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1Politecnico di Torino, Torino, Italy
2Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Abstract—An emerging way to deal with high-
dimensional non-euclidean data is to assume that the
underlying structure can be captured by a graph. Recently,
ideas have begun to emerge related to the analysis of
time-varying graph signals. This work aims to elevate
the notion of joint harmonic analysis to a full-fledged
framework denoted as Time-Vertex Signal Processing, that
links together the time-domain signal processing techniques
with the new tools of graph signal processing. This entails
three main contributions: (a) We provide a formal mo-
tivation for harmonic time-vertex analysis as an analysis
tool for the state evolution of simple Partial Differential
Equations on graphs. (b) We improve the accuracy of joint
filtering operators by up-to two orders of magnitude. (c)
Using our joint filters, we construct time-vertex dictionaries
analyzing the different scales and the local time-frequency
content of a signal. The utility of our tools is illustrated
in numerous applications and datasets, such as dynamic
mesh denoising and classification, still-video inpainting, and
source localization in seismic events. Our results suggest
that joint analysis of time-vertex signals can bring benefits
to regression and learning.

Index Terms—Time-Vertex Signal Processing, Graph
Signal Processing, Partial Differential Equations

I. INTRODUCTION

Whether examining consensus and rumor spreading

over social networks [1]–[3], transportation networks [4]

and related epidemic spreading [5], neuronal activation

patterns [6] or time-evolving functional network in the

brain [7], as well as other datasets collected from a

variety of fields, such as physics, engineering, and life-

science, much of the high-dimensional data exhibit com-

plex non-euclidean properties.

An emerging way to deal with these issues is to

use a graph to capture the structure underlying the

data. This has been the driving force behind recent

efforts in the signal processing field to extend harmonic

analysis to graph signals, i.e., signals supported on the

vertices of irregular graphs [8], [9]. In the field of graph

signal processing (GSP), the introduction of the graph

Fourier transform (GFT) has enabled us to perform

harmonic analysis taking into account the structure of

the data, and has lead to improvements for tasks such

as clustering [10], low-rank extraction [11], spectral

estimation [12], [13], non-stationary analysis [14], [15]

and semi-supervised learning [16], [17].

Nevertheless, though state-of-the-art graph-based

methods have been successful for many tasks, so far

they predominantly ignore the time-dimension of data,

for example by treating successive signals independently

or performing a global average [6], [12], [18]. On the

contrary, many of the systems to which GSP is applied

to are inherently dynamic. Consider for instance a road

network, and suppose that we want to infer traffic condi-

tions given flow information over a subset of highways

and streets. Approaches that do not take into account the

temporal evolution of traffic will be biased by seasonal

variations and unable to provide insights about transient

phenomena, such as rush hour traffic, bottlenecks caused

by blockage, and stop waves.

Recently, several ideas begin to emerge related to the

analysis of time-varying graph signals, such as Joint

time-vertex Fourier transform (JFT) [19] and the joint

time-vertex filters [20] and filterbanks [21]. While these

constitute notable contributions, we argue that the poten-

tial of joint harmonic analysis is yet unexplored, both in

terms of its foundations, algorithms, and applications.

In this work we aim at elevating the notion of joint

harmonic analysis to a full-fledged framework, referred

to as the Time-Vertex Signal Processing Framework,

that links together the time-domain signal processing

techniques with the new tools of GSP.

This entails the following contributions:

1. Connection to PDEs. We illustrate how joint anal-

ysis emerges when analyzing the state evolution of

simple Partial Differential Equations (PDEs) on graphs

(Section III-A). We also provide an example (epidemic

spreading) demonstrating that the joint frequency anal-

ysis can be meaningful for the study non-linear and

stochastic processes leading to a compact and intuitive

representation (Section III-B).

2. Accurate fast joint filtering. In Section IV we il-

lustrate the utility of joint filtering time-vertex signals

and propose a fast filtering implementation, called Fast

Fourier-Chebyshev (FFC) algorithm, which significantly

improves upon the state-of-the-art filters both in terms of
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separable and non-separable filtering objectives. For the

latter case especially, our numerical experiments show

that FFC can yield up to two orders of magnitude smaller

approximation error at a similar complexity to previous

joint filters.

3. Overcomplete representations. We study redundant

time-vertex dictionaries and exploit them for signal anal-

ysis and synthesis. The proposed framework includes a

frame condition guaranteeing that no information is lost.

Two particular cases are: time-vertex wavelets capturing

the different scales of the signal components, and the

short time-vertex Fourier transform that is useful in

determining the local time frequency content of the

signal.

4. Illustrating the utility of time-vertex analysis. Finally,

Section VI provides experimental evidence for the utility

of joint harmonic analysis in a number of graph-temporal

datasets that were up to now not fully exploited, such

as dynamic meshes, video and general dynamics over

networks. The range of applications covers the classical

signal processing problems of denoising, inpainting and

compression, but also extends to feature extraction for

classification and source localization problems.

A. Related Work

The time-vertex framework is intimately linked with

the stochastic analysis of multivariate signals and, there-

fore, with graphical models (e.g. [22] and references

therein). The main difference between graphical mod-

els and GSP lies in the assumption about the relation

between the signal and graph [23]. Graphical models

adopt a purely Bayesian setting, where edges denote

conditional dependencies between variables. As such,

the graph usually is a proxy for the covariance and is

learned from the data. On the other hand, GSP assumes

that the graph is given and its relation to the signal can

be understood through harmonic analysis.

In this context, the idea of time-vertex analysis can

be traced back to the study [24] aiming to process

multi-modal signals with different graphs associated with

each of their modalities (i.e., one can consider a time-

vertex signal as multi-modal, with time and graph being

the two modalities). Collaboration between the graph

theory and signal processing communities has led to new

tools to process and analyze time-varying graphs and

signals on a graph, such as multilayer graphs and tensor

products of graphs [25]–[27]. The notion of joint time-

vertex harmonic analysis was further realized in [19]

by one of the authors of this work. Therein, the joint

Fourier analysis is presented and its properties analyzed

in details, together with examples of joint filters. In this

work, we leverage these concepts proposing a framework

in which the joint Fourier transform is just one of the

building blocks.

Visualization, filtering and stationarity. The idea of

analyzing the behavior of graph filters with time-varying

signals first appeared in [28], showing that graph filters

could be analyzed by applying jointly a GFT and a Z-

transform and as such they possess a joint frequency

response. Since then, we have seen a number of works

dealing with time-varying signals on graphs: Authors

in [29] propose a method that relies on graph wavelet

theory and product graphs to visualize time-varying data

defined on the vertices of a graph in order to identify

spatial and/or temporal variations. A step towards the

graphical model has been carried out by authors in [30].

In this work, authors assume data time dependencies

to be modeled by an auto-regressive (AR) process and

they propose several algorithms to estimate the network

structure capturing the spatio-temporal dependencies and

the coefficients of the AR process expressed as graph

polynomial filters. In order to deal with the high compu-

tational complexity of the eigendecomposition, different

filtering approximation algorithms have been proposed,

mainly based on polynomials: centralized and distributed

joint filter 2D Chebychev polynomial [19], separable

rational [20] implementations, and autoregressive mod-

els [31].

Finally, in parallel with this work, the authors ex-

tended the notions of time stationarity and the re-

cent graph stationarity [12] to the joint time-vertex

domain [32] providing a framework for the statistical

signal processing of time-vertex signals. Authors showed

that assuming joint stationarity to regularize learning

can yield significant accuracy improvements and reduce

computational complexity in both estimation and recov-

ery tasks prediction with respect to purely time or graph

methods [33], [34]. Despite the relevance of this work

to time-vertex analysis, here we focus on the purely

deterministic setting.

II. HARMONIC TIME-VERTEX ANALYSIS

We denote by G = (V, E ,WG) the graph, where V
indicates the set of nodes, E the set of edges and WG

is the associated N × N weight matrix. Furthermore,

let LG = DG −WG be the combinatorial Laplacian

matrix, i.e. the finite difference approximation to the

continuous Laplacian operator [17] or the Laplace-

Beltrami operator for Riemannian manifolds [35]. We

suppose that the signal on a graph is sampled at T
successive regular intervals of unit length. That is, if

we denote by xt ∈ R
N the graph signal at instant t,

the time-varying graph signal corresponds to the matrix

X = [x1,x2, . . . ,xT ] ∈ R
N×T . We denote X⊺, X̄ ,

and X∗ the transpose, the complex conjugate and the
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hermitian of X . Furthermore, we refer to both X and

its vectorized form x = vec(X) ∈ R
NT as “time-vertex

signal”.

A. The joint time-vertex Fourier transform

The main idea of harmonic analysis is to decompose

a signal into oscillating modes thanks to the Fourier

transform. For instance, one analyses oscillations along

the temporal axis by applying the Discrete Fourier Trans-

form (DFT) independently to each row of X

DFT{X} = XŪT , (1)

where UT is the normalized DFT matrix defined as

U
∗
T (t, k) =

e−jωkt

√
T

, with ωk =
2π(k − 1)

T
, (2)

with t, k = 1, 2, . . . , T. Similarly, the Graph Fourier

Transform (GFT) [8], [14], [36] allows us to analyze

oscillations along the graph edges. As each column of

X represents a time instant, the GFT of X for all t reads

GFT{X} = X̃ = U
∗
GX, (3)

where UG is obtained by the eigendecomposition

LG = UGΛGU
∗
G of the graph Laplacian. As UG

is orthonormal, the inverse Fourier transform becomes

GFT-1{X̃} = X = UGX̃ . This spectral decomposition

gives rise to a graph-specific notion of frequency as their

squared modulus corresponds the Laplacian eigenvalue

ΛG(ℓ, ℓ) = λℓ.

Harmonic time-vertex analysis amounts to analyzing

oscillations jointly along both the time and the vertex

dimensions. Hence, assuming a non-varying graph in

time, the joint time-vertex Fourier transform, or JFT for

short, is obtained by applying the GFT on the graph

dimension and the DFT along the time dimension [19]

X̂(ℓ, k) =
1√
T

N∑

n=1

T∑

t=1

X(n, t)u∗
ℓ (n)e

−jωkt.

The above expression can be conveniently rewritten in

matrix form as

X̂ = JFT{X} = U
∗
GXUT . (4)

Expressed in vector form, the transform becomes

x̂ = JFT{x} = U
∗
J x, (5)

where UJ = UT ⊗ UG is the Kronecker product of

the basis. The relation between Eq.(4) and Eq.(5) is

obtained through the property of the Kronecker product

(M1 ⊗M2)x = M2XM
⊺

1 .

Properties of JFT.

Property 1. JFT is an invertible transform. The inverse JFT

in matrix and vector form are, respectively, JFT -1{X̂} =
UGXU

⊺

T
and JFT -1{x̂} = UJx.

Property 2. The Parseval relation holds:

N,T∑

n,t=1

|X(n, t)|2 =

N,T∑

ℓ,k=1

|X̂(ℓ, k)|2. (6)

Property 3. The transform is independent on the order GFT and

DFT are applied to the time-vertex signal

JFT{X} = GFT{DFT{X}} = DFT{GFT{X}}.

Property 4. The subspace of zero graph and temporal frequency

is spanned by the constant time-vertex signal 11∗, with 1 the

all-ones vector.

B. Time-vertex calculus and variation

In the following, we briefly present the main time-

vertex differential operators. These will help us (a) to

perform calculus on a finite, discrete time and space,

and (b) to characterize the properties of the signals, such

as smoothness, while taking into account the intrinsic

structure of the data domain.

Time and vertex domains. Before introducing the time-

vertex operators, we momentarily diverge by presenting

the standard definitions in the time and graph domains.

The main discrete calculus operator in time is the first

order difference operator

X∇T |t = xt − xt−1,

taken here with periodic boundary conditions. Hence, the

symmetric time Laplacian matrix LT = ∇∗
T∇T is the

discrete second order derivative in time with reversed

sign

XLT |t = −xt+1 + 2xt − xt−1 (7)

with xt+1 = x1. As a circulant matrix, it has eigende-

composition LT = UTΛTU
∗
T , where

ΛT (k, k) = 2 (1− cos (ωk)) . (8)

The operator corresponding to the time derivative

in the vertex is the edge derivative. Given a graph

signal x ∈ R
N , the edge derivative with respect to edge

e = (n,m) at vertex n is given by

∂X

∂e

∣∣∣∣
n

=
√

W (n,m) [xn − x
m] . (9)

Therefore the graph gradient of x at vertex n is

∇Gx|n =

{
∂x

∂e

∣∣∣∣
n

}

e∈E

(10)

and, as before, LG = ∇∗
G∇G, where ∇∗

G is the diver-

gence operator of the graph.
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Joint domain. We define the joint gradient of a time-

vertex signal X by concatenation of the time and graph

gradients:

∇Jx = vec

([
X∇⊺

T

∇GX

])
. (11)

Therefore ∇J can be rewritten as

∇J =

[
∇T ⊗ IG

IT ⊗∇G

]
. (12)

The Laplacian is classically defined to equal the diver-

gence of the gradient, and also in our case the joint

Laplacian is LJ = ∇∗
J∇J . Expanding the expression

while exploiting the mixed-product property of the Kro-

necker product, we find

LJ = (∇T ⊗ IG)
∗(∇T ⊗ IG) + (IT ⊗∇G)

∗(IT ⊗∇G)

= (∇∗
T ⊗ IG)(∇T ⊗ IG) + (IT ⊗∇∗

G)(IT ⊗∇G)

= (∇∗
T∇T )⊗ IG + IT ⊗ (∇∗

G∇G)

= LT ⊗ IG + IT ⊗LG = LT ×LG,

and therefore LJ is also equivalent to the Cartesian

product between the time and graph Laplacians1. Above,

and the second equality follows from the mixed-product

property of the Kronecker product. Thus, the Laplacian

operator LJ applied to the signal x is

LJx = (LT ×LG)x = vec(LGX +XLT ) .

The result of the Cartesian product is a multilayer graph,

referred to as the joint graph J , where the original

graph G is copied at each time step t = 1, 2, . . . , T .

Additionally, each node at layer t is connected to itself

at layer t−1 and t+1 with periodic boundary conditions.

It is useful to remind that the Kronecker product of the

two eigenvectors basis UT and UG diagonalize the joint

Laplacian with eigenvalues equal to the sum of all the

pairs (ωk, λℓ) [37]:

LJ = LT ⊗ IG + IT ⊗LG

= (UTΛTU
∗
T )⊗ IG + IT ⊗ (UGΛGU

∗
G)

= (UT ⊗UG)(ΛT ×ΛG)(UT ⊗UG)
∗ = UJΛJU

∗
J

where we have used the mixed-product property of the

Kronecker product.

Measures of joint variation.

The gradient and its various norms are often used

as regularizers in regression because they capture the

variation of the signal over a domain of interest. The ℓ2-

norm of the joint gradient measures the total variation of

1In this work we consider the Cartesian product for its amenable
spectral properties, but in general other graph products could be
considered, such as the Kronecker product J = G⊗GT or the strong
product J = G ⊠GT = G×GT +G⊗GT [24].

ti
m

e

Regular 2D Grid Sensor Graph

Fig. 1. Solution to the wave equation on a regular 2D grid and on
a sensor graph at different point in time. The propagating behavior is
evident even in the case of irregular domain.

the signal across edges and consecutive steps. Observe

that

‖∇Jx‖22 = x
⊺
LJx = ‖∇GX‖2F + ‖X∇T ‖2F

= tr(X⊺
LGX) + tr(XLTX

⊺) (13)

meaning that ‖∇Jx‖22 is separable over the the two

domains.

Analogously, the ℓ1-norm of the joint gradient can be

written as the sum of the ℓ1-norms

‖∇Jx‖1 = ‖vec(∇GX)‖1 + ‖vec(X∇T )‖1, (14)

which is often referred as the Total Variation (TV) norm.

In general, it is possible to define a mixed norm Np,q (·)

Np,q (x) , wG‖vec(∇GX)‖pp + wT ‖vec(X∇T )‖qq
(15)

where the p-norm and the q-norm are computed indepen-

dently on the two domains and wG, wT are non-negative

weights. Such norms are often useful when the signal

vary differently (e.g., smooth or piece-wise) across the

two domains, as we will show in Section VI-B.

III. DYNAMICS OVER GRAPHS

This section motivates the JFT further by showing

that it can be used to characterize two linear PDEs

evolving over the graph by kernels defined in the joint

frequency domain, and also to provide insight on stan-

dard non-linear PDEs used in epidemic modeling. Our

interest in PDEs analysis is related to their capability

of encoding information about the structure of the un-

derlying domain, whether continuous or discrete [38],

[39] Moreover, PDEs are not only simple but powerful

models of many phenomena observed in reality, but also

a motivation for the Fourier transform [40], [41].
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A. Linear dynamics on graphs

We are interested in linear PDEs whose solution at

each time step can be expressed as a linear operator

applied to the initial condition. In particular, we consider

the heat diffusion and the wave equations defined in the

discrete setting. We denote x1 the initial condition of

the PDEs, or equivalently in the joint spectral domain

Z(ℓ, k) = x̃1(ℓ)U
∗
T (k, 1).

Heat equation. The discrete heat diffusion equation

xt − xt−1 = −sLGxt is, arguably, one of the simplest

dynamics described by differential equations. The pa-

rameter s represents thermal diffusivity and is inter-

preted as a scale parameter for multiscale dynamic graph

wavelet analysis [15] and graph scale-space theory [42].

It is well understood that

xt = (I − sLG)
t−1

x1. (16)

Evaluating both the GFT and DFT, one also finds that the

solution also has distinct structure in the joint spectral

domain

X̂(ℓ, k) =
1√
T

a(λℓ, ωk)
T − 1

a(λℓ, ωk)− 1
Z(ℓ, k) (17)

where a(λℓ, ωk) = (1 − sλℓ) e
−jωk . The JFT of a

heat diffusion process therefore exhibits a smooth non-

separable low-pass form.

Wave equation More interesting dynamics can be mod-

eled by the discrete second order differential equation

XLT = sLGX, (18)

representing a discrete wave propagating on a graph with

speed s > 0. Figure 1 shows the evolution of a signal

obtained by solving (18) using a numerical iterative

scheme on a regular 2D lattice and on a random sensor

graph. It is clear that, assuming a sufficiently regular

graph, the solution to Eq. (18) evolves on the graph

as a wave propagates in the Euclidean domain. In the

appendix we prove that, for vanishing initial velocity,

the solution in the joint spectral domain can be written

as

X̂(ℓ, k) = K̂s(λℓ, ωk)Z(ℓ, k)

where

K̂s(λℓ, ωk) =
∑

t

cos(tθℓ)e
−jωkt (19)

and θℓ = arccos(1− sλℓ

2 ). Since the arccos(x) is defined

only for x ∈ [−1, 1], to guarantee stability the parameter

s must satisfy s < 4/λmax.

The distinctive pattern of the JFT of a wave shown in

Fig. 2 (bottom right) is sparser and more structured that

the original (top left), GFT (top right), and DFT (bottom

left) representations.

Fig. 2. Frequency analysis of multiple waves propagating on a random
sensor graph. The signals on each node of the graph evolve according
to a PDE, but their time-vertex representation (top left) does not
highlight any relation between the two domains. Similarly, GFT (top
right) and DFT (bottom left) are not able to show the underlying
structure. It is evident that JFT (bottom right) succeeds in representing
the signal in the most meaningful way, revealing its regular pattern.

B. Complex dynamics over networks: the illustrative

example of epidemic models

Time-vertex harmonic analysis often provides useful

insights on the dynamics of a signal even when the latter

is not characterized by a linear PDE. To illustrate this,

we will show how the JFT can be used to characterize the

evolution of a non-linear, discrete, and non-deterministic

model for the spread of an infectious disease.

In particular, we focus on the dynamics corresponding

to different compartmental models commonly used in

epidemiology. We simulated the epidemics spreading

over N = 695 cities of Europe according to two differ-

ent models: the Susceptible-Exposed-Infected-Recovered

(SEIR) model and the SEIRS model, where the immunity

of recovered individuals is only temporary. The models

are parametrized by the contagion probability of infec-

tion, the infectious, latent and immunity periods and the

population per city. Each node of the graph represents a

city with a fixed population of individuals. Connections

within the cities are modeled using randomly generated

Erdős-Rényi graphs. Inter-cities connection are modeled

using two graphs, a terrestrial coordinate-based graph

and the graph of airline connections between the major

city in Europe.

We simulate different realizations of the epidemic

breakout, varying the parameters and observing how they

influence the joint spectrum of the signals describing the

evolution of the number of infected individuals at each

node. Figure 3 shows the JFT of those signals. In the first

case, the spectrum is characterized by regularly spaced

lines along the angular frequency axis, caused by the

inherent periodicity of the SEIRS model, where every

individual can be infected again after the temporary
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Fig. 3. JFT for different realization of epidemic spreads, modeled using
different models and contagion probability. The transform allows us to
distinguish between the different parameters of the model.

immunity period ceases. The spacing between the lines

is due to both the immunity and latent periods. In the

second case the epidemic has a more diffusive behaviour,

without evident periodicity. For each one of the models,

we simulate scenarios with high and low probabilities of

contagion. It can be observed that the high probability

case is characterized by a larger bandwidth occupancy

with respect to the low probability one, due to a more

impulsive behaviour of the epidemic breakout. There-

fore, JFT seems to reveal the underlying structure and

allows us to differentiate between the different models.

IV. FAST FILTERING OF TIME-VERTEX SIGNALS

After recalling the definition of joint filters, we next

present a novel algorithm to perform fast filtering on

large graphs. Experiments illustrate that our algorithm

achieves significantly better approximation of filtering

objectives than state-of-the-art, while also not being

constrained to a specific class of separable responses.

A. Joint time-vertex filters

A joint filter h(LG,LT ) is a function defined in the

joint two-dimensional spectral domain h : R+ × R 7→ C

and is evaluated at the graph eigenvalues λ and the

angular frequencies ω. Similarly to both the classical

and the graph case, the generalized filtering operator is

applied by means of the convolution theorem, i.e., point-

wise multiplication in the spectral domain. The output

of a joint filter is

h(LG,LT )x = UJ h(ΛG,Ω)U∗
J x, (20)

Fig. 4. The effect of joint filters is easily visualized for the case of a
dynamic mesh of a dancer. By filtering the original mesh (left) using
a joint low-pass separable filter one approximates the time-varying
skeleton of the dancer (center). Using a non-separable wave filter, the
fluidity of the dancer’s motion is emphasized (right).

where h(ΛG,Ω) is a diagonal NT×NT matrix defined

as

h(ΛG,Ω) = diag






h(λ1, ω1) · · · h(λ1, ωT )

...
. . .

...

h(λN , ω1) · · · h(λN , ωT )







and the diag(A) operator creates a matrix with diagonal

elements the vectorized form of A.

Illustration: dynamic mesh filtering. Figure 4 shows

an example of joint filtering of a mesh representing a

dancer2. We design (a) a joint separable lowpass filter

that attenuates high frequency components in both graph

and time domains, and (b) a wave filter whose frequency

response is described in Eq. (19). In the first case,

we obtain the approximate skeleton of the mesh with

rigid movements, whereas the wave filter produce a fluid

(wavy) dancer, enhancing the frequency components in

a non-linear fashion. We remark that this effect can only

be obtained using non-separable filters.

Separable vs. non-separable filters. A notable family

of joint filters are those that have separable response

h(λ, ω) = h1(λ)h2(ω). (21)

These filters have a straightforward interpretation: the

frequency response of each filter affects only the domain

where it is defined

h(LG,LT )x = vec(h1(LG)Xh2(LT )) . (22)

Moreover, since they can be designed independently

at the two domains, joint filters can be obtained by

combining graph and temporal filters [20]. However, due

to their simple form, separable filters cannot model the

dynamics of PDEs (e.g., waves or heat diffusion), where

there is an interplay between the temporal and graph

frequency domains. For this reason, in the following we

aim to find an efficient joints filter implementation for

separable as well as non-separable filtering objectives.

2http://research.microsoft.com/en-us/um/redmond/events/
geometrycompression/data/default.html
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B. Fast joint filtering

Due to the high complexity of eigendecomposition,

graph filters are almost always implemented using fast

2D polynomial [43] and rational [31] approximations.

In the context of time-vertex analysis, the importance

of fast joint filtering is emphasized by the increase

of the problem’s dimensions. Recognizing this need,

researchers have recently proposed distributed joint filter

2D Chebychev polynomial [19] and separable ratio-

nal [20] implementations, appropriate for arbitrary and

separable joint response functions, respectively. In the

following, we improve upon state of the art by enhancing

the filtering approximation at a similar (up to logarithmic

factors) complexity.

The Fast Fourier Chebyshev (FFC) algorithm. The

basic idea of our algorithm is to exploit the small

complexity of FFT and perform graph filtering in the

time-frequency domain. Concretely, to filter X with

response h(λ, ω), we do the following:

1. Compute the FFT of every row of X , at a total

complexity of O(NT log T ).
2. For each ωk, approximate h(λ, ωk) with a Cheby-

shev polynomial of order MG and use the fast graph

Chebyshev recursion [14] to filter the corresponding

angular frequency component of X . The complex-

ity of this step is O(MGT |E|).
3. Use the inverse FFT to obtain the filtered time-

vertex signal, with complexity O(NT log T ).

Our scheme can approximate both separable or non-

separable joint filters using O(T |E|MG + NT log T )
operations, which up to a logarithmic factor is a lin-

ear complexity to the number of edges |E|, nodes N ,

timesteps T , and filter order MG. Moreover, it can be

performed distributedly since both the FFT and the graph

Chebychev recursion necessitate only local or few hop

information.

Numerical comparison. To evaluate the approximation

properties of the above scheme, we show in Figure 5

numerical experiments for an ideal separable lowpass

filter and a non-separable wave filter on a time-vertex

graph with size N = 5000, T = 3000. In detail, the

approximated filtering functions (low pass and wave) are,

respectively,

hLP(λℓ, ωk) =
e−(λℓ−λcf )

1 + e−(λℓ−λcf )

e−(|ωk|−ωcf )

1 + e−(|ωk|−ωcf )
(23)

hwave(λℓ, ωk) = e−|π|ωk|−arccos(1−λℓ/(2λmax)|
2

. (24)

For each case, we compare our algorithm with the

state-of-the-art, i.e., Chebyshev2D approximation [19]

of complexity and the ARMA2D approach [20], while

Fig. 5. Fast joint filtering comparison using different algorithms to
approximate the ideal joint lowpass filter (left) and a non-separable
wave filter (right) approximated in Eq (23) and Eq (24), respectively.
The proposed method (FFC) outperforms the others, in particular for
non-separable filters.

choosing MG and MT as graph and temporal polynomial

orders, respectively (here MG = MT ).

As shown in Figure 5, FFC results in a significant

improvement in accuracy for the same order and the

difference is particularly prominent in the non-separable

case (ARMA2D cannot be used here). We remark how-

ever that, to interpret these results correctly, one has to

consider the complexity of each method:

method complexity applicability

FFC O(T |E|MG +NT log T ) all

Cheby2D [19] O(T |E|MT +NTMTMG) all

ARMA2D [20] O(T |E|MG + T |E|MT ) separable

Therefore, for the same order, the three different methods

feature slightly different complexities, implying that a

direct comparison of accuracy is not entirely fair. Nev-

ertheless, the unfairness in not in our favor as, in our

experiments for all orders larger than 2, the asymptotic

complexity of FFC is the smallest (since here MG =
MT , log T < MTMG, and log T < |E|MT /N ). We

also note that, in practice one often needs MT ≫ log T
to achieve a good approximation, in which case FFC is

the fastest.

V. TIME-VERTEX DICTIONARIES AND FRAMES

So far, we have looked at time-vertex signals through

the lenses of the canonical and the joint Fourier bases.

However, in some cases it is beneficial to also consider

alternative representations. For example, in the classic

case, the wavelet and the short time Fourier transforms

respectively enable time-scale and time-frequency anal-

ysis of the signal. The purpose of this section is to

show how one can define analogous representations for

time-vertex signals. These can be used for instance to

generate features given as an input to a classifier (see

Section VI-C) or to regularize an optimization problem

such as (41) in Section VI-C.
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Classically, the atoms of the representations are built

by applying a transform (e.g. scaling or modulation) to a

mother function and shifting the resulting functions. We

follow a similar approach, with the difference that the

mother function is replaced by a kernel defined in the

time-vertex frequency domain and the shifting has to be

replaced by an operator suitable to graphs. The spectral

time-vertex wavelet and the short time vertex Fourier

transforms follow as consequences of our framework.

A. Joint time-vertex localization

The ability to localize a kernel over a particular

time and vertex is a key ingredient of our dictionary

construction. In the following, we derive such a joint

localization operator as a generalization of the graph

localization operator [12], [36], [44], which localizes a

kernel h(LG) onto vertex vm

T G
m h

∆
= h(LG) δm =

N∑

ℓ=1

h(λℓ) ūℓ(m)uℓ. (25)

Above, δm is a Kronecker delta centered at vertex vm.

Similarly, in the joint domain we define the joint time-

vertex localization operator as the filtering with a two-

dimensional Kronecker delta

T J
m,τ h

∆
= h(LG,LT ) (δm ⊗ δτ ) . (26)

It turns out that the joint time-vertex localization operator

has the advantages of both the graph localization and the

traditional translation operator. Indeed, we observe the

following relations

T J
m,τ h(n, t) =

1

T

N,T∑

ℓ=1
k=1

h(λℓ, ωk)ūℓ(m)e−jωkτuℓ(n)e
jωkt

=
1

T

T∑

k=1

(
N∑

ℓ=1

h(λℓ, ωk)ūℓ(m)uℓ(n)

)
ejωk(t−τ)

(27)

From (27), it follows that joint localization consists

of three steps: (a) localizing independently all kernels

h(·, ωk), (b) computing the inverse DFT along the other

dimension, and (c) translating the result. Joint localiza-

tion is thus equivalent to independent application of a

graph localization and a translation. Note that the steps

(a) and (b) can be considered as localizing the signal

along the time dimension.

When the filter is separable, i.e. h(λ, ω) =
hG(λ)hT (ω), the joint localization is simply

h(LG,LT ) (δτ⊗δm) = vec(hG(LG)(δτ ⊗ δ
⊺

m)hT (LT )) ,
(28)

showing that the filter can be localized independently in

time and in the vertex domain.

B. Joint time-vertex dictionaries

We proceed to present our dictionary construction

for time-vertex signals. We start with a mother time-

vertex kernel h(λ, ω) and a transformation szλ,zω (·, ·)
parametrized by some values [zλ, zω] belonging to the

finite 2D set Zλ × Zω ⊂ R
2 and controlling the

kernel’s shape along the vertex and time domains. The

transformed kernel is then obtained by composition

hzλ,zω (λ, ω) = h(szλ,zω (λ, ω)). (29)

We build our dictionary by transforming h(λ, ω) with all

zλ, zω ∈ Zλ × Zω , (possibly) normalizing, and jointly

localizing the resulting kernels hzλ,zω (λ, ω) at each node

m and time τ . Concretely, the dictionary is

Dh = {T J
m,τ hzλ,zω } for m ∈ V, τ = 1, 2, . . . , T,

and [zλ, zω] ∈ Zλ ×Zω}. (30)

When Dh is overly redundant, one may choose to

consider only a subset of values for m and τ .

We next consider two interesting examples of the pro-

posed dictionary construction that are generalizations of

the short-time Fourier and wavelet transforms [45], [46]:

Short Time-Vertex Fourier Transform (STVFT). Set

szλ,zω (·, ·) to a shift in the spectral domain

szλ,zω (λ, ω) = [λ− zλ, ω − zω]. (31)

This transform can be considered as a modulation.

Nevertheless, we note that it does not correspond to a

multiplication by an eigenvector as in [36], [47]. Our

construction is more related to [48, Section 3]. Then,

given a separable mother kernel h(λ, ω) = hG(λ)hT (ω)
and a finite 2D set Zλ×Zω ⊂ R

2, the STVFT of signal

X is defined as

STVFT{X}(m, τ, zλ, zω)
∆
= 〈X, T J

m,τ h(λ− zλ, ω − zω)〉

=
1√
T

∑

ℓ,k

h(λℓ − zλ, ωk − zω)X̂(ℓ, k)uℓ(m)ejωkτ .

Provided that h(λ, ω) is localized around [0, 0], the

amplitude of the coefficient (n, t, zλ, zω) indicates the

presence of the spectral mode [zλ, zω] at vertex m and

time τ . Moreover, since the mother kernel is separable,

the design in the two domains can be performed inde-

pendently:

For the graph domain, we suggest to select the

values of zλ to be equally spaced in [0, λmax] [48,

Section 3]. The spacing should be selected such that∑
zλ∈Zλ

h2
G(λℓ − zλ) ≈ c for every λℓ, ensuring good

conditioning of the associated frame (see [14, Theorem

5.6]). Because of the graph irregularity, in most of the

cases, we need to keep all possible values for m, i.e.,

m = 1, 2, . . . , N .
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For the time domain, we recover a traditional STFT,

with the difference that hT (ω) is defined in the spectral

domain. Nevertheless, for convenience, the window can

still be designed in the time domain. As a rule of thumb

|Zω| = lhT
, where lhT

is the support of hT in the

time domain3, and the values of τ should be sampled

regularly with a spacing
lhT

R , where R is the desired

redundancy. For a more complete treatment we refer the

reader to [45].

Spectral Time-Vertex Wavelet Tranform (STVWT).

Following the idea developed in [14], we set szλ,zω (·, ·)
to a generalized graph dilation (or scaling), i.e., a mul-

tiplication in the spectral domain

szλ,zω (λ, ω) = [zλ λ, zω ω]. (32)

Then, given a kernel h(λ, ω) the STVWT of X reads

STVWT{X}(m, τ, zλ, zω)
∆
= 〈X, T J

m,τ h(zλ λ, zω ω)〉

=
1√
T

∑

ℓ,k

h(zλ λ, zω ω)X̂(ℓ, k)uℓ(m)ejωkτ ,

where zλ, zω are the scale parameters for the vertex and

the time dimensions. A usual requirement for h(λ, ω)
is that it has a zero DC component, i.e., h(0, 0) = 0.

Contrarily to the STVFT, the mother kernel here may not

be separable, as illustrated in VI-C. The choice of the

discretization lattice [m, τ, zλ, zω] is thus more involved

and case dependent: we suggest that m and τ take all

possible N and T values respectively, while zλ and

zω are carefully selected depending on the application.

This choice is justified by the computational complexity

detailed in the following.

C. Joint time-vertex frames

To make the proposed dictionaries and associated

signal representations usable in practice, we next provide

answers to three key questions: (a) How can we compute

the representations efficiently (i.e., performing analysis

and synthesis)? (b) How can we guarantee that the

associated transforms are well conditioned such that they

can be successfully inverted? (c) How to efficiently invert

them, recovering the original signal? The second point is

particularly important since a well conditioned transform

allows for more robust representations, for instance when

the dictionary is used to solve a synthesis or analysis

regression problem with a sparse regularizer.

Efficient analysis and synthesis. The dictionary atoms

can be seen as a filter-bank {hz(λ, ω)}z∈Zλ×Zω
, in

3In practice, the kernel is chosen to have a compact support in the
time-domain.

which case the operators going from the signal to the

representation domain and back are the analysis operator

Dh{X}(m, τ, z) = 〈X, T J
m,τ hz 〉 = Cz(m, τ),

and the synthesis operator

D∗
h{C}(n, t) =

∑

z

〈Cz, T J
n,t hz 〉 = Y (n, t).

Notice that in general X 6= Y , and equality holds only

when the filter-bank is a unitary tight frame.

Instead of computing the dictionary explicitly (an

operation that is costly both in memory and in com-

putations), one may acquire the analysis coefficients for

all m, τ by joint filtering X with kernel hzλ,zω taking

advantage of the relation Cz = mat(hz(LG,LT )x).
Similarly synthesis can be performed by summing fil-

tering operations. Using our FFC filtering algorithm

presented in Section IV-B, the total analysis complexity

is thus O(|Zλ × Zω|(T |E|MG + NT log T )), where

typically MG ≈ 50.

The drawback of this technique is that it does not

allow us to take advantage of sub-sampling the lattice

[n, t], especially in the non-separable case. Indeed, a

filtering operation will always provide all coefficients

regardless of the desired lattice. While addressing this

computational problem is beyond the scope of this

contribution, we note that we can still efficiently perform

a sub-sampled STVFT by first filtering only in the graph

domain and second computing a traditional STFT.

Conditioning and frame bounds. In several applica-

tions in signal processing one is interested not only in

processing data in another convenient representation, but

also to recover the original signal from its alternative

representation. Redundant invertible dictionaries are re-

ferred to as frames [45], [49]. The following theorem

generalizes the classic [45] results regarding the frame

bounds, providing a condition for a joint time-vertex

dictionary to be a frame, as in the case of graphs [48,

Lemma 1], [14, Theorem 5.6].

Theorem 1. Let {hz(λ, ω)}z∈Zλ×Zω
be the kernels of

a time-vertex dictionary Dh, and set

A = min
l,k

∑

z

|hz(λℓ, ωk)|2, B = max
l,k

∑

z

|hz(λℓ, ωk)|2.

If 0 < A ≤ B < ∞, then Dh is a frame in the sense:

A‖X‖2F ≤ ‖Dh{X}‖2F ≤ B‖X‖2F (33)

for any time-vertex signal X ∈ R
N×T .

The proof of theorem can be found in the appendix

(see section A).

The theorem asserts that, if A > 0, no information is

lost when the analysis operator is applied to a time-vertex

signals, thus the transform is invertible. Furthermore, the
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ratio of the frame bounds A/B is related to the condition

number of the frame operator Sh{X} = D∗
h{Dh{X}},

hence it is decisive for efficient reconstruction when we

want to recover the signal from its representation solving

an optimization problem [14, Section 7].

Efficient inversion. To recover the signal X from the

coefficients C, a solution is to use the pseudo-inverse,

i.e. X = D†
h{C} or to solve the following convex prob-

lem argminX‖Dh{X} − C‖22. Problematically, these

are computationally intractable for large value of N and

T . We will instead design a dual set of kernels that allows

us to invert the transform by a single synthesis operation.

To this end, we search for a set of filters h̃ such that

D∗
h̃
{Dh{X}} = X . It is not difficult to see that this

equality is satisfied when
∑

zλ,zω

h̃zλ,zω (λℓ, ωk)hzλ,zω (λℓ, ωk) = 1, ∀ λℓ, ωk.

(34)

Although redundant joint time-vertex frames admit an

infinite number of dual kernel sets satisfying (34), the

typical choice is to use the canonical dual, defined as

h̃zλ,zω (λℓ, ωk) =


∑

z′

λ
,z′

ω

h2
z′

λ
,z′

ω

(λℓ, ωk)




−1

hzλ,zω (λℓ, ωk).

(35)

In fact, this corresponds to the pseudo-inverse of Dh,

i.e., D†
h = D∗

h̃
, while also having a low computational

complexity.

To summarize, given an invertible time-vertex trans-

form Dh and coefficients C, the inverse transform of

Dh associated with the set of kernels {hzλ,zω}[zλ,zω ]∈Z

is

X = D∗
h̃
{C} =

∑

zλ,zω

h̃zλ,zω (LG,LT )Czλ,zω , (36)

where h̃ is defined in (35).

VI. EXPERIMENTS

The suitability of the time-vertex framework for sev-

eral classes of problems is illustrated on a wide variety

of datasets: (a) dynamic meshes representing a walking

dog and a dancing man, (b) the Caltrans Performance

Measurement System (PeMS) traffic dataset depicting

high resolution daily vehicle flow of 10 consecutive

days in the highways of Sacramento measured every 5

minutes, (c) simulated SEIR- or SEIRS-type epidemics

over Europe, (d) the Kuala Lumpur City Centre (KLCC)

time-lapse video and (e) earthquake waveforms recorded

by seismic stations geographically distributed in New

Zealand, connected to the GeoNet Network.

Results suggest that joint analysis of time-vertex sig-

nals can bring forth benefits in signal denoising and

Fig. 6. Compactness of the transforms for different datasets: dog and
dancer meshes (above) number of infected over Europe according to
SEIRS model (below left) and traffic flow measured by the PeMS (be-
low right). Normalized error is computed reconstruting the signal after
thresholding the values of the transforms below the p-th percentile.

recovery, learning and source localization problems.

We remark that all the experiments were done using

the GSPBOX [50], the UNLocBoX [51] and the LT-

FAT [52]. Code reproducing the experiments is avail-

able at https://lts2.epfl.ch/reproducible-research/a-time-

vertex-signal-processing-framework/.

A. Compactness of representation

A key motivation behind the joint harmonic analy-

sis is the capability of encoding time-varying graph-

dependent signal evolution in a compact way. Our first

step will therefore be to examine the energy compaction

of the JFT transform in four datasets: two meshes

representing a dancer (N = 1502 points in R
3 and

T = 570 timesteps) and a dog walking (N = 2502
points in R

3 and T = 52 timesteps), the PeMS traffic

flow dataset (N = 710 stations measuring traffic over

T = 2880 intervals of 5-minute length each) and the

number of infected individuals in an SEIRS epidemic

(see Section III-B for description). Transforms with good

energy compaction are desirable because they summarize

the data well and can be used to construct efficient

regularizers for regression problems.

To measure energy compactness, we compute the

DFT, GFT and JFT for each dataset, we replace the

spectrum coefficients with magnitudes smaller than the

p-th percentile with zeros and perform the corresponding

inverse transform on the resulting coefficients. Denot-

ing by X the original signal and Xp the compressed

one, the compression error is for each p given by

‖Xp−X‖F /‖X‖F . As shown in Figure 6, JFT exhibits
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Fig. 7. Joint variation priors are useful in denoising the coordinates of
dynamic meshes. The original mesh (left) was corrupted with random
Gaussian noise (center, normalized error 0.2); shown here for one
realization of the noise. After the denoising, the error decreases to
0.06 (right). The normalized error as a function of parameters τ1 and
τ2 is shown in a heat-map (below left) averaged over 20 realizations.
The boxplot (below right) shows the minimum achievable error for a
time (τ = 0), graph (τ2 = 0) and joint variation prior.

better energy compaction properties in all the datasets,

and especially for the meshes where the graph captures

well the signal structure.

B. Regression problems with joint variation priors

We next examine the utility of joint variation priors

for regression problems in two example applications.

Denoising of dynamic meshes. Whenever a smoothness

prior can be assumed, the joint Tikhonov regularization

can be used to denoise a time-varying graph signal. The

prior can be easily expressed in the time-vertex domain

thanks to Eq. (13). Joint denoising is then performed by

solving the following optimization problem

argmin
X

‖X−Y ‖2F +τ1‖∇GX‖2F +τ2‖X∇T ‖2F , (37)

where the regularization terms require the solution to be

smooth in both graph and time domains. This problem

has a closed form solution in our framework, which is a

joint non-separable lowpass filter

hTIK(λℓ, ωk) =
1

1 + τ1λℓ + 2τ2(1− cos(2πωk))
.

(38)

In order to investigate its performance, we consider the

vertices of a mesh of size 2502× 59× 3 representing a

walking dog, we add Gaussian noise to the coordinates,

we build a k nearest neighbor graph based on the

distances between the time average of the coordinates

and finally we solve the problem (37) for each coordinate

dimension. We averaged the results over 20 realizations

of the noise.

The meshes in Figure 7 represent, from left to right,

the original, the noisy and the recovered one, for one

Fig. 8. Visual inspection of video inpainting results. We show two
frames extracted from the video (top), their corrupted counterparts
(middle left frame is missing entirely, whereas middle right frame has
missing pixels), and the reconstructions using our method with an N1,2

regularizer (bottom).

realization of the noise. Remarkably, the normalized

error drops from 0.20 to 0.06, respectively before and

after denoising, making the dog distinguishable again.

As side effect, the dog appears to be thinner, due to the

graph regularization. The heat-map in the left corner of

the figure shows the role of the regularization parameters.

We found (using exhaustive search) that the lowest error

is achieved when τ1 = 0.71 and τ2 = 1.78. We compare

the performance of the joint Tikhonov regularization

with respect to time- and graph-only for the best pa-

rameter combinations of all methods. The boxplot on

the right shows the minimum achievable error statistics

in the three cases over the 20 realizations. It is easy to

see that the graph plays a major role in the denoising,

since it encodes the structural information of the mesh.

Nevertheless, the joint approach performs the best, i.e.,

0.062 ± 0.0002, taking advantage of the smoothness in

both domains, while graph and time methods achieve

0.067± 0.0003 and 0.095± 0.0002, respectively.

Inpainting of time-lapse video. We consider the prob-

lem of time-vertex signal recovery from noisy, cor-

rupted, and incomplete measurements. Depending on

the characteristics of the signal, the prior Np,q (x) with
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Fig. 9. Comparison of video inpainting performances between
Tikhonov, TV and Joint regularizations. Each box represents a statisti-
cal summary of the error evaluated for each frame of the whole video.
Although TV achieves the best recovery for some frames, in case of
occluded frames the error is very large. Joint regularization N1,2 (x)
trades the lowest error achievable with a better average recovery.

different values of p and q and different weights can

be used. A typical signal recovery problem in signal

processing is the image inpainting, i.e., trying to replace

corrupted or lost part of the image. Since patch-graphs

allow non-local image processing [53], our goal is to

extend graph-based non-local processing to video in-

painting and recovery. However, since our framework

is constrained to static graphs, we focus on the par-

ticular case of time-lapse videos, whose structure stays

majorly invariant throughout the video. To this end, we

corrupted a time-lapse video that shows the skyline of the

Kuala Lumpur City Centre, which statistical properties

were amenable from a graph perspective, being the

skyline static with time-varying colors. The video has

size 160× 214× 3× 604 (height × width × colors ×
frames). We removed 20% of the pixels and 20% of

the frames from the original KLCC video, achieving a

normalized error of 0.61. The inpainting is performed

solving the optimization problem for each color using

as regularizer N1,2 (x):

argmin
X

‖M ◦X − Y ‖2F + γ1‖∇GX‖1 + γ2‖X∇T ‖2F ,
(39)

where M is the mask of the missing entries. The patch

graph G is constructed from the video averaged in time.

The rationale is that the l1 over the graph will restore the

missing pixels, being each frame approximately piece-

wise constant, whereas the l2 norm in time recovers the

smooth changes of the colors from dawn until dusk.

Figure 8 shows two frames of the video, their cor-

rupted counterparts and the result of the recovery, along

with the respective normalized errors. The recovered

video has a normalized error of 0.049, illustrating that

the joint inpainting is able to restore the global quality

of the video even in case of considerable missing infor-

mation.

We compare the recovery performance with all the

joint regularizers Np,q (x) for p, q = {1, 2}, and with

TABLE I
VIDEO INPAINTING NORMALIZED ERRORS

Regularizer Pixels Frames Total

Tikhonov 0.051 0.100 0.059

TV 0.048 0.122 0.060

N1,1 (x) 0.056 0.059 0.057

N1,2 (x) 0.050 0.055 0.051

N2,1 (x) 0.061 0.103 0.068

N2,2 (x) 0.053 0.066 0.055

Fig. 10. Clustering of the dancer mesh (no noise): the plot (below)
shows the distance of the points stemming from the STVFT represen-
tation of three frames (above) of the time-varying mesh closest to the
clusters centroids. Each frame shows a different phase of the dance.

two baseline algorithms, based on 3D-Tikhonov and

isotropic 3D-TV regularizations [54]. The last two cor-

respond to using a grid graph with equal weights on the

edges. Table I reports the normalized errors averaged

over the pixels-only, frames-only and the whole video.

The better performance achieved by the joint regularizer

N1,2 (x) is due to its capability to restore missing frames,

while missing pixels recovery performances are almost

the same. Figure 9 illustrates a summary statistics of the

errors computed over each frame. Although TV performs

the best in the median, in case of occluded frames the

error is much larger w.r.t. the joint recovery, leading to

a higher average error.

C. Overcomplete representations

Last, we examine the utility of STVFT and STVWT,

respectively, as a feature extractor for dynamic mesh

clustering and as a dictionary used to uncover the wave-

like structure and epicenter of a seismic event.

Clustering dynamic meshes using STVFT. We con-

sider the motion classification of a dynamic mesh rep-

resenting the dancer, corrupted with additive sparse

noise with density 0.1 with normally distributed entries

and SNR of −20 dB and −10 dB. Our objective is

to determine the phase of the dance (moving arms,

stretching legs and bending body) at each frames by

performing spectral clustering on some representation

of the windowed signal. To obtain the ground-truth, we
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Fig. 11. Comparison of clustering accuracy using different transforms
in case of sparse Gaussian noise for SNR -20 dB and -10 dB. Each
box shows a summary statistics of the accuracy computed over 20
different realizations of the noise. Results show that SVTFT achieves
the highest accuracy in average.

labeled each frame by hand and verified that, when the

noiseless signal (i.e., the actual trajectory of the points in

time over each window) was used to define the features,

one obtains a classification accuracy of 0.926.

Since we want to localize spatial-structured phenom-

ena in time, our approach will be to use a STVFT to

derive the representation. To capture the geometry of the

problem, we used a nearest neighbour graph constructed

based on the coordinates of the mesh vertices averaged

in time; this graph was fixed for the whole sequence.

As explained in Section V-B, the STVFT is separable,

meaning that we can handle the vertex and the time

dimensions separately. In the time domain we use a

rectangular window with support equal to 50 samples in

time and spacing such that the overlap is 60%. For the

vertex dimension, we use the an Itersine kernel (defined

in the GSPBOX [50]) that we uniformly translate at 5

different positions in the graph spectral domain.

The STVFT provides features associated to a time

instant that we can directly use to classify the dance

(see Figure 10 for a visual illustration of the clustering

results). Other transforms such as GFT, DFT, and JFT

do no have this property. Hence, in order to compare

with these other transforms, we use the same rectangular

windows (width 50, overlap 20 samples) to extract

27 time sequences from the signal. We then used the

transformed data associated with each sequence as a

point to be clustered.

Figure 11 illustrates the clustering accuracy statistics

over 20 realizations of sparse noise for features con-

structed based on the magnitude of five representations:

the windowed sequences, as well as their GFT, DFT, JFT,

and STVFT representations. Observe how the presence

of sparse noise severely hampers classification when the

raw signal is used, with the average accuracy dropping

from 0.926 for the clean signals to 0.469 and 0.74 for

−20 dB and −10 dB, respectively.

We can also see that the two representations leading

to the highest median accuracy are the JFT and STVFT,

suggesting the utility of joint harmonic representations.

Nevertheless, the STVFT provides more robust estimates

with an average accuracy of 0.869 rather than 0.792 for

the JFT at −20 dB.

Seismic epicenter estimation with STVWT. We an-

alyze seismic events recorded by the GeoNet sensor

network whose epicenters were chosen to be randomly

distributed in different areas of New Zealand. We extend

the results presented in [21] to a greater dataset using

the STVWT with mother kernel based on the wave

PDE, which allows us to decompose the signal as sum

of PDE solutions. As a first approximation, when the

waves propagate in a continuous domain or a regular

lattice, seismic waveforms can be modeled as oscillating

damped waves [55]. Our premise is thus that we can

approximate the seismic waveforms using a small set

of damped waves propagating on the graph connecting

the seismic stations. Thus, we expect the damped wave

mother kernel

h(λℓ, ωk) =
1√
T

eβ+jωk + λℓ/2− 1

2(cosh (β + jωk) + λℓ/2− 1)
(40)

to be a good approximation of the seismic waves

recorded by the sensors, with the damping factor β
chosen to fit the damping present in the seismic signals.

To construct the STVWT, we select 10 equally spaced

values in [0, 2] for zλ and set zω = 1. To estimate the

epicenter of the earthquake we solve

argmin
C

‖D∗
h{C} −X‖22 + γ‖C‖1, (41)

where γ is the regularization parameter controlling the

trade-off between the fidelity term (selected using ex-

haustive search) and the sparseness assumption and D∗
h

is the synthesis operator associated with STVWT.

The solution provides important pieces of information.

Firstly, using the synthesis operator we can obtain a

denoised version of the original process. Secondly, the

non-zero coefficients of C, describe the origins and

amplitudes of the different components. Therefore, we

average the coordinates of the vertices corresponding to

the sources of the waves with highest energy coefficients.

We compare the performance of STVWT with the esti-

mate obtained using only the signal amplitude: for each

earthquake we average the coordinates of the stations us-

ing as weights energy of the signals. Figure 12 shows on
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Fig. 12. Left: Comparison of seismic epicenter localization performances between amplitude-based approach and STVWT. The bar graph
shows that the second outperforms the first, suggesting that the damped wave model assumption significantly improves the source estimation
performance. Right: Results for 3 different seismic events in New Zealand. Right top: the graph is created using the coordinates of the available
stations for each event and connecting the closest stations. The stars and the circles are the true and estimated sources of the seismic wave
respectively. Right bottom: Signal recorded by the sensors over time for each event.

the left the comparison over 40 different seismic events

randomly distributed over the New Zealand between

the two methods. STVWT based on the damped wave

kernel achieves an average error of 48.5 km, providing

an almost twofold improvement over the baseline, whose

average performance is 88.3 km. On the right, it illus-

trates the estimate for 3 different seismic events and the

respective seismic waveforms. These results show that

the proposed method significantly improves the source

estimation performance.

VII. CONCLUSION

This work puts forth a Time-Vertex Signal Processing

Framework, that facilitates the analysis of graph struc-

tured data that also evolve in time. We motivate our

framework leveraging the notion of partial differential

equation on graphs. We introduce joint operators, such

as time-vertex localization and we present a novel ap-

proach to significantly improve the accuracy of fast joint

filtering. We also illustrate how to build time-vertex dic-

tionaries, providing conditions for efficient invertibility

and examples of constructions. Our experimental results

on a variety of datasets, suggest that the proposed tools

can bring forth significant benefits in various signal

processing and learning tasks involving time-series on

graphs.

APPENDIX

A. Wave equation

In the continuous setting, the wave equation is

∂ttu−∆u = 0

where u : R× R
d → C is a function of both time t ∈ R

and space x ∈ R
d, with ∆ being the Laplacian op-

erator. Even though being a second order PDE, the

equation can be rewritten as a first order system defin-

ing v(t) := ∂tu(t). The pair (u(t), v(t)) evolves now

according to the system





∂tu(t) = v(t)

∂tv(t) = ∆u(t)

(42)

Assuming vanishing initial velocity v(0) = 0, the solu-

tion u(t) is given via functional calculus by [56]

u(t) = cos(t
√
−∆)u(0) (43)

where cos(t
√
−∆) is called propagator operator.

To obtain a discrete wave equation evolving on a

graph, we approximate the second order time derivative

with its stencil approximation and the continuous Lapla-

cian ∆ with the graph Laplacian LG with reversed sign:

XLT = sLGX, (44)

where s > 0 is the speed of the propagation. The wave

equation is a hyperbolic differential equation and sev-

eral difficulties arise when discretizing it for numerical

computation of the solution [56]. Moreover, the graph

being an irregular domain, the solution of the above

equation is not any more a smooth wave after a few

iterations. Nevertheless, we assume as in the case of the

heat diffusion Eq. (16) that the solution can be written

as

xt = Ks(LG, t)x1 = Kt,sx1, (45)

where Kt,s = Ks(LG, t) is a matrix obtained ap-

plying the function Ks(LG, t) to the scaled Lapla-

cian sLG and parametrized by the time t. We will

call the operator Kt,s “the discrete analogue of

the wave propagator” of Eq. (43). Therefore, matrix

X = [Kt,sx1]
T
t=1 = Ks{x1} is obtained stacking the
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vectors xt of Eq. (45) along the columns. Substituting

(45) into (44), we obtain Ks{x1}LT = sLGKs{x1}
which in the graph spectral domain is

K̃s{x̃1}LT = sΛGK̃s{x̃1}, (46)

where K̃t,s = Ks(ΛG, t). Equation (46) is formally

analogous to the eigendecomposition of the operator LT ,

therefore, the ℓ-th row of K̃s{x̃1} must be an eigenvector

of LT with eigenvalue λℓ, for every ℓ. It has been proved

in [57] that the eigenvectors UT (t, k) = cos(tkπ/T )
form also the discrete Fourier basis. Using Eq. (8), we

obtain

Ks(λℓ, t) = cos(tθℓ), (47)

with θℓ = arccos(1− sλℓ

2 ). Since the arccos(x) is defined

only for x ∈ [−1, 1], to guarantee stability the parameter

s must satisfy s < 4/λmax. We remark that this result

is in agreement with the stability analysis of numerical

solver for the discrete wave equation presented in [56].

Taking the DFT of the wave kernel in Eq. (47), we

obtain

K̂s(λℓ, ωk) =
∑

t

cos(tθℓ)e
−jωkt

Therefore, the solution in the joint spectral domain can

be written as

X̂(ℓ, k) = K̂s(λℓ, ωk)Z(ℓ, k),

where Z(ℓ, k) = x̃1(ℓ)U
∗
T (k, 1).

Note that there exists a closed form solution for the

function K̂s:

K̂s(λℓ, ωk) =



δ (ωk + θℓ) + δ (ωk − θℓ)

2
, if Tθℓ/2π integer

1

2

(
1− e−jT (ωk+θℓ)

1− e−j(ωk+θℓ)
+

1− e−jT (ωk−θℓ)

1− e−j(ωk−θℓ)

)
, otherwise

B. Frame bound for joint time-vertex dictionaries

Theorem 1. Let {hz(λ, ω)}z∈Zλ×Zω
be the kernels of

a time-vertex dictionary Dh, and set

A = min
l,k

∑

z

|hz(λℓ, ωk)|2, B = max
l,k

∑

z

|hz(λℓ, ωk)|2.

If 0 < A ≤ B < ∞, then Dh is a frame in the sense:

A‖X‖2F ≤ ‖Dh{X}‖2F ≤ B‖X‖2F

for any time-vertex signal X ∈ R
N×T .

Proof. In the joint spectral domain we can write:

‖{Dh{X}}‖F2 =
∑

m,τ,z

|{Dh{X}} (m, τ, z)|2

=
∑

z,m,τ



∑

ℓ,k
n,t

X(n, t)hz(λℓ, ωk)u
∗
ℓ (n)uℓ(m)e−jωk(t−τ)






∑

ℓ′,k′

n′,t′

X(n′, t′)hz(λℓ′ , ωk′)u∗
ℓ′(n

′)uℓ′(m)e−jω
k′ (t′−τ)




∗

=
∑

z,ℓ,k

hz(λℓ, ωk)ĥ
∗
z(λℓ, ωk)X̂(ℓ, k)X̂∗(ℓ, k)

=
∑

z,ℓ,k

|hz(λℓ, ωk)|2|X̂(ℓ, k)|2 =
∑

z

〈|hz|2, |X̂|2〉,

where the equality holds due to the orthogonality of the

eigenvectors. Finally, each element in the sum can be

lower bounded and upper bounded by the minimum and

maximum value that every filter takes over ℓ and k.

Using the Parseval relation (6), the theorem holds.
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