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Abstract

Motivation: Despite the widespread popularity of genome-wide association studies (GWAS) for

genetic mapping of complex traits, most existing GWAS methodologies are still limited to the use

of static phenotypes measured at a single time point. In this work, we propose a new method for

association mapping that considers dynamic phenotypes measured at a sequence of time points.

Our approach relies on the use of Time-Varying Group Sparse Additive Models (TV-GroupSpAM)

for high-dimensional, functional regression.

Results: This new model detects a sparse set of genomic loci that are associated with trait dy-

namics, and demonstrates increased statistical power over existing methods. We evaluate our

method via experiments on synthetic data and perform a proof-of-concept analysis for detecting

single nucleotide polymorphisms associated with two phenotypes used to assess asthma severity:

forced vital capacity, a sensitive measure of airway obstruction and bronchodilator response,

which measures lung response to bronchodilator drugs.

Availability and Implementation: Source code for TV-GroupSpAM freely available for download at

http://www.cs.cmu.edu/~mmarchet/projects/tv_group_spam, implemented in MATLAB.

Contact: epxing@cs.cmu.edu

Supplementary Information: Supplementary data are available at Bioinformatics online.

1 Introduction

The goal of genome-wide association studies (GWAS) is to analyze

a large set of genetic markers that span the entire genome in order

to identify loci that are associated with a phenotype of interest.

Over the past decade, GWAS has been used to successfully identify

genetic variants that are associated with numerous diseases and

complex traits, ranging from breast cancer to blood pressure

(Hindorff et al., 2015). However, a significant challenge in per-

forming GWAS is that the studies are often vastly under-powered

due to the high dimensionality of the feature set relative to the

small number of human samples available.

Traditional GWAS methodologies test each variant independ-

ently for association with the phenotype, and use a stringent signifi-

cance threshold to adjust for multiple hypothesis testing (Clarke

et al., 2011). Although this approach works well for traits that de-

pend on strong effects from a few loci, it is less suitable for complex,

polygenic traits that are influenced by weak effects from many dif-

ferent genetic variants. More recently, a significant body of work

has emerged on penalized regression approaches for GWAS that

capture the joint effects of all markers (Li et al., 2011; Wu et al.,

2009). The majority of these methods model the phenotype as a

weighted sum of the genotype values at each locus, and use a
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regularization penalty such as the ‘1 norm to identify a sparse set of

single nucleotide polymorphisms (SNPs) that are predictive of the

trait. Although this technique helps to reduce overfitting and detect

fewer spurious SNP-trait associations, the lack of statistical power

to identify true associations persists.

Here we aim to further boost the statistical power of GWAS by

proposing a new model that leverages dynamic trait data, in which a

particular trait is measured in each individual repeatedly over time,

as depicted in Figure 1a. Such datasets are often generated by longi-

tudinal studies that follow participants over the course of months,

years, or even decades. Though broadly available, dynamic trait

datasets are frequently underutilized by practitioners who ignore the

temporal information. We believe that leveraging time-sequential

trait measurements in GWAS can lead to greater statistical power

for association mapping.

To illustrate this concept, consider the hypothetical patterns of

SNP influence on the phenotype shown in Figure 1b. As in traditional

GWAS, an association between a SNP and the phenotype exists if the

three SNP genotypes (which we denote AA, Aa and aa) have differen-

tial effects on the trait. In the first example, the effects of the three

SNP genotypes only differ in the t 2 ½0:5; 1� time interval. A static

method that uses data from an arbitrarily chosen time point or simply

treats the time series as i.i.d. samples could easily miss this associ-

ation, whereas a dynamic method that considers the entire dataset

would detect it. The second example shows a SNP in which the differ-

ence between the effects of the three genotypes is small but consistent

over time. Although this signal could be too weak to be interpreted as

a significant association in the static case, it gets much stronger once

evidence from the entire time series is considered.

The longitudinal data setting is challenging because traits are

measured at irregularly spaced time points over subject-specific

intervals. One approach that has been proposed for performing

GWAS of dynamic traits, called functional GWAS, or fGWAS (Das

et al., 2011), constructs a separate model to estimate the smooth,

time-varying influence of each SNP on the phenotype. Once the

mean effects have been estimated for each genotype at each time

point, a hypothesis test is performed to determine whether the SNP

has any additive or dominant effect on the trait. Although the use of

dynamic trait data gives fGWAS more statistical power than a stand-

ard hypothesis test on static data, the principal drawback of this

method is that it is inappropriate for modeling complex traits that

arise from interactions between genetic effects at different loci. A

related approach extends the fGWAS framework to model multiple

SNPs at once using a Bayesian group lasso framework (Li et al.,

2015). Although this approach seems promising, it is severely

limited by its very slow MCMC inference procedure. There are a

number of other methods that have been developed for dynamic

trait GWAS, including Yang et al. (2009), Furlotte et al. (2012), Das

et al. (2013), and Li and Sillanp€a€a (2013). However, the majority of

them either perform single-locus analysis (as in fGWAS) or fail to

learn an explicit, interpretable representation of the dynamic effects

of the genetic variants at each locus. The notable exception to this is

fGWAS with Bayesian group lasso, which we directly compare to

our approach in a later section.

In this work, we introduce a new penalized multivariate regres-

sion approach for GWAS of dynamic quantitative traits, in which

the phenotype is modeled as a sum of nonparametric, time-varying

SNP effects. We call this Time-Varying Group Sparse Additive

Models, or TV-GroupSpAM. Our method is based on GroupSpAM

(Yin et al., 2012), a non-parametric regression model with a group-

structured penalty over the input features, which we extend to cap-

ture the dynamic effects of SNPs. This model has three major advan-

tages over existing approaches: (i) we leverage dynamic trait data;

(ii) we model the contribution of each SNP to the phenotype as a

smooth function of time, and explicitly learn these influence pat-

terns; (iii) we model the combined effects of multiple SNPs on the

phenotype and select a sparse subset that participate in the model,

thereby identifying meaningful SNP-trait associations. We show

that TV-GroupSpAM exhibits desirable empirical advantages over

baseline methods on both simulated and real datasets.

2 Approach

In this section, we first introduce a time-varying additive model for

dynamic complex traits that captures the underlying patterns of gen-

etic effects. We then apply a group sparse regularization scheme to

this model in order to impose bias useful for discovering a sparse

set of markers that influence the phenotype in a longitudinal

setting. Finally, we provide an efficient algorithm for parameter esti-

mation, and thereby association mapping, under our model.

Notation. Let Xij 2 f0; 1; 2g : i ¼ 1; . . . ;n ; j ¼ 1; . . . ; p denote

the genotype of individual i at SNP locus j, where n and p denote the

number of individuals and SNPs, respectively. Let Yis 2 R : i ¼ 1; . . . ;

n ; s ¼ 1; . . . ;m denote the phenotype value of individual i at the sth
time point. Note that the exact time readings for different individuals

at their sth time point may be different, i.e. the measurements are not

necessarily time-aligned. We therefore introduce an explicit time vari-

able Tis 2 R
þ to capture the time reading for individual i at the sth

time point, and define Yis � YðTisÞ as a stochastic process that
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Fig. 1. GWAS has greater statistical power when dynamic traits are used. (a) A toy dataset illustrating the difference between static and dynamic traits. (b) Two

synthetic examples of time-dependent patterns of SNP influence on the trait that would be difficult to detect with a static model (Color version of this figure is

available at Bioinformatics online.)
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captures the trait values at each time point. In what follows, we will

use uppercase letters X, Y, T to denote random variables and lower-

case letters x, y, t to denote their instantiated values.

2.1 Time-varying additive model
We consider the following time-varying additive model with scalar

input variables X1; . . . ;Xp and functional response variable Y(T):

YðTÞ ¼ f0ðTÞ þ
Xp

j¼1

fjðT;XjÞ þxðTÞ (1)

Here Y(T), which represents the trait value at time T, is decom-

posed into three terms: f0ðTÞ is an intercept term that represents the

non-genetic influence on the phenotype at time T; fjðT;XjÞ repre-

sents the genetic effect of marker j with genotype Xj at time T; xðTÞ
is the noise term that models the random fluctuation of the underly-

ing process.

Since Xj is a categorical variable, each bivariate component func-

tion fj can be represented more simply as a set of three univariate

functions of time, given by fj ¼ ff 0
j ; f

1
j ; f

2
j g. We can subsequently de-

fine fjðT;XjÞ ¼
P

gf g
j ðTÞ IfXj ¼ gg where f g

j ð�Þ ¼ fjð�;Xj ¼ gÞ. Next

we simplify our notation by expanding each Xj into a set of three

binary indicator variables such that Xg
j ¼ 1() Xj ¼ g. This allows

us to rewrite the model in the following form.

YðTÞ ¼ f0ðTÞ þ
Xp

j¼1

X2

g¼0

f g
j ðTÞX

g
j þ xðTÞ (2)

Note that the indicator variable Xg
j selects a single function

among the set ff 0
j ; f

1
j ; f

2
j g for each SNP.

In the data setting, since each observation is subject to measure-

ment error, we assume Yis ¼ YiðTisÞ þ �is where �is � Nð0; r2Þ. It

follows from the model defined in (2) that the observed phenotypic

values satisfy

yis ¼ f0ðtisÞ þ
Xp

j¼1

X2

g¼0

f g
j ðtisÞ xg

ij þ xðtisÞ þ �is (3)

for subjects i ¼ 1; . . . ; n and measurements s ¼ 1; . . . ;m. In the

remainder of this article, we assume that the residual errors

eis ¼ xðtisÞ þ �is are i.i.d. across both subjects and measurements,

though an alternative approach would be to impose an autocorrel-

ation structure on xðTÞ to capture the temporal pattern of the

underlying longitudinal process (Das et al., 2011; Li and Sillanp€a€a,

2013).

In the model specified above, our only assumption about the gen-

etic effects ff 0
j ; f

1
j ; f

2
j : j ¼ 1; . . . ; pg is that they are smooth functions

of time. A well-established approach to estimate nonparametric

functions in additive models (Hastie and Tibshirani, 1990) is to min-

imize the expected squared error loss:

hðf Þ ¼ E YðTÞ � f0ðTÞ �
Xp

j¼1

X2

g¼0

f g
j ðTÞX

g
j

" #2

(4)

where the expectation is calculated with respect to the distributions

over SNP genotypes ðX1; . . . ;XpÞ, time T, and phenotypic value Y.

In the sample setting, this translates to minimizing

bhðf Þ ¼Xn

i¼1

Xm
s¼1

yis � f0ðtisÞ �
Xp

j¼1

Xp

g¼0

f g
j ðtisÞ xg

ij

 !2

(5)

subject to a set of smoothness constraints. We go into detail about

how to estimate the parameters of this model in Section 2.3.

2.2 Group sparse regularization
In a typical genome-wide association study, though a large number

of markers are assayed, it is believed that only a small subset of

them have a real effect on the trait of interest. This assumption mo-

tivates us to impose sparsity at the level of the SNPs X1; . . . ;Xp in

the time-varying additive model of (2), such that the effects of many

of these variables are zero. To achieve this, we apply a group-

sparsity-inducing penalty that leads to shrinkage on the estimated ef-

fect of each locus as a whole, including the component functions for

all genotypes and their values at all time points. Specifically, we em-

ploy a group norm penalty over the component functions in which

each group consists of the three functions ff 0
j ; f

1
j ; f

2
j g that corres-

pond to a particular marker Xj.

To construct this group penalty, we use the ‘1;2 norm first intro-

duced in the context of the group lasso (Yuan and Lin, 2006). The

new empirical objective function for our model is given by

bhðf Þ þ k
Xp

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2

g¼0

jjf g
j jj

2
2

vuut (6)

and is again subject to a set of smoothness constraints. Here k > 0

is a tunable regularization parameter that controls the amount

of sparsity in the model, and the squared ‘2 norm over f g
j is defined

as

jjf g
j jj

2
2 ¼

Xn

i¼1

Xm
s¼1

f g
j ðtisÞ2xg

ij (7)

The penalty term in (6) induces sparsity at the level of groups by

encouraging each set of functions ff 0
j ; f

1
j ; f

2
j g to be set exactly to

zero, which implies that the corresponding marker Xj has no effect

whatsoever on the phenotype at any time point.

In what follows, we will refer to the model defined by the object-

ive function in (6) as a Time-Varying Group Sparse Additive Model

(TV-GroupSpAM). This model is based on both the Group Sparse

Additive Model of Yin et al. (2012), in which a group sparse regu-

larization penalty is applied to a standard additive model, and the

Time-Varying Additive Model of Zhang et al. (2013), in which an

unpenalized additive model is used to regress a functional response

on scalar covariates.

2.3 Optimization algorithm
To estimate the parameters of the TV-GroupSpAM model, we use a

block coordinate descent algorithm in which we optimize the object-

ive with respect to a particular group of functions at once while all

remaining functions are kept fixed.

Before presenting a complete algorithm for the regularized

model, we first describe how to estimate the simpler, unpenalized

model introduced in Section 2.1. Given the loss function of (4),

some algebra shows that the optimal solution for f g
j satisfies the fol-

lowing conditional expectation for each genetic marker j ¼ 1; . . . ;p

and each genotype value g 2 f0; 1; 2g.

f g
j ðTÞ ¼ E YðTÞ � f0ðTÞ �

X
k6¼j

X
‘

f ‘kðTÞX‘
k jT;Xj ¼ g

24 35 (8)

It has been well established in the statistics literature that a

scatterplot smoother matrix can be viewed as a natural estimate

of the conditional expected value (Hastie and Tibshirani, 1990).

To evaluate (8) in the sample setting, we therefore replace

the conditional expectation operator E½ � jT;Xj ¼ g� by left
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multiplication with an n-by-n smoother matrix S
g
j ¼ fS

g
j ½a; b�g,

which is defined as

Sg
j ½a;b� / KhðjtðaÞ � tðbÞjÞ if x

ðaÞ
j ¼ g and x

ðbÞ
j ¼ g

Sg
j ½a;b� ¼ 0 otherwise

where (a, b) is a pair of data points, each corresponding to a particu-

lar individual i and time point s, and Kh is a smoothing kernel func-

tion with bandwidth h. An alternative way to think about S
g
j is as

the element-wise product of a smoother matrix for T, in which entry

(a, b) is proportional to KhðjtðaÞ � tðbÞjÞ, and an indicator matrix for

Xj¼g, in which entry (a, b) is given by IfxðaÞj ¼ x
ðbÞ
j ¼ gg. This

makes intuitive sense because we want to estimate a smooth func-

tion over time for each genotype value of each SNP. Thus, to learn

each function f g
j for a particular SNP j and a particular genotype g,

we only want to consider data points for which the genotype at SNP

j is g and we want to smooth over time.

The empirical estimate of f g
j will be a vector bfg

j 2 R
nm whose

entries correspond to smoothed estimates of the effect of marker j

with genotype g on the phenotype at each of the observed time

points. Note that the entries of this vector corresponding to samples

with genotype 6¼ g for SNP j will be set to zero because the function

is not applicable to those samples. In practice, we drop these dummy

entries at the end to obtain our final function estimates. We calcu-

late these estimates using the empirical formula for (8),

bfg

j ¼ S
g
j

 
y�bf0 �

X
k6¼j

X
‘

bf ‘kIfxk ¼ ‘g
!

(9)

where y is the vector of concatenated trait values for each sample,

and xk is the corresponding vector of genotypes at SNP k for each

sample. Here a sample is a measurement for a specific individual i at

a specific time point s. Cycling though SNPs and genotypes and

applying the update rule of (9) leads to a variant of the well-known

backfitting algorithm. We refer the readers to Hastie and Tibshirani

(1990) for details about smoothing and backfitting.

Finally, in order to optimize the penalized objective given in (6),

we adapt the block coordinate descent and thresholding algorithms

from Yin et al. (2012) to our setting. The complete optimization

routine is shown in Algorithm 1. After smoothing the partial re-

sidual at each iteration, we perform a thresholding step by estimat-

ing the group norm bwj and using it to determine whether the group

of functions bf j should be set to zero. If not, we re-estimate the func-

tion values by iteratively solving a fixed point equation. We note

that Step 9 of our algorithm runs more efficiently than the corres-

ponding step of the thresholding algorithm presented in Yin et al.

(2012) because we do not need to perform a matrix inversion on

each iteration. This property results from the fact that within a par-

ticular group of function estimates, each one covers a disjoint set of

observations, which simplifies the update equation.

3 Simulation study

In order to illustrate the utility of our method, we perform several

experiments on synthetic data. We generate data according to the

following procedure. First we construct a set of realistic genotypes

Xij by randomly subsampling individuals and SNPs from the real

asthma dataset that we analyze in the next section. Next we inde-

pendently sample time points Tis � Unifð0; 1Þ and measurement

errors �is � Nð0;1Þ. We select a subset of SNPs that will have non-

zero contribution to the phenotype by placing their functions in an

active set A � ff1; . . . ; fpg. We then construct the active functions by

sampling their values from a diverse set of predefined influence pat-

terns that exhibit a variety of trait penetrance models (including

additive, multiplicative, dominant, and recessive) and interact differ-

ently with time (including some static patterns for balance). All

functions not in the active set, including the intercept term, are

defined such that f ðtÞ ¼ 0 8 t. Finally, we generate phenotype values

yis according to the model defined in (3).

To test the robustness of our model, we generate data according

to two slightly different variants of (3). In the first setting, we up-

hold our original assumption that the residual errors are completely

uncorrelated by independently generating xis � Nð0; r2Þ. In the se-

cond setting, we invalidate this assumption and introduce strong

correlation among the errors across time by jointly generating

ðxi1; . . . ;ximÞ � Nð0;RÞ. In all of our experiments, we fix the num-

ber of samples at n¼100 and the number of time points at m¼10.

Then, to evaluate our approach in a broad range of settings, we

vary the total number of SNPs over p 2 f50; 100;200; 500;1000;

2000; 5000g, which covers both the p � n and p>n cases, and vary

the size of the active set over jAj 2 f5;10;20g.
We compare our method against several baselines, including

single-marker hypothesis testing (using the Wald test), group lasso

(where each group consists of the 3 genotype indicators for one

SNP), fGWAS, and BGL-fGWAS. We used several software pack-

ages to run these methods: the PLINK toolkit (Purcell, 2009) for the

Wald test, the SLEP Matlab package (Liu et al., 2009) for lasso and

group lasso, and the fGWAS2 R package (Wang and Li, 2012) for

fGWAS and BGL-fGWAS. To run the static data methods (hypoth-

esis test and group lasso), we summarize the phenotype values by

averaging across time.

To evaluate performance, we calculate the maximum power at-

tained by each method at a fixed false discovery rate. In order to

Algorithm 1. Block Coordinate Descent for TV-GroupSpAM

1: inputs: genotypes x1; . . . ; xp, time points t, trait values y

2: initialize bf0 ¼ 0 and bfg

j ¼ 0 for j ¼ 1; . . . ; p and g 2 f0; 1;2g
3: repeat

4: update intercept term: bf0 ¼ S0ðy�
P

k

P
‘
bf ‘kIfxk ¼ ‘gÞ

5: for j ¼ 1; . . . ; p do

6: compute partial residual:

bRj ¼ y�bf0 �
X

k 6¼j

X
‘
bf ‘kIfxk ¼ ‘g

7: estimate projected residuals by smoothing:

bPg

j ¼ S
g
j
bR j 8g

8: compute group norm:

bwj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2

g¼0
jjbPg

j jj
2
2

r
9: if bwj � k then set bf g

j ¼ 0 8g
10: else update bf g

j 8g by iterating until convergence

bfgþ
j :¼ ð1þ k=jjbf jjj2Þ

�1bPg

j

11: end if

12: center each bf j by subtracting its mean

13: end for

14: until convergence

15: outputs: estimates bf0 and bf j ¼ fbf0

j ;
bf1

j ;
bf2

j g for j ¼ 1; . . . ; p
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calculate this metric, we first generate a ranked list of the top jAj
SNPs identified by each method. For the Wald test and fGWAS, this

is given by the SNPs with the smallest p-values. For the penalized re-

gression methods, we test a series of values of the regularization par-

ameter, k, and select the one that yields approximately the desired

number of SNPs. We then rank these SNPs according to their fitted

model weights or norms. Given this list, we select a cutoff point that

yields the largest set of SNPs such that FDR is below 0.2, and we

calculate the power at this threshold. The results of our experiments

are shown in Figure 2.

Our results indicate that TV-GroupSpAM far outperforms all of

the baseline methods in every setting. In many cases, the three dy-

namic methods are able to detect at least twice as many true associ-

ations as the static methods. This underscores the value of

leveraging longitudinal data to boost statistical power. The results

show that TV-GroupSpAM outperforms fGWAS even when the re-

sidual errors are correlated, despite the fact that our model assumes

independent errors while fGWAS does not. These results demon-

strate that TV-GroupSpAM performs well under many different

conditions and is robust to noise.

To obtain a more complete picture of the performance of each

method, we plot the precision-recall curves obtained by varying the

number of SNPs selected by each method from 0 to p. The average

precision-recall curves obtained by averaging results over 20 data-

sets for the most challenging synthetic data setting (p¼200,

jAj ¼ 20, correlated errors) are shown in Figure 3. We also report

the area under the precision recall curve (AUCPR) for BGL-fGWAS

and TV-GroupSpAM. Our approach outperforms the most competi-

tive baseline by a significant margin. Lastly, we compare the run

times of the three dynamic trait methods for different values of p,

and show the results in Figure 4. For p¼200, TV-GroupSpAM ran

in 12 minutes, fGWAS ran in 69 minutes, and BGL-fGWAS ran in

20 hours. These results show that our method is by far the most

computationally efficient.

4 Genome-wide association study of asthma

Next we use TV-GroupSpAM to perform a genome-wide associ-

ation analysis of asthma traits. We look for associations between

SNPs and two quantitative phenotypes frequently used to assess

asthma severity: the forced vital capacity (FVC), a sensitive measure

of airway obstruction, and bronchodilator response (BDR), which

measures lung response to bronchodilator drugs. For this analysis,

we use data from the CAMP longitudinal study of childhood asthma

(Childhood Asthma Management Program Research Group et al.,

1999) with n¼552 subjects genotyped at p ¼ 510 540 SNPs from

across all 22 autosomal chromosomes. After preprocessing, in which

we removed subjects with missing data and SNPs with minor allele

frequency below 0.05, we were left with n¼465 and p ¼ 509 299.

Fig. 2. Comparison of TV-GroupSpAM to baseline methods shows that our approach achieves greater power for a fixed false discovery rate (FDR � 0.2). The re-

sults are averaged over 20 random synthetic datasets for each setting, and the shaded region denotes the standard error

recall
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Fig. 3. Comparison of precision-recall curves of TV-GroupSpAM to baseline

methods shows that our approach has an average AUCPR of 0.87 60.01,

which is much higher than the most competitive baseline, BGL-fGWAS,

which has an average AUCPR 0.59 6 0.02
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In order to control for non-genetic effects, we incorporated several

static covariates into our model, including: sex, race, the age of

onset of asthma, the clinic where the patient’s traits were measured,

and the treatment or control group to which the patient was as-

signed in the clinical trial associated with the CAMP study.

For computational efficiency, we first used our approach to filter

out a relatively small set of SNPs to include in the final analysis for

each phenotype. To do this, we split the dataset into 100 subsets,

each containing �5000 SNPs, and ran TV-GroupSpAM separately

on each set. We regulated the model sparsity by using a binary

search procedure to identify a value of k that selected between 90

and 110 SNPs from each subset, following the example of Wu et al.

(2009). This yielded a filtered set of 10 118 SNPs for the FVC model

and 9621 SNPs for the BDR model. Figure 5 shows the model

weight (an indicator of significance) of every SNP that was selected

in the filtering step for each phenotype. Next we fit a new global

model for each trait using only these selected SNPs, and chose a

value of k that yielded approximately 50 SNPs with nonzero effect

on the phenotype (yielding 48 for FVC and 51 for BDR). Finally, we

refit the model on just these selected SNPs with no regularization

penalty, and use the estimated group functional norms to determine

the effect size of each SNP. The complete sets of selected SNPs iden-

tified for each trait are listed in Supplementary Tables S1 and S2.

Note that the FVC effect sizes are much higher in magnitude than

the BDR effect sizes because the FVC phenotype is measured in dif-

ferent units than the BDR phenotype.

In order to analyze the validity of our results, we identified all

genes located within 500 Kb of each SNP and then determined

whether any of the genetic loci or nearby genes are known to be

associated with asthma or asthma-related functions in the existing

literature. Because asthma is a disease characterized by inflamma-

tion and constriction of the airways of the lungs, we specifically

searched for genes that have been linked to lung function or inflam-

matory response. Furthermore, since asthma is partly driven by a

series of interactions between vascular endothelial cells and leuko-

cytes (Bijanzadeh et al., 2011), we also searched for genes involved

in functions of the vascular system or the immune system, particu-

larly those in pathways involving T-helper 2 (Th2) cells, which play

a central role in the pathogenesis of asthma (Ober and Yao, 2011).

We list a curated subset of the SNPs selected in the FVC and

BDR models in Tables 1 and 2, along with the nearby genes that can

be linked to asthma. Our model was able to identify several genetic

loci that have a well-established connection to asthma. For example,

SNP rs6116189 on chromosome 20 is located near the ADAM33

gene, which has been implicated in asthma by several independent

studies (Ober and Hoffjan, 2006). In addition, SNP rs1450118 on

chromosome 3 is located near IL1RAP, a gene that produces the

Interleukin 1 receptor accessory protein and plays an important role

in asthma (Ober and Yao, 2011). Finally, the locus on chromosome

7 at 139.3 Mb is particularly interesting because it was selected in

both the FVC and BDR models. This SNP is located near the

TBXAS1 gene, which has been linked to asthma (Oh et al., 2011).

We plot some examples of the estimated time-varying effects of

SNPs selected in our FVC and BDR models in Figure 6.

Finally, in order to evaluate the sensitivity of TV-GroupSpAM to

noise in the data, we returned to the two filtered sets of �10 000

SNPs each and reran the final selection step on multiple 90% sub-

samples of the data, then analyzed the stability of the set of selected

SNPs. Because the stability naturally varies with the total number of

SNPs being selected, we ran our algorithm on each subsample for a

fixed set of k values such that the fraction of selected SNPs ranged

from 0.5% to nearly 100%. We then calculated the average stability

for a particular value of k as the average pairwise overlap among the

selected SNPs divided by the average number of SNPs selected across

all subsamples. We plot the stability as a function of the average per-

centage of SNPs selected in Figure 7, with the shaded region show-

ing the standard deviation. These results indicate that the stability of

the FVC model when selecting 0.47% of SNPs (48 out of 10 118) is

32% and the stability of the BDR model when selecting 0.53% of

SNPs (51 out of 9621) is 39%.

Fig. 5. Manhattan plots of the model weights for each SNP that was selected in the FVC model (left) and BDR model (right) during the filtering stage (Color version

of this figure is available at Bioinformatics online.)
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Fig. 4. Comparison of the running time of TV-GroupSpAM to baseline meth-

ods shows that our approach runs much faster than both fGWAS and BGL-

fGWAS. We were unable to run fGWAS for p > 1000 or BGL-fGWAS for p >

200 due to time constraints (Color version of this figure is available at

Bioinformatics online.)
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5 Discussion

In this work, we propose a new approach to GWAS that bridges the

gap between existing penalized regression methods, such as the lasso

and group lasso, and dynamic trait methods, such as fGWAS. Our

approach uses penalized regression to identify a sparse set of SNPs

that jointly influence a dynamic trait. This is a challenging task for

several reasons: first, we must contend with high-dimensional data,

which necessitates that we regularize the model to perform variable

selection; second, we do not know the true underlying model by

which each SNP acts on the phenotype, and therefore we must avoid

making parametric assumptions about these patterns; third, we

assume that SNP effects vary smoothly over time, which means that

we cannot apply a standard multi-task regression model that treats

the time series as a set of unordered traits.

Although TV-GroupSpAM achieves significantly better perform-

ance on synthetic data than existing methods, there are still certain

challenging aspects of genome-wide association mapping that are

not addressed by this approach. One of these is the task of rare vari-

ant detection. Although our method is robust to detecting spurious

effects from rare variants, we are also not able to detect true effects

from rare variants with high power. This is due to the lack of data

available for the aa genotype in SNPs with very low minor allele

Table 2. Selected SNPs associated with BDR

SNP Chrom Location Effect size Nearby genes linked to asthma

rs7766818 6 46.8 Mb 0.0088 GPR116—probable G protein-coupled receptor 116; plays a critical role in lung surfactant homeo-

stasis (Yang et al., 2013)

TNFRSF21—tumor necrosis factor receptor superfamily member 21; plays a central role in regulat-

ing immune response and airway inflammation in mice (Venkataraman et al., 2006)

rs12524603 6 159.8 Mb 0.0075 SOD2—superoxide dismutase 2, mitochondrial; plays a role in oxidative stress, and has been

linked to bronchial hyperresponsiveness and COPD (Siedlinski et al., 2009)

rs13239058 7 139.3 Mb 0.0079 TBXAS1—see Table 1 above

rs10519096 15 59.1 Mb 0.0086 ADAM10—disintegrin and metalloproteinase domain-containing protein 10; plays an important

role in immunoglobulin E dependent lung inflammation (Mathews et al., 2011)

rs8111845 19 41.6 Mb 0.0066 TGFB1—transforming growth factor b1; has pro-inflammatory as well as anti-inflammatory prop-

erties, and has been linked to asthma and airway remodeling (Nagpal et al., 2005)

CYP2A6, CYP2A7, RAB4B, MIA, EGLND—genes located in a known COPD locus (Bossé, 2012)

rs6116189 20 4.0 Mb 0.0067 ADAM33—disintegrin and metalloproteinase domain-containing protein 33; has been implicated

in asthma by several independent studies (Ober and Hoffjan, 2006; Van Eerdewegh et al., 2002)

Table 1. Selected SNPs associated with FVC

SNP Chrom Location Effect size Nearby genes linked to asthma

rs6442021 3 46.7 Mb 1.5303 CCR1, CCR2, CCR3, CCR5—chemokine receptors in the CC family; CCR2 is a receptor for a

protein that plays a role in several inflammatory diseases, and has been directly linked to

asthma (Batra and Ghosh, 2009); CCR3 may play a role in airway inflammation (NCBI, 2005)

PRSS42, PRSS46, PRSS45, PRSS50—trypsin-like serine proteases; tryptases are known to cause

bronchoconstriction and have been implicated in asthma (Zhang and Timmerman, 1997)

rs2062583 3 56.9 Mb 1.0074 IL17RD—interleukin 17 receptor D; IL-17 is a pro-inflammatory cytokine produced by Th17

cells that plays a role in multiple inflammatory diseases, including asthma (Manni et al., 2014)

rs1450118 3 190.4 Mb 0.9027 IL1RAP—interleukin 1 receptor accessory protein; enables the binding of IL-33 to its receptor

encoded by IL1RL1, which has been repeatedly linked to asthma (Ober and Yao, 2011)

rs3801148 7 139.3 Mb 0.8538 TBXAS1—thromboxane A synthase; this enzyme converts prostaglandin H2 to thromboxane A2,

a lipid that constricts smooth respiratory muscle (Oh et al., 2011)

rs914978 9 132.3 Mb 1.0631 PTGES—prostaglandin E synthase; this enzyme converts prostaglandin H2 to prostaglandin E2, a

lipid inflammatory mediator that acts in the lung (Liu et al., 2012)

rs11069178 12 117.9 Mb 0.6869 NOS1—nitric oxide synthase 1; nitric oxide levels are elevated in the air exhaled by asthmatics;

NOS1 has been linked to a higher risk of asthma (Gao et al., 2000)

Fig. 6. Examples of estimated dynamic SNP effects. The top row shows four SNPs from the FVC model. The bottom row shows four SNPs from the BDR model

(Color version of this figure is available at Bioinformatics online.)
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frequency; because we estimate a separate effect function for each

SNP genotype, we are unable to accurately estimate faa when there

are very few data points corresponding to this genotype. Modifying

TV-GroupSpAM to more accurately detect the effects of rare vari-

ants would be an interesting direction for future work.
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