD
risk. Collectively, recent research highlights the need to optimise eating time to reduce
circadian disruption and consequently reduce the prevalence of CVD.

As previously discussed, TRE is a unique strategy that has gained popularity as a
way to optimise the timing of food intake [14,16,38]. While typical eating windows for
most individuals span 14 h of the day, a TRE approach shortens the eating window to
between 4 and 10 h [14,77] (Figure 1, example 8 h eating window). It is important to note
that the optimal timing of a shortened eating window (i.e., starting the eating window
early in the day or later in the day) requires systematic study [44]. In a recent review by
Regmi and Heilbronn [78], the authors argued that while the early morning (e.g., Figure 1,
middle panel) may be considered an optimal time to start the eating window for maximal
metabolic benefits (e.g., improving insulin sensitivity and lipid absorption), this would
mean that people would miss eating dinner at a traditional time (6–8 pm), which is a typical
family and group eating time [79]. This may therefore present social challenges. In contrast,
the same 8 h eating window could start at 12 pm and include the typical dinner time (e.g.,
Figure 1, right panel). While this arrangement extends the overnight fast to the same degree
and may be perceived to be less socially challenging, metabolic benefits may be reduced
due to circadian considerations [78].

TRE may lead to improved cardiovascular outcomes [16]. For example, a recent
systematic review and meta-analysis of eleven studies found significantly lower fasting
glucose values for participants on a TRE pattern (with eating windows ranging from 6 h
to 12 h) compared to those eating ad libitum [50]. Other studies have similarly demon-
strated improvements following TRE in blood pressure, body weight, cholesterol, glucose
metabolism, and the gut microbiome [22,50,51,78,80,81]. Furthermore, TRE circumvents
some of the challenges of typical dieting approaches, which often require individuals to
employ restrictive behaviours, because the quality and quantity of the food eaten in TRE
regimes does not change [77,82], as only the window of eating is altered.
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arrangements include the same number of eating occasions (indicated by knife and fork). For the 
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increasing the length of the overnight fast. 
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the timing of the eating window to reduce circadian disruption. In people with typical 
diurnal rhythm, starting a shortened eating window early in the day avoids circadian 
misalignment of eating behaviours and related impairment in the way in which food is 
processed by the body [15,38]. Indeed, evidence suggests that an earlier eating window is 
associated with more effective cardiometabolic outcomes compared to a later eating 
window [14,16,41,77]. As previously discussed, circadian disruption plays a significant 
role in the development of CVD due to misaligned daily rhythms, such as metabolism, 
digestion, and blood pressure [1]. Since food acts as a signal for peripheral circadian clocks 
[16,18], eating food at biologically inappropriate times can lead to misalignment between 
central and peripheral clocks [83]. Therefore, carefully timed TRE may be an effective and 
relatively straightforward strategy to minimise circadian disruption [48] and ultimately 
contribute to a reduced burden of CVD [38,77]. However, while day interventions are the 
focus of much of the existing TRE literature [14,38,45,50,84], consideration of the impacts 
of practicing TRE at other times, such as during the night, has been less well-documented. 
Research in this area is of particular interest for night workers who typically eat during 
the night [55]. Recent laboratory research has demonstrated the beneficial effect for 
glucose metabolism of maintaining a daytime eating window even while working 
(simulated) night shifts [85–88]. To extend this research, additional consideration of TRE 
for those working night shifts is needed; in particular, this would determine the impact 

Figure 1. Illustration of three patterns of eating (light blue shading with knife and fork) and sleeping
(dark blue shading with bed) across hours on 24 h clocks. Left—typical eating arrangement within a
14 h eating window starting at 7 am. Middle—time-restricted eating within an 8 h eating window
starting at 7 am. Right—time-restricted eating within an 8 h eating window starting at 12 pm. All
arrangements include the same number of eating occasions (indicated by knife and fork). For the
time-restricted eating patterns, the time between the first and last eating occasion is shortened,
increasing the length of the overnight fast.

In shortening the eating window, TRE reduces the amount of time the body is re-
quired to metabolise food and lengthens the daily fast period, arguably allowing for greater
metabolic recovery [14,16,22,41,50]. As introduced in Figure 1, a further opportunity for
improving cardiometabolic outcomes arises from the ability to consider the timing of the
eating window to reduce circadian disruption. In people with typical diurnal rhythm,
starting a shortened eating window early in the day avoids circadian misalignment of
eating behaviours and related impairment in the way in which food is processed by the
body [15,38]. Indeed, evidence suggests that an earlier eating window is associated with
more effective cardiometabolic outcomes compared to a later eating window [14,16,41,77].
As previously discussed, circadian disruption plays a significant role in the development
of CVD due to misaligned daily rhythms, such as metabolism, digestion, and blood pres-
sure [1]. Since food acts as a signal for peripheral circadian clocks [16,18], eating food at
biologically inappropriate times can lead to misalignment between central and peripheral
clocks [83]. Therefore, carefully timed TRE may be an effective and relatively straightfor-
ward strategy to minimise circadian disruption [48] and ultimately contribute to a reduced
burden of CVD [38,77]. However, while day interventions are the focus of much of the
existing TRE literature [14,38,45,50,84], consideration of the impacts of practicing TRE at
other times, such as during the night, has been less well-documented. Research in this
area is of particular interest for night workers who typically eat during the night [55].
Recent laboratory research has demonstrated the beneficial effect for glucose metabolism of
maintaining a daytime eating window even while working (simulated) night shifts [85–88].
To extend this research, additional consideration of TRE for those working night shifts is
needed; in particular, this would determine the impact and feasibility of shortening the
daytime eating window while supporting the need to sleep during the day (Figure 2).

Consideration of sleep in the context of night work is critical. While TRE can be
designed to reduce circadian disruption, one of the biggest contributors to circadian disrup-
tion is an altered sleep–wake cycle [23,26]. We hypothesise that TRE may not have the same
benefits for cardiometabolic health if individuals are experiencing circadian disruption due
to inadequate sleep.
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a night-shift worker with a 12 h eating window during the day. Right—time-restricted eating for a
night-shift worker with an 8 h eating window during the day (right).

3. Inadequate Sleep, Circadian Disruption, and Cardiometabolic Health

Inadequate sleep is highly prevalent globally, with adults commonly obtaining less
than the optimal 7–9 h of sleep per night [89–93]. For example, up to one-third of Aus-
tralians do not achieve 7 h of sleep per night [89,90]. This is problematic, as chronic inade-
quate sleep challenges the circadian system [19] and consequently impacts cardiometabolic
health [1,10,19,94]. Several studies have demonstrated the link between short sleep (con-
sidered sleep of ≤6 h in duration [95]) and adverse cardiometabolic outcomes including
obesity, hypertension, poor glucose regulation, and insulin resistance [19,95–100]. Impor-
tantly, extended sleep (i.e., sleep >9 h) is also associated with adverse cardiometabolic
health effects [101,102], such as increased blood pressure [103,104], and this could be a bi-
directional relationship, with long sleep a symptom of CVD [105]. This suggests a U-shape
relationship between sleep and cardiometabolic health, with 7–9 h considered an optimum
amount for favourable cardiometabolic outcomes [102]. Ensuring adequate sleep duration
(i.e., 7–9 h per 24 h) is therefore a key strategy to reduce the risk of CVD.

Inadequate sleep is a common outcome of shift-work schedules [37]. Many shift
workers, particularly those engaged in night work, experience some degree of circadian
disruption [9,106]. This is thought to be a major contributor to the prevalence of car-
diometabolic issues in shift workers, such as elevated post-prandial glucose levels, obesity,
and CVD in the long-term [9,19]. Several systematic reviews have highlighted the increased
risk of adverse cardiovascular outcomes and CVD in shift workers, particularly individuals
undergoing night-shift work [107–109], further demonstrating the link between circadian
disruption and CVD.

4. Inadequate Sleep Mediates the Relationship between Time-Restricted Eating and
Cardiovascular Outcomes

Since risk factors for CVD include multiple lifestyle factors, it is paramount that
interventions adopt a multi-faceted approach to combat the disease [110]. The relationship
between sleep and eating patterns is well-established, with recent reviews demonstrating
a link between nutrition and both sleep quality and quantity in adults [61,62]. Research
has also identified a relationship between food intake and inadequate sleep, with shorter
sleep duration leading to increased energy intake [56,60,111,112]. Furthermore, there is a
relationship between food intake and some sleep-related disorders. For example, higher
intake of red/processed meat and lower diet quality was reported in a sample of females
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diagnosed with obstructive sleep apnoea [113]; increased intake of fatty acids was found in
a group of overweight and obese men with obstructive sleep apnoea compared to obese and
overweight men without obstructive sleep apnoea [114]; and higher consumption of trans
fats and sodium, in addition to a lower intake of vegetables, was found in a sample of men
with probable insomnia compared with men without probable insomnia [115]. Additionally,
the timing of sleep can also influence eating patterns. For example, individuals who sleep
at times other than at night (as a result of shift work) report having to rearrange their
eating patterns to accommodate sleep [55]. This may require eating before and/or after a
day time sleep (i.e., late at night or early in the morning [55]) when the body is not in an
optimal state to support digestion [14]. The timing of eating and sleeping can also affect
the diversity and functioning of the gut microbiota, which is the population of microbes
residing in the intestinal tract [116]. This is an additional link between sleep, eating, and
cardiometabolic disorders [117], as changes to meal and sleep timing can disrupt the diurnal
variations of the gut microbiome, which is associated with disruptions to processes such as
energy absorption, lipid metabolism, and the production of short-chain fatty acids [118].
Several reviews have highlighted the link between the disrupted gut microbiome and
cardiometabolic disorders [116–118].

As previously discussed, both eating and sleep are key cues for circadian alignment
and are independently associated with an elevated risk of CVD [63,76,80,104,119]. Thus,
exploring the interaction between sleep and eating behaviours is critical. Chrononutrition
is a multi-disciplinary field aimed at understanding how the timing of food intake may
impact health [44]. The two main functions of chrononutrition, as argued by Oda [120], are
understanding the impact of meal timing on health and how meal timing entrains our body
clock, including the sleep–wake system; thus, TRE as a strategy to improve health is an
important part of the chrononutrition field. To date, limited research has been conducted on
TRE and sleep, with studies largely focused on the effect of TRE on sleep outcomes. Indeed,
a recent review by McStay et al. [53] identified eight studies that reported sleep-related
outcomes after a period of TRE or intermittent fasting. Many of these studies had CVD risk
factors as primary outcomes, such as glucose metabolism [121], body weight [47], and blood
pressure [51], with sleep-related factors as a secondary outcome. Furthermore, by including
sleep as an outcome variable (rather than a covariate), the influence of inadequate sleep
on cardiometabolic outcomes is not considered. This is of concern given that inadequate
sleep negatively affects the same cardiometabolic outcomes that TRE has been shown to
improve [8,35]. We propose that sleep is considered a mediator, whereby inadequate sleep
mediates the relationship between TRE and CVD (Figure 3). For example, if eating patterns
are optimised with TRE but individuals experience inadequate sleep, then some level of
circadian disruption is still likely. The benefits to health may therefore not be as robust.
This has important implications for health interventions, as currently TRE is marketed as a
relatively approachable eating strategy for improved health [45,77,78,84]. However, given
the prevalence of inadequate sleep experienced by the general public, without providing
concurrent advice on improving sleep, limited benefits to cardiometabolic health may be
achieved from employing TRE in isolation.
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Figure 3. Current understanding of the relationship between timing of eating, sleep, and cardio-
vascular disease (top), and the proposed model linking timing of eating, sleep, and cardiovascular
disease. Individual icons sourced from The Noun Project: Sleep by Sumit Saengthong from Noun-
Project.com; Rice by ic2icon from NounProject.com; and Heart Disease by Lars Meiertoberens from
NounProject.com.
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5. Proposing a New Research Agenda

In this review, we have proposed a model suggesting poor sleep as a mediator in the
relationship between TRE and cardiovascular health such that optimal timing of both sleep
and eating are needed for the most favourable health outcomes. There are several key areas
of investigation that are critical to testing this model. Broadly, this includes suggestions for
study designs, outcomes measures, and populations investigated.

5.1. Study Design

To date, studies investigating TRE with sleep measures have been conducted in field
settings [53] where there are clear limitations to internal validity related to extraneous
variables (e.g., physical activity [110] and dietary behaviours [68]). We propose that future
research should first employ rigorously controlled laboratory protocols [86,122,123] to
investigate the effects of TRE and sleep duration on cardiovascular outcomes. In controlled
laboratory settings, the window of eating can also be altered while keeping other variables
constant. This will support an understanding of the relationship between TRE and car-
diovascular outcomes, with and without sleep as a mediator. For example, comparing the
impact of different eating windows (e.g., 14 h vs. 10 h eating window) and inadequate
sleep (e.g., 5 h) vs. optimal sleep (e.g., 9 h).

TRE may be considered a straightforward approach as it does not require high levels
of nutrition literacy to implement, nor changes to the types/amounts of food eaten [124].
However, behaviour change can be difficult [93] and both sleep and eating are influenced by
a number of external factors (e.g., work, family, and stress) [110]. Therefore, the feasibility
of adopting TRE while also targeting sleep timing needs to be determined with field studies.
As a first step, investigating the impact of TRE on cardiovascular outcomes in individuals
who experience inadequate compared to adequate sleep is required. The efficacy of TRE
to influence cardiovascular outcomes, under intervention conditions aimed at improving
sleep timing (e.g., facilitation of sleep education sessions), could then be investigated. It is
important to note that a standardised methodology for implementing TRE and measuring
both adherence and outcomes is needed as a matter of priority for future research [78].
Understanding the impact of TRE long-term is also important as the recent review by
Gabel et al. [45] found that the longest study on TRE and cardiometabolic measures was
conducted for 16 weeks. Longer studies will be crucial to understand the sustainability of
TRE and whether the positive effects of TRE can be maintained long-term.

5.2. Outcome Measures

For consistency with the current literature, future research should continue to use
several measures of cardiometabolic health including body weight, body composition,
blood pressure, plasma lipids, inflammatory markers, glucose metabolism, and markers
of oxidative stress. These are commonly used to investigate the impact of TRE on car-
diometabolic health [12,42,45,65,121,125]. Conversely, a high degree of heterogeneity exists
for the measures employed in previous studies investigating TRE and sleep outcomes [53],
with many of the measures not validated. Changes in sleep as a result of TRE have been
measured using a mixture of subjective (e.g., sleep diary [46] and Pittsburgh Sleep Quality
Index [47,84,126]) and objective (e.g., Accelerometer [47,121]) assessment techniques. Fu-
ture research utilising laboratory protocols should include polysomnography (PSG), the
gold-standard in the objective measurement of sleep [127]. PSG assesses sleep via elec-
trodes placed at several sites on the scalp (typically the frontal, central, and occipital brain
regions) to record brain activity [127]. This allows sleep architecture to be assessed, which
can be influenced by aspects of cardiovascular health such as glucose metabolism [128].
Finally, given that there are many external factors influencing both sleep and eating, quali-
tative methodological approaches that permit the exploration of barriers and enablers to
implementing TRE are also needed.
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5.3. Populations

There are several suggestions for populations to target in future research. A key rec-
ommendation from the review on intermittent fasting, TRE, and sleep by McStay et al. [53]
was that longer-term trials with larger sample sizes are required as sample sizes in the eight
studies identified in the review ranged from n = 8 to n = 116. Sample size is a limiting factor
to the statistical power of studies and the ability to detect subtle differences in outcomes
based on sleep or TRE. Future investigations must be appropriately powered a priori to
ensure that adequate statistical analyses can be conducted.

Specific populations such as shift workers should be targeted in future research. As
discussed throughout this review, shift workers experience chronic circadian disruption
and have both sleep and eating patterns that vary across a 24 h period [55,73]. As such,
they are a population at high risk of developing CVD [54] and understanding the effects of
TRE combined with interventions aimed at optimising sleep timing is crucial for this group.
While the impact of improved sleep timing and interventions for optimising sleep timing
(e.g., strategic light exposure and napping [54]) have been investigated in shift workers,
the feasibility and efficacy of TRE for shift workers is unknown. This area of inquiry is
currently being investigated by Manoogian et al. [48]; however, it is important to note that
sleep parameters are only being measured as a secondary outcome and analysed based on
the influence of TRE.

Investigating the impact of TRE and sleep timing in individuals of varying chronotypes
is also an important consideration for future research [53]. An individual’s chronotype
reflects their personal circadian preference, with people typically categorised as either
morning or evening types based on the timing of their sleep–wake cycle [129]. Thus far,
chronotypes in relation to the timing of eating and cardiometabolic outcomes have only
been assessed in young adults [130]. Given that a mismatch between chronotype and sleep
timing can lead to circadian disruption and is a risk factor for CVD [6,131,132], this is
worthy of attention. Furthermore, given that chronotypes can be an indicator of biological
timing [129], an effort to use TRE to minimise circadian misalignment would need to do
so relative to a person’s body clock rather than to the absolute clock time. There is also
evidence that chronotype can influence the timing of eating, with evening chronotypes
associated with consuming larger meals later in the day [133]. Therefore, it may be that the
feasibility and effectiveness of TRE differs based on chronotype.

Lastly, given the association between diet quality, timing, and sleep
disorders [113,114,134,135], understanding the impact of TRE for those diagnosed with
sleep disorders is important. Furthermore, sleep disorders are associated with an increased
risk of CVD [136,137], therefore, understanding whether TRE reduces the risk of CVD in
this population could be a key strategy for reducing the burden of CVD.

6. Conclusions

To reduce the burden of cardiovascular disease, there is a need to optimise the timing
of both eating and sleep. Given that the timing of eating and sleep are both key aspects of
our circadian system and both target the same cardiometabolic parameters, this review has
argued that they must be considered together to achieve optimal cardiometabolic outcomes.
In this review, we proposed a novel approach to future research, with suggestions for study
designs, outcome measures, and populations, to investigate the relationship between the
timing of eating and sleep on cardiometabolic health. The goal of this research agenda is to
inform interventions aimed at reducing the current burden of cardiovascular disease.
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