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Abstract 

We present in this paper a method to transform ET-LOTOS expressions in 

a subclass of timed automaton with timers, where a timer is not restarted 

before its reset. We show that this subclass is equivalent to timed automata 

and we show that this model can be used for ET-LOTOS verification. We 

have implemented this transformation method and interfaced our tool with 

the KRONOS model-checker. It is then possible to verify temporal properties, 

expressed in TCTL, on ET-LOTOS specifications. We illustrate our tool with 

a small robot controller example. 
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1 INT RODUCTION 

In the last few years, many Formal Description Techniques have been extended 

to support the design of real-time systems. These systems are quite complex to 

design due to their timing constraints. Moreover they are often safety critical ; 

failures can have disastrous consequences which can put, for instance, human 

life in peril. The development of such systems can therefore be eased with the 

support of formal techniques. 

Many process algebras have been extended to allow the description of t imed 

dependent systems, see [10] for an overview of FDT's supporting time. ET­

LOTOS [9] is a timed extension of LOTOS which allows the modeling of real­

time behaviors. This extension is currently used to define the timed semantics 

of the future ISO standard E-LOTOS (for Extended LOTOS) . Such a language 

can only be useful however, if tools can support it and especially its real-t ime 

characteristics. Tools which deal with time already exists, like KRONOS [4] 

which allows to verify that a formula of the real-time logic TCTL [1] is verified 

by a system described by a timed automaton. Other tools based on Hybrid 

automata [2] allow to describe and analyze real-time systems like HyTech [6] 

and SHIFT [11] . Timed automata is a subclass of hybrid automata where the 
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automaton variables are used to represent the time passing. This model is less 

complex to handle than hybrid automata and is more adapted to real-time 

systems description. 

In (5), a transformation method of an ET-LOTOS subset into timed au­

tomata is proposed but one of the timed operators of ET-LOTOS, the time 

capture, is not supported. We propose in this paper to extend this method 

in order to allow the transformation of this operator. To reach this goal, we 

use timed automaton with timers to represent ET-LOTOS expressions. We 

show that the resulting automaton model is a subclass of timed automaton 

with timers where a timer is never restarted before its reset and we prove 

that this subclass is equivalent to timed automata. Timed automata are de­

cidable for reachability analysis (2]. We have then captured an ET-LOTOS 

subset including all the operators, with some restrictions on their use, which 

is decidable. A tool implementing the transformation has been developed and 

interfaced with the KRONOS model-checker. ET-LOTOS specifications can 

then be transformed in timed automaton and verified with KRONOS. Since 

timed semantics of E-LOTOS will be based on ET-LOTOS, it will be possible 

to extend this work to this future ISO standard. 

The approach of transforming a real time process algebra in a automaton 

model for model-checking purposes have already bee used for RT-LOTOS [3). 

In this work a specific automaton model (Dynamic Timed Automaton) and 

a transformation in two phases have been defined . With this transformation, 

the reachability analysis may be performed on the fly which is not possible 

with our compositional transformation. 

2 ET-LOTOS 

ET-LOTOS extends LOTOS with a global time which can be discrete or 

dense. We consider, in this paper, a dense time domain: Q+ . Three timing 

constructs are added to the LOTOS ones. These can be used to restrict the 

time interval where an action can occur. With the life reducer(a{d}; B), the 

action a is limited to occur within d time units. It is not an mandatory for an 

observable action a to occur within d time units, but if it does not, the process 

behaves like stop. If a is the internal action (i), the action must occur within 

d time units (or be preempted by another alternative) . The internal action 

is urgent. The time capture (a Ox; B) allows to capture in an ET-LOTOS 

variable (x) the time at which the action a has occurred (the time elapsed 

between the moment the behavior has been offered and the one at which the 

action has occurred) . The third operator is the delay (~d B) where 

the behavior B is offered to the environment after a waiting time of d time 

units. 

The formal semantics of ET-LOTOS is given in terms of labeled transition 

systems composed of two kinds of transitions, namely discrete and timed. This 

semantics can be found in found in (9] . 
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3 TIMED AUTOMATON WITH TIMERS 

We define in this section a model of automaton extended with clocks and 

timers (also called integrators or stop watch in the literature). Clocks value 

grows uniformly in all vertices proportionally with the time passing. A timer 

is a clock which can be started and stopped on a transition. 

Let V = 1l U I be an infinite set of variables having a value in the set 

of positive rationals Q+; 1l and I are respectively the infinite sets of clocks 

and timers with 1l n I= 0. Let S denotes an infinite set of vertices and Lab 

a label set. Let 'II(V) be the set of constraints on variables defined as the 

smallest set satisfying: 1/J ::= trueiu ~ clu1 - u2 ~ cix ~ ci•1/JI1/J /\ 1/J where 

u,u1,u2 E1l,x EI,cE '2-and ~ E {<,:~:;}. 

Definition 1 A timed automaton with timers is defined as a tuple < S, V, R, E, 

s0 , Inv > where 

S C S is a finite set of vertices, 

V C V is a finite set of variables, 

R: S x V--+ {0, 1} is the rate labeling function, 

E ~ S x Lab x 'II(V) x 2v x S is the finite set of transitions, 

s0 E S is the initial vertex, 

/nv : S--+ w(V) is the vertex invariant 

where 'Vx E V n 11., '<Is E S, R(s)(x) = 1. 

A transition e = (s, a, 1/J, V', s') from the vertex s to a vertex s' is labeled 

by an action (a). The transition can be fired if its guard 1/J is evaluated to true 

and the variables of V' are reset when the transition occurs. We say that a 

transition starts (resp. stops) a timer x if R(s)(x) = 0 and R(s')(x) = 1 (resp. 

R(s)(x) = 1 and R(s')(x) = 0). The vertex invariant determines for each ver­

tex whenever the time can progress, and hence whenever the automaton can 

stay in the vertex. 

We define two subclasses of timed automaton with timers: timed automa­

ton where all the variables are clocks (V C 11.) and timed automaton with 

semi-timers where a timer is always reseted before being restarted ('v'e = 
(s,a,,P, V',s') E E, 'Vx E Vni : (R(s)(x) = 0 and R(s')(x) = 1) ==> x E 

V'). 

We denote v a valuation, i.e., a function which associates to each variable 

x E V a value in Q+. The set of valuations on variables is denoted V and the 

one restricted to clocks is denoted JH!. Valuation can be naturally extended to 

constraints on variables: for each 1/J E 'lf(V) and v E V, 1/J(v) represents the 

value of the constraints 1/J evaluated in v. The valuation v[V := 0] represents 

the valuation v where all the variables of V have been reset to 0. For a valu­

ation v E V, a rate labeling function R, and t E Q+, v + R .t denotes a new 

valuation v' such that for every variable x E V, v'(x) = v(x) + R(x).t . For a 
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valuation v E IHI, and t E IQ+, v + t denotes a new valuation v' such that for 

every clock u E 1£, v'(u) = v(u) +t. 

The semantics of a timed automaton with timers is given by the following 

definition. 

Definition 2 The model of a timed automaton with timers< 5, V, R , E, s0 , Inv > 

is the labeled transition system < Q, ---+, q0 > where : 

1. Q = {(s,v)llnv,(v),s E 5,v E V} 

2. q0 =(s0 ,v0 ),where'VxEV v0 (x)=0 

3. The transition relation ---+ ~ Q x (Lab U IQ+) x Q is defined on Q by the 

smallest relation defined by the following rules: 

{Rl} (s,a,1/J, V',s') E E 1\ lj! (v) 

(s, v) ~ (s', v[V' := 0]) 

where a E Lab, v E V, dE IQ+. 

(R2) Vd':::; d Inv,(v + R(s).d') 

(s,v) ~ (s, v +R(s) .d) 

4 TRANSFORMATION OF ET-LOTOS 

We provide in this section, a method to transform an ET-LOTOS expression 

in a timed automaton with timers where Lab = L U { i, .:l, £} (.:l represents 

the expiration of a delay and£ an empty transition) . This transformation is 

inspired from the work presented in [5]. We restrict ourself to some of the 

operators but the method can be extended to all the basic operators of ET­

LOTOS (see (8]). 

We first define two notations to handle rate labeling functions. We define 

R = Rt u R2 the union of two rate labeling functions Rl : 51 X vl and 

R2 : 51 X v2 with sl n 52 = vl n v2 = 0 as R: (51 u 52 u (51 X 52)) X (Vl u V2) 

where Vsl E 5t,S2 E 52,Xl E Vt,X2 E v2,x E Vt u v2 : 

R(s;)(x;) = R;(s; )(x;) i E {1, 2} 

R([sl' s2])(x) = { Rt(st)(x) ~f X E vl 
R2(s2)(x) l/ X E v2 

We define the extension a rate labeling function with a new variable and 

vertex. If R is a rate labeling function and (s, x) ft. Dom(R) a vertex and a 

variable, we define R' = R 1±1 ( s, x) the new rate labeling function resulting 

from the extension of R with the couple ( s, x) where : 

Vx' E Domv(R), Vs' E Dom, (R) R'(s')(x') = R(s')(x') 

Vx' E Domv(R) R'(s)(x') = { ~ !~ ~: ~ ~ 
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Vs' E Dom.(R) R'(s')(x) = { ~ ~~: ~ ~ 

R'(s)(x) = 1 

where Domv (R) and Dom. (R) represent, respectively, the variable and 

vertex domain of the rate labeling function R. 

The transformation method is defined in a compositional way, where the 

automaton corresponding to an ET-LOTOS expression depends on the au­

tomata of the operand's expressions. It results that produced automata may 

contain guard transitions with variables which does not belong to V since a 
variable is introduced when it is defined via a time capture and not when it 

is used via a guard. In all cases the final automaton is complete if the original 

ET-LOTOS specification is semantically correct. 

1. The process stop: 

This process is transformed in < { s}, { u}, R, 0, s, I nv >where u E 'H., Inv( s) = 
true and R(s)(u) = 1. 

This timed automaton with timers (automaton for short in the sequel) has 
no transition and has no variable, but the clock u is needed to represent 

the time passing as specified in the semantic rule (R2). 

2. Action prefix: 

If< S, V, R, E, s0 , Inv > is the automaton corresponding to the behavior 

Band B' = a@x{d}; B then the timed automaton corresponding to B' is 
given by: 

< S U { s} , V U { x}, R l±J ( s, x) , E U { ( s, a, x ::::; d, V, s0 )}, s, In v' > 

where s fl. S, x E I\ V and for all s' E S, Inv'(s') = Inv(s'). 
The activation function of the new vertex is defined by Inv'(s) =true if 

the action a is observable, since the action is not obliged to occur before 

time d but only restricted to occur within this limit; if action a = i, the 

action must occur within the time limit, then the function Inv is defined 

as Inv'(s) = x ::::; d. The new rate labeling function states that the timer 
x is frozen on all the vertices but s. If the time capture is not present, we 
introduce a new clock u E 1£ \ V and use it instead of x. 

3. Delay: 

If< S, V, R, E, s0 , lnv > is the automaton corresponding to Band B' = 
Ll dB then the timed automaton corresponding to B is given by : 

< S U {s }, V U {u }, RI:!:J (s, u), E U {(s, ~' u = d, V, s0 )}, s, Inv' >, 

where s fl. S, u E 1£ \ V. 
The label~ represents the expiration of the delay. For all s' E S, Inv' (s') = 
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Inv(s') and Inv(s) = u ~ d; in this way, and due to the transition guard, 

the automaton is restricted and obliged to leave the vertex s after d time 

units. 

4. Choice: 

If< 5;, V;,R;,E;,s?,Inv; > is the automaton of B;,i E {1,2} where 

51 n 52 = 0 and V1 n V2 = 0 and if B := B1 OB2 then the automaton 

corresponding to B is given by : 

<51 U 52 U (51 x 52), V1 U V2, R1 U R2 , E U E1 U E2, [s~, sg], lnv > 
where E is given by: 

E {((s1,s2],a,-rP, V',s~) I (sl,a,-rt>, V',s~) E E1,a E LU{i}} 

U {([s1,s2],a,-rt>, V',s~) I (s2,a,-rP, V',s~) E E2,a E LU{i}} 

U {([s1,s2],w,-rt>, V',(s~,s2]) I (sl,w,-rP, V',s~) E E1, wE {.6-, e}} (1) 

U {([sl,s2],w,-rt>, V', (s1,s~]) I (s2,w,-rt>, V',s~) E E2, wE {.6-,e}} (2) 

For all s; E 5;, Inv(s;) = Inv;(s;) and lnv([s1, s2]) = lnvi(si) 1\ Inv2(s2) 

to represent that time passes at the same rate in both processes. The last 

two transition sets (equations 1 and 2) represent the fact that delay and 

empty transitions do not resolve the choice. 

5. Parallel composition: 

If< 5;, V;, R;, E;, s?, Inv; > is the automaton of B;, i E {1, 2} where 51 n 
52 = 0 and V1 n V2 = 0 and if B := Bd(f]IB2 where f ~ L, then the 

automaton corresponding to B is given by: 

<51 X 52, vl u v2, Rl u R2, E, [s~, sg], Inv > 
where the transition set E is given by: 

E { ((s1, s2], a, "II>, V', (s~, s2]) I (s1, a, "II>, V', s~) E E1, a E L U { .6., i, e} \ f} 

u {((sl, s2], a, "II>, V', [s1, sm I (s2, a, "II>, V' ' s~) E E2, a E L u {.6., i, e} \ f} 

u {([sl, s2], a, "11>1 1\ "11>2. v1 u v2, [s~, s~]) I (s; , a, "II>;, V;, s;) E E;, a E r u {6}} 

For all [s1, s2] E 51 x S2, lnv([s1, s2]) = In vi( sl) 1\ Inv2 (s2) to state that 

the time passes at the same rate in the two processes. The first two sets 

represent transitions resulting from independent actions while the last one 

represents synchronized actions. 

6. The guard: 

If< 5, V, R, E, s0 , Inv > is the automaton of B and B' = [G] ---+ B where 

G E \II(V) then the timed automaton of B' is given by : 

< 5 U {s}, V U {u}, Rltl (s, u), E U (s,e, G, V, s0 ), s,Inv' > 

where s ~ 5 and u ~ V . 

For all s' E 5, Inv'(s') = Inv(s') and Inv'(s) = (u = 0) V ...,G. 
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An empty transition is added to verify the value of the guard. The activa­

tion function of the initial vertex forces the transition to occur immediately 

whenever the guard is evaluated to true. In the other case, the function is 

equivalent to true since, following the ET-LOTOS semantics, the expres­

sion can be aged indefinitely when the guard is false. 

It can be easily proved that the automaton model produced with this 

method, when the guard expressions are restricted to \1/"(V), is a timed au­

tomaton with semi-timers. Indeed, timers are only introduced to represent 

time capture. These timers are never restarted once they are stopped. 

5 DECIDABILITY OF TIMED AUTOMATON WITH 

SEMI-TIMERS 

We define in this section a transformation of timed automata with semi­

timers to timed automata and we show that this transformation provides 

equivalent automata modulo the strong bisimulation. Since reachability is 

decidable on timed automaton [2], we thus prove that this is also the case for 

timed automaton with semi timers, and for the ET-LOTOS subset considered 

in this paper. Moreover this result can be extended to all the basic ET-LOTOS 

operators [8]. 

The principle of the transformation is to substitute any timer x with the 

difference between two clocks Xu and XL . The clock Xu represents the last time 

the timer has been started and x1 the last time it has been stopped. The 

transformation function resets both clocks when the corresponding timer is 

reset and x1 is reset when the transition stops the timer. The formal definition 

of this transformation function is given below. 

Definition 3 Let Tr : T.t ~ T be a transformation function from timed 

automaton with semi-timers into timed automaton. This function is defined 

byTr(< S1, V1,Rt,E1,s~,Inv1 >) = < S1,H2,E2,s~,Inv2 >such that 

• H2 =(Vln1/.)U{xt,xulxEVlni} 

• E2 = {(s,a,¢[J],H',s') I (s,a,¢, V',s') E E1, 

H' = (V'n11.) U {xt,xul xEV'ni}U 

{xt I Rl(s)(x) = 1 and Rl(s')(x) = 0, X E vl ni}, 

I= {xlxEV1ni,R1(s)(x)=O}} 

• Vs E s2, Inv2(s) = Invt(s)[I], I = {xI X E vl nz, Rl(s)(x) = 0}. 

where Vx E V1 n I, {xu, xt} n V1 = 0 and V¢ E w(V), I ~I, ¢[I] E w(V) 
represents the constraint ¢ where all the instances of x E I have been replaced 

by Xu - Xt and where all instances of x E I\ I have been replaced by Xu where 

Xu, Xt E 11. such that Vx # y, Xt # Yl and Xu # Yu· 
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Let's remark that 'If![ I] belongs to lli(V) since I C I and the difference between 

two timers XI, x2 E I is not allowed in lli(V) 

In [7] we proof formally that the transformation function Tr preserves the 

semantics of timed automaton with semi-timers modulo the strong bisimu­

lation i.e. 'VM E T.t, Tr(M) is strongly bisimilar to M. It results that state 

reachability is decidable on our timed automaton model with semi timers. 

6 IMPLEMENTATION 

This transformation method has been implemented in a tool which takes an 

ET-LOTOS specification and transform it in a timed automaton for KRO­

NOS. The tool supports all the basic ET-LOTOS operators, including the 

process instantiation. Usual constraints are put on recursive behaviors: it is 

not allowed through a parallel and on the left hand side of the enabling and 

disabling operators. The implementation of the method has been optimized to 

reduce the number of transitions, vertices and clocks produced. For instance, 

a new clock is not introduced for each prefix operator and ~ transitions are, 

in some cases, removed and replaced by an extended guard on the subse­

quent transitions. Optimizations are also done on the treatment of process 

instantiation in order to avoid, as much as possible, the duplication for each 

instantiation, of an automaton representing the process instantiated. 

Figure 1 The robot controller structure 

The KRONOS tool allows to verify TCTL formulas on timed automata. 

The real-time logic TCTL [1] is an extension of CTL where the two main 

operators have been extended with timing constraints to allow quantitative 

temporal reasoning. The TCTL formulas accepted by KRONOS are defined 

by the following grammar: 

p ::= init I enable(a) I after( a) I c ~ r I -.p I P1 1\ P2 I P13l·hP2 I 
PI 'VUJP2 
where r is a positive integer, ~E {<,~,=,2 , >} , cis a clock of the timed 

automaton under verification, I is a time interval, init represents the initial 



A timed automation mode/for ET-LOTOS verification 201 

state with all the clocks set to zero, enable(a) defines the states where transi­

tions labeled with a are enabled and after( a) defines the set of states reached 

by transitions labeled by a. 

Intuitively, p13UIP2 means that it exists a run which continuously verifies 

Pl until a state which verifies p2 is reached at a timet E J. In the same way, 

Pt VU1P2 means that all runs satisfy the above property. Some typical abbre­

viations are used such as V01p for true VU1 p, 30IP for true 3UI p, 3DIP for 

-,'</()r,p and VD1p for -,3()I....,P· The unrestricted operators correspond to the 

operator subscripted by [0, oo[. This logic allows to specify complex safety and 

liveness properties. 

A robot controller example 

Let us take a small example to illustrate the use of the tools. We consider 

a robot controller which provides commands, based on recent measurements 

of the environment, to a robot. The system consists of five components: two 

sensors, two controller processes and the robot itself (figure 1). The sensors 

probe the environment periodically; all 8 time units for the first one and 12 

time units for the second. A controller process is associated to each sensor. 

The sensor's readings are sent to the controllers which take some amount of 

time to process the information and to send the new command to the robot; 

1 time unit for the first one and 2 time units for the second. These processes 

share the same processor and are controlled by a simple scheduler. This non­

preemptif scheduler gives the processor to each controller for a given amount 

of time. When a controller receive the processor its waits for the reading of 

its sensor. If this reading does not arrive in the time interval defined by the 

scheduler, the processor is given to the other controller. On the other hand, 

the scheduler waits for the end of the reading processing before giving the 

processor to the other controller. In all cases, the scheduler never interrupts 

a reading processing. The problem is to determine the time period given to 

each controller to insure some time limits on the processing of the sensor's 

readings. The processing of the first controller must be started within 6 time 

units after the corresponding sensor's reading. This time limit is set to 8 time 

units for the second controller. 

This robot controller system has been specified in ET-LOTOS (figure 2). 

The sensors are described by two processes Sensor which generate period­

ically the action Reading representing a sensor reading. These actions are 

synchronized with the TimeOut processes which specify the timing require­

ments on the sensor's reading processing. Once a sensor's reading is captured, 

the process offers to its associated controller to start its processing (action 

StartControl) . If the processing is not started in the time limit an exception 

error is raised (action error). The controllers are represented by two simple 

processes (Controller); they wait for the sensor reading and then execute 

their processing (represented by the delay) before exiting. The Scheduler 
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hide StartControll , StartControl2, Reading!, Reading2 in ( 

(Scheduler I[StartControll, StartControl2]1 (TimeOut! Ill Time0ut2)) 

I[Readingl, Reading2]1 (Sensorl Ill Sensor2) 

where 

Scheduler ::= 

(Controller! 0 Llperiodt exit) > > 
(Controller2 0 Llperiod2 exit) >> Scheduler 

Controller! ::= StartControll ; Ll1 exit 

Controller2 ::= StartControl2; Ll 2 exit 

TimeOut! ::=Reading!; (StartControll ; TimeOut! 0 Ll6 error; stop) 

Time0ut2 ::= Reading2; (StartControl2; TimeOut! 0 Ll8 error; stop) 

Sensorl ::=Reading!; ~ 8 Sensorl 

Sensor2 ::= Reading2; ~ 12 Sensor2 

Figure 2 The ET-LOTOS robot system 

process gives the processor to the two controllers in a cyclic way. The choice 

expressions specify the period of processor allocation. If a controller has not 

begun its processing before the period deadline, the processor is given to the 

other controller. The different synchronized actions are hidden to insure their 

urgency; they occur as soon as all the synchronized components offered the 

considered action. This ET-LOTOS specification does not use the time cap­

ture operator but is, nevertheless, well adapted to illustrate our verification 

process. 

We have used our transformation tool to produce the KRONOS timed au­

tomaton corresponding to the robot controller specification. The transforma­

tion tool has produced, in less than 2 seconds, a timed automaton of 207 

states, 659 transitions and 9 clocks on a mono-processor SUN Ultral with 

64MB. We have then used KRONOS to verify some safety requirements on 

the system. We first verify that two sensor's readings are not processed at the 

same time, which can be described in TCTL by: 

init => 'v'D(after(StartControll) => 
\>'D[o,l[ -,( enable(StartControll) or enable(StartControl2))) 

init => 'v'D(after(StartControl2) => 
\>'D[o,2[ -,( enable(StartControll) or enable(StartControl2))) 

These two formulas state that during the processing of one of the sensor, no 

other processing can start. The first formula has been verified in 7.3s and the 

second in 39.9s. 

We have then used KRONOS to define the values of period! and period2 

which insures that all the sensor's readings are processed in time. The system 

is then considered safe if the action error is not reachable which can be 

represented by the following TCTL formula: 

init => \{0-,enable(error) 
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This formula states that it is not possible to reach a state where the action 

error is enabled from the initial state of the automaton. 

periodl 5 6 7 5 4 3 3 4 4 4 3 

period2 3 3 3 4 3 3 4 4 5 6 5 

time 23s 27s 30s 88s 2ls 2ls 28s 27s 95s 453s 39s 

eval true true true false true true true true false false true 

Table 1 Verification results with KRONOS 

The table 1 shows the results obtained for various values of the period 

parameters; the line labeled by time gives the running times given in seconds 

and the eval one gives the results of the TCTL formula evaluation. We have 

tried various configurations and have found 8 configurations which insure the 

safety of the system. Other kind of systems have also been verified where 

processing time of the controllers are non deterministic and where a premp­

tion time is considered. The ET-LOTOS specification must only be slightly 

changed to consider these systems. 

7 CONCLUSION AND FURTHER WORKS 

We have presented, in this paper, a method which allows the transforma­

tion of all the ET-LOTOS operators in a subclass of timed automaton with 

timers. We have shown that this subclass is equivalent to timed automaton by 

providing a conservative transformation between the two models. This work 

has allowed to capture a subset of ET-LOTOS where state reachability is de­

cidable and to develop a tool which allows the verification of real-time logic 

formulas, expressed in TCTL, on an ET-LOTOS specification. This approach 

gives nice results, as shown with our robot controller example, but suffers of 

the state explosion problem. Even for quite small ET-LOTOS specifications 

the corresponding timed automata are large. Moreover, the KRONOS tool can 

only analyze, in a reasonable computation time and memory space, automata 

with no more than approximatively 50.000 states. The execution time depends 

also of the TCTL formula under verification. Further works will optimize the 

transformation method to obtain smaller timed automata. Nevertheless, this 

optimization does not really resolve the state explosion problem. 

Our tool is limited to a subset ofET-LOTOS. We are extending it to full ET­

LOTOS. The idea is to used the hybrid automaton model ofHyTech [6) which 

can be used to support the data part of ET-LOTOS. This tool implements 

a semi-decision procedure for the reachability analysis of hybrid automata. 

This method does not resolve the state explosion problem and moreover, the 

new intermediate model will be more complex than timed automata. We are 

expecting from this last point, less effective results than with KRONOS. 
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Our approach is a first step in the analyze and tool development of timed 

process algebras. It can be used for other process algebras and especially for 

E-LOTOS whose timed semantics is based on ET-LOTOS. Another approach 

will be to use an intermediate representation of ET-LOTOS which avoid the 

explosion problem, like Timed Petri Nets, and to develop a verification tech­

nique adapted to this model. It will then be possible to develop more adapted 

methods to the verification of timed process algebras than the one used here. 
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