
12
A timed automaton model for
ET-LOTOS verification

Christian Hernalsteen

University of Brussels, Computer Science Department

Boulevard du Triomphe CP 212, 1050 Brussels, Belgium
chernals@ulb.ac. be

Abstract

We present in this paper a method to transform ET-LOTOS expressions in

a subclass of timed automaton with timers, where a timer is not restarted

before its reset. We show that this subclass is equivalent to timed automata

and we show that this model can be used for ET-LOTOS verification. We

have implemented this transformation method and interfaced our tool with

the KRONOS model-checker. It is then possible to verify temporal properties,

expressed in TCTL, on ET-LOTOS specifications. We illustrate our tool with

a small robot controller example.

Keywords

ET-LOTOS, Timed automaton , Model-checking, Tools

1 INT RODUCTION

In the last few years, many Formal Description Techniques have been extended

to support the design of real-time systems. These systems are quite complex to

design due to their timing constraints. Moreover they are often safety critical ;

failures can have disastrous consequences which can put, for instance, human

life in peril. The development of such systems can therefore be eased with the

support of formal techniques.

Many process algebras have been extended to allow the description of t imed

dependent systems, see [10] for an overview of FDT's supporting time. ET­

LOTOS [9] is a timed extension of LOTOS which allows the modeling of real­

time behaviors. This extension is currently used to define the timed semantics

of the future ISO standard E-LOTOS (for Extended LOTOS) . Such a language

can only be useful however, if tools can support it and especially its real-t ime

characteristics. Tools which deal with time already exists, like KRONOS [4]

which allows to verify that a formula of the real-time logic TCTL [1] is verified

by a system described by a timed automaton. Other tools based on Hybrid

automata [2] allow to describe and analyze real-time systems like HyTech [6]

and SHIFT [11] . Timed automata is a subclass of hybrid automata where the

Formal Description Techniques and Protocol Specification, Testing and Verification

T. Mizuno, N. Shiratori, T. Higashino & A. Togashi (Eds.) © 1997 lAP. Published by Chapman & Hall

194 Part Three LOTOS and Extension

automaton variables are used to represent the time passing. This model is less

complex to handle than hybrid automata and is more adapted to real-time

systems description.

In (5), a transformation method of an ET-LOTOS subset into timed au­

tomata is proposed but one of the timed operators of ET-LOTOS, the time

capture, is not supported. We propose in this paper to extend this method

in order to allow the transformation of this operator. To reach this goal, we

use timed automaton with timers to represent ET-LOTOS expressions. We

show that the resulting automaton model is a subclass of timed automaton

with timers where a timer is never restarted before its reset and we prove

that this subclass is equivalent to timed automata. Timed automata are de­

cidable for reachability analysis (2]. We have then captured an ET-LOTOS

subset including all the operators, with some restrictions on their use, which

is decidable. A tool implementing the transformation has been developed and

interfaced with the KRONOS model-checker. ET-LOTOS specifications can

then be transformed in timed automaton and verified with KRONOS. Since

timed semantics of E-LOTOS will be based on ET-LOTOS, it will be possible

to extend this work to this future ISO standard.

The approach of transforming a real time process algebra in a automaton

model for model-checking purposes have already bee used for RT-LOTOS [3).

In this work a specific automaton model (Dynamic Timed Automaton) and

a transformation in two phases have been defined . With this transformation,

the reachability analysis may be performed on the fly which is not possible

with our compositional transformation.

2 ET-LOTOS

ET-LOTOS extends LOTOS with a global time which can be discrete or

dense. We consider, in this paper, a dense time domain: Q+ . Three timing

constructs are added to the LOTOS ones. These can be used to restrict the

time interval where an action can occur. With the life reducer(a{d}; B), the

action a is limited to occur within d time units. It is not an mandatory for an

observable action a to occur within d time units, but if it does not, the process

behaves like stop. If a is the internal action (i), the action must occur within

d time units (or be preempted by another alternative) . The internal action

is urgent. The time capture (a Ox; B) allows to capture in an ET-LOTOS

variable (x) the time at which the action a has occurred (the time elapsed

between the moment the behavior has been offered and the one at which the

action has occurred) . The third operator is the delay (~d B) where

the behavior B is offered to the environment after a waiting time of d time

units.

The formal semantics of ET-LOTOS is given in terms of labeled transition

systems composed of two kinds of transitions, namely discrete and timed. This

semantics can be found in found in (9] .

A timed automation model for ET-LOTOS verification 195

3 TIMED AUTOMATON WITH TIMERS

We define in this section a model of automaton extended with clocks and

timers (also called integrators or stop watch in the literature). Clocks value

grows uniformly in all vertices proportionally with the time passing. A timer

is a clock which can be started and stopped on a transition.

Let V = 1l U I be an infinite set of variables having a value in the set

of positive rationals Q+; 1l and I are respectively the infinite sets of clocks

and timers with 1l n I= 0. Let S denotes an infinite set of vertices and Lab

a label set. Let 'II(V) be the set of constraints on variables defined as the

smallest set satisfying: 1/J ::= trueiu ~ clu1 - u2 ~ cix ~ ci•1/JI1/J /\ 1/J where

u,u1,u2 E1l,x EI,cE '2-and ~ E {<,:~:;}.

Definition 1 A timed automaton with timers is defined as a tuple < S, V, R, E,

s0 , Inv > where

S C S is a finite set of vertices,

V C V is a finite set of variables,

R: S x V--+ {0, 1} is the rate labeling function,

E ~ S x Lab x 'II(V) x 2v x S is the finite set of transitions,

s0 E S is the initial vertex,

/nv : S--+ w(V) is the vertex invariant

where 'Vx E V n 11., '<Is E S, R(s)(x) = 1.

A transition e = (s, a, 1/J, V', s') from the vertex s to a vertex s' is labeled

by an action (a). The transition can be fired if its guard 1/J is evaluated to true

and the variables of V' are reset when the transition occurs. We say that a

transition starts (resp. stops) a timer x if R(s)(x) = 0 and R(s')(x) = 1 (resp.

R(s)(x) = 1 and R(s')(x) = 0). The vertex invariant determines for each ver­

tex whenever the time can progress, and hence whenever the automaton can

stay in the vertex.

We define two subclasses of timed automaton with timers: timed automa­

ton where all the variables are clocks (V C 11.) and timed automaton with

semi-timers where a timer is always reseted before being restarted ('v'e =
(s,a,,P, V',s') E E, 'Vx E Vni : (R(s)(x) = 0 and R(s')(x) = 1) ==> x E

V').

We denote v a valuation, i.e., a function which associates to each variable

x E V a value in Q+. The set of valuations on variables is denoted V and the

one restricted to clocks is denoted JH!. Valuation can be naturally extended to

constraints on variables: for each 1/J E 'lf(V) and v E V, 1/J(v) represents the

value of the constraints 1/J evaluated in v. The valuation v[V := 0] represents

the valuation v where all the variables of V have been reset to 0. For a valu­

ation v E V, a rate labeling function R, and t E Q+, v + R .t denotes a new

valuation v' such that for every variable x E V, v'(x) = v(x) + R(x).t . For a

196 Part Three LOTOS and Extension

valuation v E IHI, and t E IQ+, v + t denotes a new valuation v' such that for

every clock u E 1£, v'(u) = v(u) +t.

The semantics of a timed automaton with timers is given by the following

definition.

Definition 2 The model of a timed automaton with timers< 5, V, R , E, s0 , Inv >

is the labeled transition system < Q, ---+, q0 > where :

1. Q = {(s,v)llnv,(v),s E 5,v E V}

2. q0 =(s0 ,v0),where'VxEV v0 (x)=0

3. The transition relation ---+ ~ Q x (Lab U IQ+) x Q is defined on Q by the

smallest relation defined by the following rules:

{Rl} (s,a,1/J, V',s') E E 1\ lj! (v)

(s, v) ~ (s', v[V' := 0])

where a E Lab, v E V, dE IQ+.

(R2) Vd':::; d Inv,(v + R(s).d')

(s,v) ~ (s, v +R(s) .d)

4 TRANSFORMATION OF ET-LOTOS

We provide in this section, a method to transform an ET-LOTOS expression

in a timed automaton with timers where Lab = L U { i, .:l, £} (.:l represents

the expiration of a delay and£ an empty transition) . This transformation is

inspired from the work presented in [5]. We restrict ourself to some of the

operators but the method can be extended to all the basic operators of ET­

LOTOS (see (8]).

We first define two notations to handle rate labeling functions. We define

R = Rt u R2 the union of two rate labeling functions Rl : 51 X vl and

R2 : 51 X v2 with sl n 52 = vl n v2 = 0 as R: (51 u 52 u (51 X 52)) X (Vl u V2)

where Vsl E 5t,S2 E 52,Xl E Vt,X2 E v2,x E Vt u v2 :

R(s;)(x;) = R;(s;)(x;) i E {1, 2}

R([sl' s2])(x) = { Rt(st)(x) ~f X E vl
R2(s2)(x) l/ X E v2

We define the extension a rate labeling function with a new variable and

vertex. If R is a rate labeling function and (s, x) ft. Dom(R) a vertex and a

variable, we define R' = R 1±1 (s, x) the new rate labeling function resulting

from the extension of R with the couple (s, x) where :

Vx' E Domv(R), Vs' E Dom, (R) R'(s')(x') = R(s')(x')

Vx' E Domv(R) R'(s)(x') = { ~ !~ ~: ~ ~

A timed automation mode/for ET-LOTOS verification 197

Vs' E Dom.(R) R'(s')(x) = { ~ ~~: ~ ~

R'(s)(x) = 1

where Domv (R) and Dom. (R) represent, respectively, the variable and

vertex domain of the rate labeling function R.

The transformation method is defined in a compositional way, where the

automaton corresponding to an ET-LOTOS expression depends on the au­

tomata of the operand's expressions. It results that produced automata may

contain guard transitions with variables which does not belong to V since a
variable is introduced when it is defined via a time capture and not when it

is used via a guard. In all cases the final automaton is complete if the original

ET-LOTOS specification is semantically correct.

1. The process stop:

This process is transformed in < { s}, { u}, R, 0, s, I nv >where u E 'H., Inv(s) =
true and R(s)(u) = 1.

This timed automaton with timers (automaton for short in the sequel) has
no transition and has no variable, but the clock u is needed to represent

the time passing as specified in the semantic rule (R2).

2. Action prefix:

If< S, V, R, E, s0 , Inv > is the automaton corresponding to the behavior

Band B' = a@x{d}; B then the timed automaton corresponding to B' is
given by:

< S U { s} , V U { x}, R l±J (s, x) , E U { (s, a, x ::::; d, V, s0)}, s, In v' >

where s fl. S, x E I\ V and for all s' E S, Inv'(s') = Inv(s').
The activation function of the new vertex is defined by Inv'(s) =true if

the action a is observable, since the action is not obliged to occur before

time d but only restricted to occur within this limit; if action a = i, the

action must occur within the time limit, then the function Inv is defined

as Inv'(s) = x ::::; d. The new rate labeling function states that the timer
x is frozen on all the vertices but s. If the time capture is not present, we
introduce a new clock u E 1£ \ V and use it instead of x.

3. Delay:

If< S, V, R, E, s0 , lnv > is the automaton corresponding to Band B' =
Ll dB then the timed automaton corresponding to B is given by :

< S U {s }, V U {u }, RI:!:J (s, u), E U {(s, ~' u = d, V, s0)}, s, Inv' >,

where s fl. S, u E 1£ \ V.
The label~ represents the expiration of the delay. For all s' E S, Inv' (s') =

198 Pan Three LOTOS and Extension

Inv(s') and Inv(s) = u ~ d; in this way, and due to the transition guard,

the automaton is restricted and obliged to leave the vertex s after d time

units.

4. Choice:

If< 5;, V;,R;,E;,s?,Inv; > is the automaton of B;,i E {1,2} where

51 n 52 = 0 and V1 n V2 = 0 and if B := B1 OB2 then the automaton

corresponding to B is given by :

<51 U 52 U (51 x 52), V1 U V2, R1 U R2 , E U E1 U E2, [s~, sg], lnv >
where E is given by:

E {((s1,s2],a,-rP, V',s~) I (sl,a,-rt>, V',s~) E E1,a E LU{i}}

U {([s1,s2],a,-rt>, V',s~) I (s2,a,-rP, V',s~) E E2,a E LU{i}}

U {([s1,s2],w,-rt>, V',(s~,s2]) I (sl,w,-rP, V',s~) E E1, wE {.6-, e}} (1)

U {([sl,s2],w,-rt>, V', (s1,s~]) I (s2,w,-rt>, V',s~) E E2, wE {.6-,e}} (2)

For all s; E 5;, Inv(s;) = Inv;(s;) and lnv([s1, s2]) = lnvi(si) 1\ Inv2(s2)

to represent that time passes at the same rate in both processes. The last

two transition sets (equations 1 and 2) represent the fact that delay and

empty transitions do not resolve the choice.

5. Parallel composition:

If< 5;, V;, R;, E;, s?, Inv; > is the automaton of B;, i E {1, 2} where 51 n
52 = 0 and V1 n V2 = 0 and if B := Bd(f]IB2 where f ~ L, then the

automaton corresponding to B is given by:

<51 X 52, vl u v2, Rl u R2, E, [s~, sg], Inv >
where the transition set E is given by:

E { ((s1, s2], a, "II>, V', (s~, s2]) I (s1, a, "II>, V', s~) E E1, a E L U { .6., i, e} \ f}

u {((sl, s2], a, "II>, V', [s1, sm I (s2, a, "II>, V' ' s~) E E2, a E L u {.6., i, e} \ f}

u {([sl, s2], a, "11>1 1\ "11>2. v1 u v2, [s~, s~]) I (s; , a, "II>;, V;, s;) E E;, a E r u {6}}

For all [s1, s2] E 51 x S2, lnv([s1, s2]) = In vi(sl) 1\ Inv2 (s2) to state that

the time passes at the same rate in the two processes. The first two sets

represent transitions resulting from independent actions while the last one

represents synchronized actions.

6. The guard:

If< 5, V, R, E, s0 , Inv > is the automaton of B and B' = [G] ---+ B where

G E \II(V) then the timed automaton of B' is given by :

< 5 U {s}, V U {u}, Rltl (s, u), E U (s,e, G, V, s0), s,Inv' >

where s ~ 5 and u ~ V .

For all s' E 5, Inv'(s') = Inv(s') and Inv'(s) = (u = 0) V ...,G.

A timed automation model for ET-LOTOS verification 199

An empty transition is added to verify the value of the guard. The activa­

tion function of the initial vertex forces the transition to occur immediately

whenever the guard is evaluated to true. In the other case, the function is

equivalent to true since, following the ET-LOTOS semantics, the expres­

sion can be aged indefinitely when the guard is false.

It can be easily proved that the automaton model produced with this

method, when the guard expressions are restricted to \1/"(V), is a timed au­

tomaton with semi-timers. Indeed, timers are only introduced to represent

time capture. These timers are never restarted once they are stopped.

5 DECIDABILITY OF TIMED AUTOMATON WITH

SEMI-TIMERS

We define in this section a transformation of timed automata with semi­

timers to timed automata and we show that this transformation provides

equivalent automata modulo the strong bisimulation. Since reachability is

decidable on timed automaton [2], we thus prove that this is also the case for

timed automaton with semi timers, and for the ET-LOTOS subset considered

in this paper. Moreover this result can be extended to all the basic ET-LOTOS

operators [8].

The principle of the transformation is to substitute any timer x with the

difference between two clocks Xu and XL . The clock Xu represents the last time

the timer has been started and x1 the last time it has been stopped. The

transformation function resets both clocks when the corresponding timer is

reset and x1 is reset when the transition stops the timer. The formal definition

of this transformation function is given below.

Definition 3 Let Tr : T.t ~ T be a transformation function from timed

automaton with semi-timers into timed automaton. This function is defined

byTr(< S1, V1,Rt,E1,s~,Inv1 >) = < S1,H2,E2,s~,Inv2 >such that

• H2 =(Vln1/.)U{xt,xulxEVlni}

• E2 = {(s,a,¢[J],H',s') I (s,a,¢, V',s') E E1,

H' = (V'n11.) U {xt,xul xEV'ni}U

{xt I Rl(s)(x) = 1 and Rl(s')(x) = 0, X E vl ni},

I= {xlxEV1ni,R1(s)(x)=O}}

• Vs E s2, Inv2(s) = Invt(s)[I], I = {xI X E vl nz, Rl(s)(x) = 0}.

where Vx E V1 n I, {xu, xt} n V1 = 0 and V¢ E w(V), I ~I, ¢[I] E w(V)
represents the constraint ¢ where all the instances of x E I have been replaced

by Xu - Xt and where all instances of x E I\ I have been replaced by Xu where

Xu, Xt E 11. such that Vx # y, Xt # Yl and Xu # Yu·

200 Part Three LOTOS and Extension

Let's remark that 'If![I] belongs to lli(V) since I C I and the difference between

two timers XI, x2 E I is not allowed in lli(V)

In [7] we proof formally that the transformation function Tr preserves the

semantics of timed automaton with semi-timers modulo the strong bisimu­

lation i.e. 'VM E T.t, Tr(M) is strongly bisimilar to M. It results that state

reachability is decidable on our timed automaton model with semi timers.

6 IMPLEMENTATION

This transformation method has been implemented in a tool which takes an

ET-LOTOS specification and transform it in a timed automaton for KRO­

NOS. The tool supports all the basic ET-LOTOS operators, including the

process instantiation. Usual constraints are put on recursive behaviors: it is

not allowed through a parallel and on the left hand side of the enabling and

disabling operators. The implementation of the method has been optimized to

reduce the number of transitions, vertices and clocks produced. For instance,

a new clock is not introduced for each prefix operator and ~ transitions are,

in some cases, removed and replaced by an extended guard on the subse­

quent transitions. Optimizations are also done on the treatment of process

instantiation in order to avoid, as much as possible, the duplication for each

instantiation, of an automaton representing the process instantiated.

Figure 1 The robot controller structure

The KRONOS tool allows to verify TCTL formulas on timed automata.

The real-time logic TCTL [1] is an extension of CTL where the two main

operators have been extended with timing constraints to allow quantitative

temporal reasoning. The TCTL formulas accepted by KRONOS are defined

by the following grammar:

p ::= init I enable(a) I after(a) I c ~ r I -.p I P1 1\ P2 I P13l·hP2 I
PI 'VUJP2
where r is a positive integer, ~E {<,~,=,2 , >} , cis a clock of the timed

automaton under verification, I is a time interval, init represents the initial

A timed automation mode/for ET-LOTOS verification 201

state with all the clocks set to zero, enable(a) defines the states where transi­

tions labeled with a are enabled and after(a) defines the set of states reached

by transitions labeled by a.

Intuitively, p13UIP2 means that it exists a run which continuously verifies

Pl until a state which verifies p2 is reached at a timet E J. In the same way,

Pt VU1P2 means that all runs satisfy the above property. Some typical abbre­

viations are used such as V01p for true VU1 p, 30IP for true 3UI p, 3DIP for

-,'</()r,p and VD1p for -,3()I....,P· The unrestricted operators correspond to the

operator subscripted by [0, oo[. This logic allows to specify complex safety and

liveness properties.

A robot controller example

Let us take a small example to illustrate the use of the tools. We consider

a robot controller which provides commands, based on recent measurements

of the environment, to a robot. The system consists of five components: two

sensors, two controller processes and the robot itself (figure 1). The sensors

probe the environment periodically; all 8 time units for the first one and 12

time units for the second. A controller process is associated to each sensor.

The sensor's readings are sent to the controllers which take some amount of

time to process the information and to send the new command to the robot;

1 time unit for the first one and 2 time units for the second. These processes

share the same processor and are controlled by a simple scheduler. This non­

preemptif scheduler gives the processor to each controller for a given amount

of time. When a controller receive the processor its waits for the reading of

its sensor. If this reading does not arrive in the time interval defined by the

scheduler, the processor is given to the other controller. On the other hand,

the scheduler waits for the end of the reading processing before giving the

processor to the other controller. In all cases, the scheduler never interrupts

a reading processing. The problem is to determine the time period given to

each controller to insure some time limits on the processing of the sensor's

readings. The processing of the first controller must be started within 6 time

units after the corresponding sensor's reading. This time limit is set to 8 time

units for the second controller.

This robot controller system has been specified in ET-LOTOS (figure 2).

The sensors are described by two processes Sensor which generate period­

ically the action Reading representing a sensor reading. These actions are

synchronized with the TimeOut processes which specify the timing require­

ments on the sensor's reading processing. Once a sensor's reading is captured,

the process offers to its associated controller to start its processing (action

StartControl) . If the processing is not started in the time limit an exception

error is raised (action error). The controllers are represented by two simple

processes (Controller); they wait for the sensor reading and then execute

their processing (represented by the delay) before exiting. The Scheduler

202 Part Three LOTOS and Extension

hide StartControll , StartControl2, Reading!, Reading2 in (

(Scheduler I[StartControll, StartControl2]1 (TimeOut! Ill Time0ut2))

I[Readingl, Reading2]1 (Sensorl Ill Sensor2)

where

Scheduler ::=

(Controller! 0 Llperiodt exit) > >
(Controller2 0 Llperiod2 exit) >> Scheduler

Controller! ::= StartControll ; Ll1 exit

Controller2 ::= StartControl2; Ll 2 exit

TimeOut! ::=Reading!; (StartControll ; TimeOut! 0 Ll6 error; stop)

Time0ut2 ::= Reading2; (StartControl2; TimeOut! 0 Ll8 error; stop)

Sensorl ::=Reading!; ~ 8 Sensorl

Sensor2 ::= Reading2; ~ 12 Sensor2

Figure 2 The ET-LOTOS robot system

process gives the processor to the two controllers in a cyclic way. The choice

expressions specify the period of processor allocation. If a controller has not

begun its processing before the period deadline, the processor is given to the

other controller. The different synchronized actions are hidden to insure their

urgency; they occur as soon as all the synchronized components offered the

considered action. This ET-LOTOS specification does not use the time cap­

ture operator but is, nevertheless, well adapted to illustrate our verification

process.

We have used our transformation tool to produce the KRONOS timed au­

tomaton corresponding to the robot controller specification. The transforma­

tion tool has produced, in less than 2 seconds, a timed automaton of 207

states, 659 transitions and 9 clocks on a mono-processor SUN Ultral with

64MB. We have then used KRONOS to verify some safety requirements on

the system. We first verify that two sensor's readings are not processed at the

same time, which can be described in TCTL by:

init => 'v'D(after(StartControll) =>
\>'D[o,l[-,(enable(StartControll) or enable(StartControl2)))

init => 'v'D(after(StartControl2) =>
\>'D[o,2[-,(enable(StartControll) or enable(StartControl2)))

These two formulas state that during the processing of one of the sensor, no

other processing can start. The first formula has been verified in 7.3s and the

second in 39.9s.

We have then used KRONOS to define the values of period! and period2

which insures that all the sensor's readings are processed in time. The system

is then considered safe if the action error is not reachable which can be

represented by the following TCTL formula:

init => \{0-,enable(error)

A timed automation model for ET-LOTOS verification 203

This formula states that it is not possible to reach a state where the action

error is enabled from the initial state of the automaton.

periodl 5 6 7 5 4 3 3 4 4 4 3

period2 3 3 3 4 3 3 4 4 5 6 5

time 23s 27s 30s 88s 2ls 2ls 28s 27s 95s 453s 39s

eval true true true false true true true true false false true

Table 1 Verification results with KRONOS

The table 1 shows the results obtained for various values of the period

parameters; the line labeled by time gives the running times given in seconds

and the eval one gives the results of the TCTL formula evaluation. We have

tried various configurations and have found 8 configurations which insure the

safety of the system. Other kind of systems have also been verified where

processing time of the controllers are non deterministic and where a premp­

tion time is considered. The ET-LOTOS specification must only be slightly

changed to consider these systems.

7 CONCLUSION AND FURTHER WORKS

We have presented, in this paper, a method which allows the transforma­

tion of all the ET-LOTOS operators in a subclass of timed automaton with

timers. We have shown that this subclass is equivalent to timed automaton by

providing a conservative transformation between the two models. This work

has allowed to capture a subset of ET-LOTOS where state reachability is de­

cidable and to develop a tool which allows the verification of real-time logic

formulas, expressed in TCTL, on an ET-LOTOS specification. This approach

gives nice results, as shown with our robot controller example, but suffers of

the state explosion problem. Even for quite small ET-LOTOS specifications

the corresponding timed automata are large. Moreover, the KRONOS tool can

only analyze, in a reasonable computation time and memory space, automata

with no more than approximatively 50.000 states. The execution time depends

also of the TCTL formula under verification. Further works will optimize the

transformation method to obtain smaller timed automata. Nevertheless, this

optimization does not really resolve the state explosion problem.

Our tool is limited to a subset ofET-LOTOS. We are extending it to full ET­

LOTOS. The idea is to used the hybrid automaton model ofHyTech [6) which

can be used to support the data part of ET-LOTOS. This tool implements

a semi-decision procedure for the reachability analysis of hybrid automata.

This method does not resolve the state explosion problem and moreover, the

new intermediate model will be more complex than timed automata. We are

expecting from this last point, less effective results than with KRONOS.

204 Part Three LOTOS and Extension

Our approach is a first step in the analyze and tool development of timed

process algebras. It can be used for other process algebras and especially for

E-LOTOS whose timed semantics is based on ET-LOTOS. Another approach

will be to use an intermediate representation of ET-LOTOS which avoid the

explosion problem, like Timed Petri Nets, and to develop a verification tech­

nique adapted to this model. It will then be possible to develop more adapted

methods to the verification of timed process algebras than the one used here.

REFERENCES

[1] R. Alur and C. Courcoubetis and D.L. Dill (1990). Model-checking for

real-time systems, in Proceedings of the 5th Symposium on Logic Com­

puter Science, pages 414-425.

[2] R. Alur, C. Courcoubetis, N. Hallbwachs, T.A. Henzinger, P.-H HO, X.

Nicollin, A. Olivero, J . Sifakis and S. Yovine (1995) . The algorithmic

analysis of hybrid systems, in TCS 138, pages 3-34.

[3] J .-P. Courtiat and R.C . de Oliveira (1995) . A Reachability Analysis

of RT-LOTOS Specifications, in Formal Description techniques VIII,

chapman & Hall, pages 117-124.

[4] C. Daws and A. Olivero and S. Tripakis and S. Yovine (1996). The tool

KRONOS, in Hybrid Systems III, Lecture Notes in Computer Science

1066, Springer-Verlag

[5] C. Daws and A. Olivero and S. Yovine (1994). Verifying ET-LOTOS pro­

grams with KRONOS, in Seventh International Conference on Formal

Description Techniques, Chapman & Hall, pages 227-242 .

[6] T . A. Henzinger and P. H. Ho (1994). HyTech: the cornell HYbrid TECH­

nology tool, in Hybrid Systems II, Lecture Notes in Computer Science

999, Springer-Verlag, pages 265-294.

[7] C. Hernalsteen (1997). Timed automaton with semi timers for ET­

LOTOS verification, Technical report TR-363, Computer science de­

partment, Free University of Brussels.

[8] C. Hernalsteen and T. Massart (1995). An extended timed automa­

ton to model ET-LOTOS Specification, in participant's proceedings

of DARTS'95, pages 95-112

[9] Luc Leonard and Guy Leduc (1994). An Enhanced Version of Timed

LOTOS and Its Application to a Case Study, in FORTE-VI, pages 483-

500, North-Holland.

[10] X. Nicollin and J . Sifakis (1991) . An overview and synthesis on timed

process algebra, in Proc. 3rd Workshop on Computer-Aided Verifica­

tion.

[11] P. Varaiya (1997). SHIFT: A language for simulating Interconnected Hy­

brid Systems, in Hybrid and Real-Time Systems, Lecture Notes in

Computer Science 1201, Springer-Verlag.

