
A Timing-Accurate Modeling and Simulation Environment
for Networked Embedded Systems

Franco Fummi†

Giovanni Perbellini †

Paolo Gallo ∗

Massimo Poncino †

Stefano Martini †

Fabio Ricciato ∗

† Università di Verona ∗Telecom Italia Lab
Verona, ITALY 37134 Torino, ITALY 10148

ABSTRACT
The design of state-of-the-art, complex embedded systems
requires the capability of modeling and simulating the com-
plex networked environment in which such systems operate.
This implies the availability of both a networking modeling
environment and traditional system-level modeling capabil-
ities. In this paper we present a modeling and simulation
methodology based on a timing accurate integration of a
system-level modeling language (SystemC) and a network
simulation environment (NS-2). The efficiency of the pro-
posed design environment has been demonstrated on a de-
scription of a 802.11 MAC layer.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-Aided Engineer-
ing; C.2 [Computer Systems Organization]: Computer-
Communication Networks; B.8 [Hardware]: Performance
and Reliability

Keywords
Co-Simulation, Emulation, SystemC, Remote Debugging

General Terms
Algorithms, Performance

1. INTRODUCTION
Modern embedded systems exhibit an increasingly large

quantity of communication capabilities; the devices should
be casually accessible, mobile or embedded in the environ-
ment, and sometimes operate in hostile conditions and con-
nected to a network structure.
The communication issue is also crucial within the embed-

ded system itself, where the on-chip bus architecture is be-
coming the key factor for the embedded system performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

success. As stated by International Technology Roadmap
for Semiconductor [1], for technologies below 65nm it will
be impossible to efficiently move synchronous signals across
large dies and to keep the same clock synchronization along
the whole chip due to delay and power problems. The syn-
chronous approach will shift toward a globally asynchronous
and locally synchronous approach (GALS) [2], where self-
timed blocks will communicate as different computers in a
network. This will bring a network-oriented paradigm into
on-chip architectures [3].
The idea is to model these networked embedded systems

in a hybrid style: part of the system is modeled in a conven-
tional, system-level, hardware-oriented environment, while
the network part is described with a network modeling tool.
In this way, we can have preliminary feedbacks on the inter-
action between the embedded system to be implemented and
the network environment. Figure 1 shows a typical context
of application of this mixed-level simulation, where some
embedded devices under project are progressively refined
toward the system-level hardware domain.

����������	
�������������	
���

��������

	�
���

��������

	�
���

��������

	�
���

��������

	�
���

��������

	�
���
��������

	�
���

��������	
������

��������

	�
���

��������

	�
���

���������
����	�
�
�����
����	�

������	��
����	���
������

Figure 1: Example of Integrated Simulation Frame-
work.

The refinement steps will be carried out on the system-
level model, reusing the same network model at lower refine-
ment levels. This is possible, however, only if the network
simulator is timing-accurate and synchronized with the sys-
tem simulator. In other words, the simulators should have a
common notion of time, and they should have the possibility
of exchanging data bidirectionally. This will yield a faster
modeling of a system with respect to a description entirely

42

4.2

specified as a system model, provided that the synchroniza-
tion overhead is not too heavy.
Another issue is concerned with the data exchange format

between the two simulators. A network simulator usually
does not have bit-true models of data, and uses abstract
data types to describe packets, frames and messages. The
model of the embedded device must have bit-true data in-
terfaces available, at least at lower refinement levels; some
translation interfaces are therefore required.
A tool embedding a network simulator and an embedded

system modeling environment can significantly speed up the
design of a networked device, by producing the testbed in
shorter times. In addition, it allows to verify and validate
the embedded system communication structure by comple-
menting its protocol stack with a reference protocol stack
described at higher level with the network simulator.
This work describes a simulation framework consisting of

the integration of two simulators: SystemC [4], as a system-
level simulator, and NS-2 [5], as a network simulator. The
integration is carried out at the level of the simulation ker-
nels, to provide maximum efficiency, and it supports a timing-
accurate synchronization of the two simulators. Results on
an industrial case study, relative to the implementation of
an 802.11 MAC Interface [6] design shows the high efficiency
of the proposed integrated solution.

2. SIMULATION ENVIRONMENT
The issue of integrating different simulators is a well-

known problem in the CAD community, and is known as
co-simulation. Several co-simulation frameworks have been
proposed in the literature [7, 8]. They typically differ in
the abstraction levels targeted by the involved simulators
(transactional, instruction-level, RTL), and in the type of
communication primitives used for their synchronization.
In [9], Matlab is used to model the entire system (network

and candidate hardware); this solution, however, does not
provide a direct path to hardware. In [10], the system (an
ADSL modem with the environment) is completely modeled
in C++, thus making quite hard to model a complex net-
work, in order to verify the device under design. The work
of [11] directly connects the device model to a real network,
without using a specific network model. None of these ex-
isting solutions explicitly targets the integration of network
and system-level simulation by “connecting” effective simu-
lators of both fields.
Our approach relies on two well-known simulation envi-

ronments: SystemC [4], and the Network Simulator-2 [5].
SystemC is a C++ class library that can be used to cre-
ate models of a system at different abstraction levels, from
the system-level to the cycle-accurate one. NS-2 is one of
the most popular tools for network protocol and algorithm
analysys. It is based on two programming languages: C++
and OTcl, which separate the actual simulation kernel (writ-
ten in C++) and the simulation configuration.
Both simulators are conventional event-driven engines;

they schedule the execution of events in non-decreasing order
of timestamp. What differs is the semantics of the events.
In SystemC, events are associated to hardware-like entities
such as signals and ports. The fact that SystemC explicitly
supports the notion of a clock is purely conceptual, and it is
only used to define the time granularity of the events. In NS-
2, events are associated to asynchronous changes on commu-
nication channels such as sending or receiving a packet.

����������	
�
�	�
���
��	�

���������

����������	
���	�����
�������
������	�

�	
����������

����������	
�
�	�
���
��	�

���������

����������	
���	�����
�������
������	�

�	
����������

�
�� �

��

����������	

�
�	�

���

��	�

���������

����������	

���	�����

�������

������	�

�	
����������

�
�����

���

���

���

Figure 2: Simulation Abstraction Levels.

2.1 Simulation Interaction
When designing an integrated simulation framework, two

are the main issues that affect the integration and define the
semantics of the simulation. The first, and most important,
is how tight the two simulators will be coupled. The op-
tions range from establishing a communication between the
two simulators through a straightforward message-passing
or shared memory interface, to a complete integration of the
two simulation kernels. The second issue has to do with the
level of abstraction at which the two simulators interact,
and is meaningful for simulators that support various levels
of abstractions. This may range from packet-level interfaces
to low-level signals.
In our context, these two issues first require some insights

on the features of NS-2 and SystemC. Both simulators con-
sider the target description as a hierarchical entity, whose
levels correspond to different abstraction layers and different
granularities of the data manipulated by the simulators.
NS-2 views network descriptions as layered, protocol-like

entities, consisting of four hierarchical objects: links, nodes,
agents, and applications. These roughly map to the data
link, network, transport and application layer of a simplified
protocol stack, respectively. Agents, in particular, represent
endpoints where network-layer packets are constructed or
consumed, and provide support for all transport protocols
primitives.
In SystemC, the abstraction layers are related to the re-

finement of the initial specification, and are labeled, in our
context, with the conventional protocol layer names.
When simulating networked embedded systems, the most

straightforward integration is shown in Figure 2-(a). Here,
a NS-2 agent (and thus, a packet-level interface) is con-
nected to a “network”-layer SystemC entity, corresponding
to a structural description style. This solution simply im-
plies the exchange of messages between these two layers,
plus some sort of message translation interface. In this case,
however, any synchronization of the two simulators requires
an explicit message through a user-level API (e.g., UNIX
sockets), which makes the communication overhead burden-

43

some. Furthermore, a consistent timing synchronization is
not easy to achieve; since time is managed within the sim-
ulation kernel, any access to time information requires the
interaction with the local kernels.
A direct, message-based integration at the simulation ker-

nel level (Figure 2-(b)) may be a more efficient solution,
since the communication overhead is limited to the messages
exchanged between the kernels. However, as denoted by the
two separate times scales, this approach does not solve the
issue of timing synchronization automatically.
Figure 2-(c) shows the solution proposed in our work. The

two kernels are tightly coupled (the dotted outer box), and
the integration, though still message-based, allows for an
easier synchronization of the respective simulation times.
The high efficiency of this solution is presented in the ex-
perimental results section.

3. KERNEL SYNCHRONIZATION
The issue of keeping the two simulators synchronized in

time is far from being trivial. As a matter of fact, one thing
is to guarantee that the simulation times in each simula-
tor are mutually consistent, which can be considered as a
relatively easy task. A sensibly more difficult problem is to
keep the two simulators consistent when data are exchanged
between them. In this section we will discuss the technical
issues related to this problem, and the relative implementa-
tion details.

3.1 Basic Timing Synchronization
Conceptually speaking, the synchronization of the two

simulators can be realized according to two conceptual
schemes. Asymmetric, where one of the two simulators (the
master) explicitly controls the execution of the other (the
slave). Symmetric, where no simulator has explicit control
on the other, and the global time is kept consistent by re-
ciprocally exchanging messages. Our approach follows the
second scheme; in particular, the two simulators execute in
lockstep: at any given time, the simulator with the smaller
local time is executing, while the other one is blocked.
Figure 3 shows the pseudocode of the time synchroniza-

tion procedure, which is executed by both kernels. In the
figure, the subscript k1 refers to the kernel currently execut-
ing the code, and k2 to the other kernel.

1 SynchronizeTime () {
2 Setup phase;

do {
3 Receive(Tk2); // from other kernel
4 if (Tk1 < Tk2) {;
5 schedule event;
6 Send(T next

k1);
} else {

7 Send(Tk1);
}

8 } while (there are messages)
}

Figure 3: Synchronization of Simulation Times.

We discuss the pseudocode with reference to one of the
two simulators. After a setup phase (Line 2), which is exe-
cuted only by the simulator that starts the synchronization,
the simulator gets the “remote” simulation time from the
other kernel Tk2 (Line 3). Once read, it compares Tk2 with

its own, “local”, simulation time Tk1 (Line 4). If local time
is smaller than the remote one, then the simulator is lagging
behind and the event currently ready to be scheduled is ex-
ecuted (Line 5). Furthermore, the time of the next event
in the scheduler queue T next

k1 is sent to the other simulator
for synchronization (Line 6). Conversely, if the simulator is
ahead of time with respect to the remote one it does not
execute, and it send its current simulation time Tk1 to the
other simulator (Line 7). The above operations are repeated
(Line 8) for the duration of the computation.

3.2 Handling Data Exchange
The relatively straightforward scheme of Figure 3 works

fine as long as only the simulation times need to be kept
consistent. In most of the cases, however, the interaction
between the two simulators requires the exchange of some
data, whose sequence over time must be also be kept con-
sistent. This implies the modification of the data structures
of the two kernels in order to handle the separation between
events and associated data. Since both NS-2 and SystemC
are event-driven, they both exhibit the classical structure
with a conventional Ready Queue containing ready-to-run
events, from which the corresponding scheduler picks the
events, in order of non-decreasing timestamp, and dispatches
it for the execution of the relative action.

�������
��	�	

���

������

���
��	�	
�����	�

���	��
��	�	
�����	�

�	
���
������

���
��	�	
�����	�

���	��
��	�	
�����	�

�	���
��	�	

�������
��	�	

�	���
��	�	

������	�	
������	�	

��� ���

����

�������

�����	��

Figure 4: Kernel Architecture for Data Exchange.

Figure 4 shows the five fundamental entities involved in
the synchronization. A Waiting Queue is present in both
simulators. Each queue contains the “events” that are cur-
rently waiting for a certain data-driven condition to happen.
This scheme is reminiscent of a conventional operating sys-
tem, where the ready queue is separated from the queue
of the processes waiting for some event to complete (I/O
requests, or resources to become free).
The Process Queue Wrapper is responsible for interfac-

ing the Waiting Queue and Ready Queue with each simula-
tion kernel. However, the way the Process Queue Wrapper
deals with the Waiting Queue is strictly related to the op-
erations of the other two entities that are involved in the
data exchange. When a data is received from the commu-
nication channel, the Data Queue Manager places it in a
Data Queue. There is one Data Queue for each destina-
tion object. Processes in the Waiting Queue are waiting for
some data-related conditions to happen. Therefore, for each
newly received datum, the Process Queue Wrapper looks

44

into the Waiting Queue for processes waiting for events on
the Data Queue affected by this newly received datum. Such
processes are promoted to the Ready Queue for execution,
and their timestamp is updated with the timestamp of the
incoming data.
From this discussion, it is clear that it is essential to en-

capsulate the data moving between the two simulators with
a number of information.

3.3 User Programming Paradigm
The protocol described in the previous section requires to

specify at least: (i) the identity of the entities involved in
the data exchange (NS-2 agent and SystemC module); (ii)
the timestamp associated to the data by the sending entity.
Such information are organized into messages, whose format
is shown in Figure 5.

�������� 	
�

� �����	�� ���

��������
�

��������� �	�� ���

����

���	���� 	��

���	���������

� ����� 	
�������	���� 	��

������

������

� ���
�

��	��
��
�

���� � ������������� ��� ���

��������
��� !��	���� �����	���� 	��� ���

���
��	��
��

���

Figure 5: Message Format.

Messages are composed by the two kernels in a way that is
transparent to the user. From the NS-2 side, the new class
SystemC has been added. It is defined as follows:

class SystemC {
void Recv (Packet *p, unsigned int size, int receiver) {

SetKernelStateVariable(false);
SaveDataPacketInKernel(p, size, receiver);

}
...

}

The Recv() method allows a NS-2 object to pass to the
kernel a packet of data (normally exchanged through NS-2
nodes) that must be sent to a SystemC process identified by
the variable receiver. The Boolean variable state allows
the kernel to know that a packet is ready to be sent to
SystemC. Starting from such information, the NS-2 kernel
is able to compose the message, which is sent to the SystemC
kernel. For instance, the standard UDP agent modeled in
NS-2, must be modified by the user as follow to communicate
with SystemC:

class newUDP : public Agent {
void sendMsg (...) {

...
Packet *p;
...
// original NS2 method to transfer a packet is removed
// target ->Recv(p);
// SystemC method to transfer a packet is added
SystemC SC ;
SC ->Recv(p, sizeof(Packet), receiver);

}
}
Whenever a data message is received by NS-2, the kernel

builds a packet and it calls, as usual, the Recv() method
of the agent, which manipulates the packet as it would be

received by another NS-2 agent.
From the SystemC side, the new ports ns in and ns out

have been added to allow the user to send/receive a packet
to/from a NS-2 object. They are derived by the template
classes sc in and sc out and are managed by two methods
read() and and write(), an extension of the standard meth-
ods managing sc in and sc out ports. Such ports do imple-
ment the concept of “co-simulation external port” described
in [7]. Therefore, a SystemC process with a bidirectional
communication with NS-2 is simply defined as follows:

SC MODULE(m) {
ns in in port; // port to receive a packet from NS-2
ns out out port; // port to send a packet to NS-2
... // standard ports to communicate with other modules
SC CTOR(m) {

SC METHOD(proc1);
sensitive << in port;

}
void proc1();

}
To send (read) a packet sent (received) to (from) NS-2, the
process must simply manipulate the ports as follows:

void m::proc1() {
...
Packet * p;
p = ... // the packet is explicitly built
out port.write(p, sizeof(Packet), receiver); // packet sent
in port.read(p,sizeof(Packet); // Read from NS-2...

}
Whenever the SystemC kernel receives a data message, it
generates an event, at the time specified in the message, on
the ns in port of the process specified in the message, by
assigning the packet to the port. This wakes up the SystemC
process that is waiting for the packet in the same manner
as if the packet would be sent by another SystemC process.
Conversely, whenever a SystemC process writes a packet on
a ns out port, the write() method stores it into a memory
buffer monitored by the kernel. When the simulation control
is passed to the kernel, this builds a message consisting of
a packet, by following the algorithm described in the next
section.
This implementation has two main advantages. First,

both NS-2 and SystemC kernels wake up objects and pro-
cesses by using their original primitives, respectively, the
Recv() method and the assignment of a value to a port. In
this way, no additional Waiting Queues are necessary, as in
the general case depicted in Figure 4, since the standard
queues of the two kernels are used. Second, both NS-2 ob-
jects and SystemC processes exchange data passing through
the kernels that are responsible to use the communication
channel. In this way, no events are generated, besides those
necessary for an object or process to wake up for monitoring
the communication channel. This issue directly translates
into increased performance.

3.4 Kernels Extension for Synchronization
Figure 6 shows the pseudocode of the synchronization pro-

cedure, which is executed by both kernels. As for Figure 3,
the subscript k1 refers to the kernel currently executing the
code, and k2 to the other kernel; both kernels are modified
so as to incorporate this procedure.
After the start phase, executed only by the simulator that

starts the process (Line 2), the main synchronization loop
(Lines 3–22) evolves around the reception of messages on the
channel that links the two simulators (Line 4). Anytime a

45

1 Kernel Scheduling () {
2 Start phase
3 do {
4 Receive(Mk2); /* from other kernel */
5 state = TRUE;
6 if (Mk2.Type == Data) { /* data messsage */
7 Call Mk2.Receiveri.Recv();

}
Tk2 = Mk2.NextEventTimeStamp;

8 Get next event Ek1 from ReadyQueue;
9 Tk1 = TimeStamp(Ek1);
10 while (Tk1 ≤ Tk2 && state) {
11 do { /* events that are lagging behind */
12 dispatch event Ek1;
13 if (Ek1 requires sending data) {

/* setup Mk1 accordingly; */
14 Mk1.Data = Dk1; Mk1.Receiveri = j;
15 state = FALSE;

}
16 Get next event Ek1 from ReadyQueue;

Tk1OLD = Tk1; Tk1 = TimeStamp(Ek1);
17 } while (Tk1 == Tk1OLD);
18 }

Allocate a new message Mk1;
19 if (state) {

Mk1.Type = Data;
Mk1.Time Data = Tk1OLD;
state = true;

} else Mk1.Type =Time;
20 Mk1.NextEventTimeStamp = Tk1;
21 Send(Mk1);
22 } while (there are messages);

}

Figure 6: Data Exchange Synchronization.

message is received, it is first checked if it is a Data message
type; in this case, it causes the invocation of the Recv()

method (Lines 6–7) of the SystemC or NS-2 receiver, as
described in Section 3.3.
Then, the timestamp Tk2 of the remote event is extracted

and compared to the timestamps Tk1 of the local events
(Lines 8–9). The loop of Lines 10–18 manages the process-
ing of all the events in the local queue that are lagging be-
hind the remote simulation time Tk2. If the generic event
Ek1 implies the transmission of data (Line 13), the current
message Mk1 for time Tk1 is properly setup by specifying the
corresponding data field Dk1 and remote recipient j (Line
14). This condition is flagged (Line 15) for later use. For
any new value of Tk1 (yet still < Tk2), a new message Mk1

is actually allocated (this operation is abstracted away in
the pseudocode). The do while loop at Lines 11–17 allows
the dispatching of all events with the same scheduling time.
When the loop at Lines 10–18 exits it is time to send a mes-
sage to the other kernel. If the flagged condition at Line 19
is true, the kernel sets up a data message, otherwise a time
message is set up. When the message is ready it is sent to
the other kernel.
Finally, notice that the timing synchronization procedure

of Figure 3 is still visible in the above pseudocode, yet tightly
intertwined with the rest of the synchronization steps.

4. EXPERIMENTAL RESULTS
The above simulation environment has been used to model

a home networking scenario, in which a video flow is down-
loaded from a video server through a broadband network
access and sent to a TV-set through a wireless LAN link
based on the IEEE 802.11b protocol (Wi-Fi) [6]. The tar-
get was to simulate the system-level model of the chip in a
complete network testbed. Because of the changes to the
chip specifications and architecture, an accurate simulation
phase was needed.

4.1 Simulation Models
The 802.11 MAC layer model included in NS-2 imple-

ments the basic access procedure described in the protocol,
with the correct interframe spaces, the backoff procedure
and the RTS-CTS procedure.
The physical layer in NS-2 is modeled at a very high level

of abstraction: a propagation model is used to calculate
the power received at every station for each frame transmit-
ted on the wireless channel, but the data unit exchanged
through the channel is a whole MAC frame instead of a bit
or a group of bits. This assumption gives a MAC interface
toward the lower layer entity that is quite different from the
standard; in particular, the service data units between MAC
layer and physical layer are MAC frames in NS-2, instead of
bytes as required by the standard.
We developed a basic model for the IEEE 802.11 in Sys-

temC. It is a simplification of the actual MAC protocol de-
scribed in the standards. Although this model is currently
used to describe only the basic medium access procedures
(e.g., physical and virtual carrier sense, random backoffs,
RTS-CTS procedure and frames acknowledgments), it can
be easily extended to incorporate other functionalities, since
it is derived from a complete description of the MAC proto-
col in ITU Specification and Description Language (SDL).
The block diagram of the model implemented in SystemC is
represented in the SystemC section of Figure 7.

������

���	�
��

����

����

�������
���

������

���	�
��

����

�����������	
�� ������������	
��

�����

������	
������ 	�����	
������

�� ��� �� 	�

�����������	

���

�
�
��

�
�
�
��

	

Figure 7: System Architecture.

4.2 Simulation Environment
The SystemC model was stimulated with CBR (Constant

Bit Rate) traffic generated by two NS-2 nodes. Figure 7

46

shows the configuration used to verify the SystemC model.
The two NS-2 nodes models two wireless stations: on the
first node is attached a CBR Application on a SocketUDP

agent. The second node models the receiver station with
the peer SocketUDP agent. The SystemC input and output
interface blocks are respectively connected to the transmit-
ting and receiving SocketUDP agent.

4.3 Simulation Results
The above configuration allows to carry out a system-level

exploration of the system parameters and of the architec-
tural alternatives.
Figure 8 shows an example of analysis obtained by the pro-

posed mixed-level simulation scheme. In the plot we observe
that the traffic rate saturates the radio channel (802.11b 11
Mbit/s of modulation); it is thus possible to evaluate the
maximum possible value of the average network bandwidth
(using 802.11b) according to the value of some parameters
like the packet length and the adoption of the RTS/CTS
protocol.

Available net bandwidth for application

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7

N. of MPEG cells per packet

B
an

dw
id

th
 (k

bi
t/s

)

RTS-CTS enabled

RTS-CTS disabled

Figure 8: Simulation Analysis of the Traffic Rate.

An important issue of the proposed simulation environ-
ment is its efficiency. Clearly, the integration of the two
simulators implies some communication overhead (e.g., the
sockets used to transfer information between SystemC and
NS-2) that may impact the overall simulation speed.

Simulated Times (s.)
1.0 10.0 100.0 1000.0

NS-2-only 0.24 3.10 24.52 245.52
SystemC+NS-2 350.0 4650.0 > 104 > 104

Plain

SystemC+NS-2 0.86 8.75 107.62 1106.93
Proposed

Table 1: CPU times vs. Simulation Time.

Table 1 compares the efficiency of the our simulation
scheme (SystemC+NS-2 Proposed) to a full NS-2 simulation
(NS-2-Only), and to a straightforward implementation of
the SystemC/NS-2 integration (SystemC+NS-2 Plain), re-
alized by directly interconnecting via socket a NS-2 agent
with a SystemC process without passing the packet through
the respective kernels. In particular, we compared the rela-
tive slowdown incurred by simulation in simulating a given
amount of real time. Simulations were run on a Pentium
III @ 850 MHz, with 512 MB Ram, running Linux RedHat
8.0. The SystemC+NS-2 Plain produces a slowdown of more
than two orders of magnitude with respect to a NS-2-Only

simulation. On the contrary, it is evident the efficiency of the
proposed cosimulation mechanism, which requires the same
order of magnitude in CPU time of a NS-2-Only simulation.

5. CONCLUSIONS
The paper presented a design environment for the model-

ing and simulation of networked systems. The environment
is based on the timing-accurate integration of the SystemC
and NS-2 simulation environments. The two simulation ker-
nels have been integrated by realizing an efficient synchro-
nization methodology, where NS-2 is used for modeling the
network environment, and SystemC is used to model the
hardware part of the system under design. The simulation
of a 802.11 MAC layer description has shown the effective-
ness of the proposed simulation environment, in terms of so-
lutions based on less integrated solutions. Furthermore, our
simulation scheme exhibited marginal performance degrada-
tion with respect to NS-native simulation.
Future work will concern the identification of rules to

guide the translation of NS-2 models into SystemC designs
to extend the proposed refinement-based design environ-
ment for networked systems.

6. REFERENCES
[1] International Technology Roadmap for

Semiconductor 2001.
http://public.itrs.net/Files/2001ITRS/Home.htm

[2] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber,
W. Fichtner. “Globally-Asynchronous Locally
Synchronous Architectures to Simplify the Design of
On-Chip Systems”, ASIC/SOC’99, pp. 317–321,
1999.

[3] L. Benini, G. De Micheli. “Networks on chip: A New
SoC Paradigm”, IEEE Computer, Vol. 35, No. 1,
pp. 70–78, Jan. 2002.

[4] Synopsys Inc. SystemC User’s Guide. Version 2.1,
2002.

[5] L. Breslau et al. “Advances in Network Simulation,”
IEEE Computer, Vol. 33, No. 5, pp. 59–67, May 2000.

[6] ANSI/IEEE Standard 802.11. Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
Specifications. 1999.

[7] G. Nicolescu, S. Yoo, A. A. Jerraya. “Mixed-Level
Cosimulation for Fine Gradual Refinement of
Communication in SoC Design,” DATE’01,
pp. 754–759, 2001.

[8] A. Chatelain, Y. Mathys, G. Placido, A. La Rosa,
L. Lavagno. “High-Level Architectural Co-Simulation
Using Esterel and C,” CODES’01, pp. 189–194, 2001.

[9] V. Aue, J. Kneip, M. Weiss, M. Bolle, G. Fettweis.
“Matlab Based Co-Design Framework for Wirelss
Broadband Communication DSPs,” ASSP’01, Vol. 2,
pp. 1253–1256.

[10] D. Desmet, M. Esvelt, P. Avasare, D. Verkest,
H. De Man. “Timed Executable System Specification
of an ADSL Modem Using a C++ Based Design
Environment: a Case Study,” CODES’99, pp. 38–42,
1999.

[11] R. Pasko, R. Cmar, P. Schaumont, S. Vernalde.
“Functional Verification of an Embedded Network
Component by Co-Simulation with a Real Network,”
HLDVT’00, pp. 64–67, 2000.

47

