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Abstract. Mobile ad hoc networks (MANETs) are wireless networks
formed spontaneously. Communication in such networks typically in-
volves multi-hop relays, and is subjected to dynamic topology changes
and frequent link failures. This complex scenario demands robust routing
protocol standards that ensure correct and timely delivery of messages.
Recently, formal verification has been successful in detecting ambiguities
in protocol standards. We consider the Ad hoc On Demand Distance
Vector (AODV) protocol, a reactive protocol currently undergoing stan-
dardisation at the IETF (RFC3561). AODV performs route discovery
whenever a route to the destination is needed, and retains routing in-
formation for a period of time specified by the standard. We apply the
real-time model checker Uppaal to consider the effect of the protocol
parameters on the timing behaviour of AODV, thus complementing the
earlier untimed verification effort. Our study of the recent versions of the
standard (RFC3561-bis-01) has highlighted a dependency of the lifetime
of routes on network size, which can be alleviated by allowing the route
timeouts to adapt to network growth.

1 Introduction

Mobile ad hoc networks (MANETs) are networks of mobile devices that commu-
nicate without the need for a central authority and infrastructure, formed with-
out a-priori knowledge or planning. Ad hoc networks can be set up anywhere and
anytime, are dynamic and often exhibit frequent topology changes due to loss of
contact and movement. Three basic approaches to routing are taken: proactive
protocols, which continuously exchange routing information between the nodes
(e.g. OLSR); reactive, which build routes on demand (e.g. AODV); and hybrid
combinations of the two (e.g. ZRP).

The Ad hoc On Demand Distance Vector (AODV) protocol [6] is a reactive
routing protocol currently in the process of being standardized at the IETF
(RFC3561) and implemented [12, 19]. To transmit data over such a network, the
AODV protocol enables dynamic, multihop routing between devices. AODV is
an on demand algorithm, meaning that a route discovery mechanism is invoked
only when the sender wishes to transmit data. These routes are maintained as
long as they are needed by the senders, and are deleted after a certain amount
of time has passed so as not to overload the routing tables. AODV is designed
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for ad hoc networks of a wide range of sizes, from the very small to networks
of tens to thousands of mobile, Internet enabled, nodes. Simulation experiments
for 1000 nodes have been reported, and first implementations are available [19].

The dynamic aspects of mobile ad hoc networks mean that both the topology
of such networks and their size varies over time, giving rise to an unbounded
execution tree and infinitely many states. This scenario is much more complex
than for existing network protocols, and consequently designing protocols that
achieve correct and timely delivery of messages is inherently more difficult. Much
valuable effort is therefore being directed towards the formulation of routing
protocol standards for MANETs, of which AODV RFC3561 is one example,
to serve as a specification to which a protocol implementation must conform.
The implementations are then developed according to the guidelines set by the
standard. Unfortunately, the resulting protocol complexity sometimes results in
unintentional ambiguities introduced into the standard, which, if undetected, can
be transferred to the implementation. An analysis of the proposed standards is
therefore desirable, and it results in subsequent revisions.

Recently, formal verification has been successfully employed as an aid to
detect ambiguities in the proposed AODV standards and implementations [9,
15], resulting in the discovery of routing loop errors in early protocol versions
(version 4) that have been addressed in later revisions of the draft standard. Both
these approaches do not model real-time, and instead replace the real-valued
timer events with non-deterministic time-outs. This can result in false positives,
i.e. error traces that do not correspond to realistically timed scenarios, and is
undesirable since the AODV protocol uses real-valued timers in an essential way,
for example to determine the lifetime of routes. It is important that routing is
handled in a timely manner, i.e. route discovery and message delivery happen
without unnecessary time delays. The timing values are determined by formulas
dependent on protocol parameters (constants) specified by the standard. Clearly,
the choice of the constants and the route lifetimes will affect the timeliness of
protocol actions, especially as the network size and topology change dynamically
over time.

In this paper, we complement the existing analyses of the AODV protocol by
model checking its timing aspects. Working from the most recent draft standard
documents, we build a timed automata model for AODV using the Uppaal
[22, 24] model checker. We consider the effect of the default protocol parameters
on the timing behaviour of AODV, and investigate properties such as timely
route discovery and the ability to deliver messages within a specified time period.
Our study of the AODV draft standard has highlighted a dependency of the
lifetime of routes on network size, which may lead to failure to discover the
route if it exists or failure to deliver the data to destination. The observation
pertains to the latest version (RFC3561-bis-01 [6]) and, in a simpler form, to
earlier versions (13 and RFC3561-bis-00) of the draft standard. Having inspected
a recent implementation of AODV [19], we confirm our observation also for this
implementation with the help of an ns-2 simulation experiment. We propose a
modification to the standard that alleviates the problem by allowing the route
timeouts to adapt to network growth.
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2 The AODV Protocol

The Ad Hoc On-Demand Distance Vector (AODV) Protocol is an IP routing
protocol that allows users to find and maintain routes to other users in the net-
work. AODV is on-demand, or reactive, in the sense that routes are established
only when needed. The routing decisions are made using distance vectors, i.e.
distances measured in hops to all available routers. The protocol supports uni-
cast, broadcast, and multicast. The version of AODV we describe below is based
on the RFC draft standard [6].

Each nodes maintains a sequence number, which saves a time stamp, and
a routing table, which contains routes to destinations. Sequence numbers are
used to determine the freshness of routes (the higher the number, the fresher
the route, and the older one can be discarded). Each table entry contains the
address of the next hop (next node to destination), a hop count (number of
hops to the destination) and a destination sequence number. Since this is an on-
demand distance vector scheme, routers maintain distances of those destinations
only that they need to contact or relay information to. Each active route is
associated with a lifetime stored in the table; after this time has passed route
timeout is triggered, and the route is marked as invalid and later on removed.
AODV uses two main procedures, route discovery and route maintenance, which
are described below.
Route Discovery. If a sender (source node) needs a route to destination, it
broadcasts a ROUTE REQUEST (RREQ) message. Every node also maintains
a broadcast id which, when taken together with the originator’s IP address,
uniquely identifies a RREQ. Every time a sender issues a RREQ, it increments
its broadcast id and sequence number by one. The sender buffers this RREQ
for PATH DISCOVERY TIME (PDT) so that it does not reprocess it when its
neighbours send it back. The sender then waits for NET TRAVERSAL TIME
(NETT) for a ROUTE REPLY (RREP). If a RREP is not received within this
time, the sender will rebroadcast another RREQ up to RREQ TRIES times.
With each additional attempt, the waiting time (NETT) is doubled.

When a node receives a RREQ message it has not seen before, it sets up a re-
verse route back to the node where the RREQ came from. This reverse route has
a lifetime value of ACTIVE ROUTE TIMEOUT (ART). The reverse route entry
is stored along with the information about the requested destination address. If
the node that receives this message does not have a route to the destination, it
rebroadcasts the RREQ. Each node keeps track of the number of hops the mes-
sage has made, as well as which node has sent it the broadcast RREQ. If nodes
receive a RREQ, which they have already processed, they discard the RREQ
and do not forward it.

If a node has a route to the destination, it then replies by unicasting a RREP
back to the node it received the request from. The reply is sent back to the sender
via the reverse route set by the RREQ. As the RREP propagates back to the
source, nodes set up forward pointers to the destination. Once the source node
receives the RREP, the route has been established and data packets may be
forwarded to the destination.
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Route Maintenance. The role of route maintenance is to provide feedback
to the sender in case a router or link has gone down, to allow the route to be
modified or re-discovered. A route can stop working simply because one of the
mobile nodes has moved. If a source node moves, then it must rediscover a new
route. If an intermediate node moves, it must inform all its neighbours that
needed this hop. This message is forwarded to all the other hops and the old
route is deleted. The source node must then re-discover a new route.

One proposed way for a node to keep track of its neighbours is by using
HELLO messages. These are periodically sent to detect link failures. Upon re-
ceiving notification of a broken link, the source node can restart the rediscovery
process. If there is a link breakage, a ROUTE ERROR (RERR) message can be
broadcast on the net. Any host that receives the RERR invalidates the route and
rebroadcasts the error messages with the unreachable destination information to
all nodes in the network.

3 Correctness Requirements for Routing Protocols

Reactive routing protocols for mobile ad hoc networks are complex schemes for
the following reasons. Firstly, the scheme must allow for an unbounded number
of nodes acting in parallel, with each node acting as a router, destination and
relay node. Secondly, the topology can change dynamically, and hence the pro-
tocol must be able to recover from link failures. Finally, real-time clocks play a
key role in the protocol, both in setting the lifetimes of routes and triggering
timeouts. Achieving efficient and correct routing in such scenarios is a non-trivial
undertaking for standardisation efforts. The main correctness requirements for
a routing protocol, first stated in [27], are:

I. If a path exists between two nodes, then a route between them will eventually
be discovered.

II. When a route has been discovered and it is valid, packets are eventually
delivered from source to destination.

Property II implies that a so-called routing loop is prevented. A routing loop is
a situation in which, during the route discovery process, a flawed route is formed
in which nodes point to each other in a forwarding circle. Thus, packets are not
delivered to the destination. Such a situation can arise if a link breaks during
route discovery and a node is not notified that its route became invalid.

The conventional approach to analysing network protocols is via testing and
simulation. Neither is able to rule out logical flaws in the protocols because of
partial coverage of executions: simulation or test runs can often miss certain con-
ditions dependent on timing, so called ‘corner cases’, thus bypassing a possible
erroneous execution that may be exhibited by an implementation in future. On
the other hand, subjecting the protocol to formal verification, for example via
model checking, enables detailed and exhaustive analysis of network protocols. A
model of the protocol together with the required properties, usually expressed in
temporal logic, is submitted to a software tool called a model checker. The pro-
cess of model checking can definitively establish that the property holds, or that
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it is violated, in which case a trace leading to error is produced. The limitation
of model checking is that only finite-state models/configurations can be han-
dled, and thus infinite-state systems can be verified only if they have property
preserving finite-state abstractions. Thus, these tools are particularly useful to
demonstrate violations of properties that can serve as important feedback for the
standardisation effort. A more powerful approach is that of theorem proving; it
enables correctness proofs for all possible parameter values, but at a substantial
manpower effort.

The use of formal verification methods to analyse Internet standards has been
advocated in [10, 15]. A model of the protocol can be built from the standard
specification and subjected to verification. In [10], a routing loop error detected
in AODV version 2 with the SPIN model checker and verification of routing loop
freedom was performed with the help of HOL theorem prover. However, newer
versions of AODV, version 5 onwards, crucially depend on timing. The standard
sets certain parameters (constants), and those are then used to assign route
lifetimes and define event timeouts. There are then two issues that one needs to
consider about the protocol. Firstly, properties I and II should be established
with the additional proviso of “in a timely manner”. More importantly, the
particular combination of timing constants may have an effect on the correctness
of the protocol: for example, routes may time out too early. With the exception of
a small-scale study in [29], this issue has not been investigated; the models built
were untimed, derived by replacing a delay with a non-deterministic timeout
event. This may miss timing errors. Therefore, as already suggested in [10] [page
566], AODV from version 5 onwards necessitates a real-time verification. We
address this in this paper by analysing most recent versions of AODV [6] using a
state-of-the-art real-time model checker Uppaal [24], with emphasis on how the
parameters as set by the standard affect the correctness of routing and message
delivery (properties I and II) of the protocol.

4 Modelling AODV Using Timed Automata

Since we are interested in analysing timing aspects of AODV, we model the
protocol with timed automata as opposed to a C-like program in previous works
[10, 15]. Uppaal [24] is an established and widely used model checker which
provides an easy to use environment for constructing timed automata models
and verifying them against timed temporal logic specifications. The Uppaal
model-checking engine works on-the-fly and takes advantage of some advanced
techniques to overcome the state space explosion. Experimental results show
that, thanks to these techniques, Uppaal is significantly faster than other real-
time verification tools [23] and also able to verify more complex systems [7].
Some of the industrial case studies include: the Bounded Retransmission Protocol
whose correctness was shown [16] to be dependent on correctly choosing time-
out values; the Bang & Olufsen Audio/Video Protocol, known to be faulty, for
which an error trace was uncovered [20] and a corrected model automatically
verified; and the Collision Avoidance Protocol, which was shown to be collision
free [1].
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This paper concerns the latest version RFC3561-bis-01 of the standard. Ev-
ery node in an AODV network acts as a sender, router (intermediate node) or
destination depending on the situation. Therefore, all nodes in an ADOV net-
work have identical functions. We first model this behaviour as a generic AODV
node. Since an AODV network is symmetric, we can use a template of Uppaal
to simplify the model.

We define node parameters as set by the draft standard [6]. As we investigate
the effect of the timing values that are suggested in the draft standard on the
correctness of the protocol, we can abstract the actual control packets from the
model since they are of no interest in this particular case. For simplicity, we also
abstract the use of RERRs and HELLO messages since we only analyse the route
discovery process and not the route maintenance process. If a node receives a
data packet, and the intended destination’s route is expired or does not exist,
we halt the verification. The model of the generic node can be found in [14]. An
n-node AODV network is then modelled using n instances of the generic node.

Since we have worked from the draft standard [6], the model that we have
derived can serve as standard timed specification. We have performed an analysis
of thus derived specification, and were able to confirm a routing loop error of
[10] for an appropriately adapted version of the model. However, the state-space
explosion means that the maximum size of the network that we could consider
by direct verification is 5. For larger network sizes the verification becomes in-
feasible. We note, however, that the routing loop error has been exhibited in [15]
with 4 nodes and in [10] with 3 nodes. We therefore seek ways to reduce the size
of the model while preserving the properties of interest. For a protocol model
S (specification) and its refinement R (implementation), denoted by R ≤ S, we
say R preserves S’s properties of interest if R |= ϕ implies S |= ϕ.
AODV Specification vs Implementation. Observe that, for the properties
we are interested in analysing, it suffices to consider one specific sender and one
destination. This can be achieved by refining the generic node into nodes that
perform the specific functions, while preserving key behaviour. The generic node
is thus refined separately into three main functions, the sender, destination and
intermediate node, as follows:

– sender: this node will only generate and send RREQs, receive RREPs and
send data packets,

– intermediate node: this node will only receive RREQs, RREPs and data
packets and forward them,

– destination: this node will only receive RREQs and data packets, and gen-
erate and send RREPs.

Since we only consider the route discovery process, only the destination node
will increment its own destination sequence number. The individual nodes in
the model, see [14] for the timed automata, behave as follows:
The Sender Node. The sender will increment its sequence number and broad-
cast id by one, then sends a RREQ and moves to state wait for reply to wait
for a RREP. If a RREP is not received within NET TRAVERSAL TIME time
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(NETT), the sender times out and sends another RREQ. The NETT is dou-
bled and the broadcast id incremented by one every time a RREQ is resent. The
sender will resend RREQs up to RETRIES times. If a RREP corresponding to a
RREQ that has timed out is received, it is ignored. When the anticipated RREP
is received, the sender establishes the route to the destination node and starts
sending data packets. When the sender has tried RETRIES times for a route
and still times out after the RETRIES th time, the sender node concludes that
a route to the desired destination does not exist.

The Intermediate Node. The intermediate node will accept a RREQ, RREP
or data packets from its neighbouring nodes, update its own routing table, broad-
cast the RREQ or forward the RREP/data packets to the next node along the
route to the destination node for the data packets and the source node for the
RREPs, according to its (intermediate node) routing table only if the route is
still active. If the route has expired, the intermediate node does not forward the
RREPs or data packets. If intermediate nodes are allowed to reply to RREQs,
an intermediate node will generate a RREP to a RREQ if it knows the route to
the destination sought. Every RREQ has a flag that is set to enable, or unset to
disable, intermediate nodes to reply to RREQs.

The Destination Node. The destination node will accept RREQs from its
neighbouring nodes, then updates its routing table, increments its sequence num-
ber (destination sequence number) by one, and generates a RREP. The desti-
nation node will also accept data packets. We model the destination to receive
just the first data packet, and, once the first data packet gets to the destination
node, we restart the route discovery process.

Establishing Refinement Between AODV Specification and Implemen-
tation Models. When deriving the specialised nodes from the generic node
model, we must ensure that the properties of interest are preserved through this
derivation, i.e. R ≤ S and R |= ϕ implies S |= ϕ. In our case, S is a parallel
composition of individual components, for example S = S1‖S2, where each com-
ponent has a corresponding implementation (refinement) R1, R2 respectively.
The principle of compositionality allows us to tackle the state space explosion
in the following way.

We first need to establish that Ri are true implementations (refinements) of
Si, i.e. Ri ≤ Si. A number of relations are possible as refinement in the context of
timed automata. Since we have used timed automata with committed locations
(no delay is allowed to occur in a committed state), urgent channels (in a state
where two components may synchronize on an urgent channel, no further delay
is allowed) and shared variables (global variables), we work with timed ready
simulation [21] as refinement; it relates states of one timed automaton A to
states of another timed automaton B in such away that the actions and their
timings in admissible timed executions correspond (as in timed simulation) in
the presence of shared variables, urgent channels and committed states. Unlike
timed simulation, timed ready simulation ≤ is a pre-congruence for the parallel
operator, that is, R ≤ S implies R‖A ≤ S‖A. Let ≤ preserve a chosen class of
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properties, i.e. Ri ≤ Si and Ri |= ϕ implies Si |= ϕ. In Uppaal, the verification
of A ≤ B can be reduced to the following reachability problem:

A ≤ B iffA‖TB does not reach error

where TB is the test automaton derived from B [28]. Next, assuming we have
established that Ri ≤ Si holds for i = 1, 2, by compositionality based on the
result of [2, 21] we have:

R1 ≤ S1 R2 ≤ S2

R1‖R2 ≤ S1‖S2

We represent the AODV protocol specification as a network of generic AODV
nodes, i.e. a composition of the form:

AODVspec ≡ generic1‖ . . .‖genericn−1‖genericn
and, as implementation, we can consider a network, where we have one sender
node requesting a route, several intermediate nodes to forward packets, and one
destination node, namely:

AODVimpl ≡ sender‖inter1‖ . . .‖intern‖dest

Thus, application of the technique of [28] to the AODV node models, that
is, a manual derivation of the test automaton in each case and execution of a
reachability check confirming that error is not reached, allows us to conclude by
compositionality:

AODVimpl ≤ AODVspec

In the test automaton, error is a designated error-location entered whenever
the behaviour of AODVimpl is outside the behaviour specified by AODVspec.
With this approach, we reduce the size of the models that have to be analysed, in
a manner preserving chosen properties. We focus on existential properties, which
are preserved under refinement, i.e. R ≤ S and R |= ϕ implies S |= ϕ, where ϕ
is of the form E<> ψ (eventually ψ) and may refer to real-time deadlines.

The model AODVimpl is a refinement of the original specification model
AODVspec built from generic nodes, which is nevertheless sufficiently detailed to
exhibit a timing flaw in the specification, described in the next sections.

5 The Verification Approach

We consider the effect of default timing constants on the properties of eventual
route formation and eventual delivery of packets. It suffices, in our case, to
assume absence of data loss. In this paper, we focus on route discovery and
management and consider active routes.

A route is deemed active as long as there are data packets periodically trav-
elling from the source to the destination along that path. Once the source stops
sending data packets, the links will time out and eventually be deleted from the
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intermediate node routing tables. We focus on specific verification scenarios with
finite static topologies and look for property violations. Since we have established
refinement, it follows that any existential properties true of the implementation
also hold for the specification. The model of the protocol can be investigated
under different topology scenarios; the analysis we report here pertains to the
(static) linear topology.
The Linear Topology Scenario. We arrange nodes of an n-node network into
a chain, with one sender and one destination, as follows. IP addresses are selected
using integers from 0 to n−1. Node 0 will be our originating node (sender), node
n− 1 will be the destination node, and the rest are intermediate nodes with IP
addresses allocated consecutively. Thus, node 0 has node 1 as its neighbour and
the destination node has n− 2 as its neighbour.

The AODV draft standard [6] suggests that a sender tries three times to
discover a route before concluding that a node cannot be reached. To allow easy
instantiation of the model for different numbers n of the intermediate nodes,
we have formulated an n nodes node which combines n nodes linearly into one
multiple node.

Thus, the obtained n node has fewer states, which ensures feasibility of the
verification. The correctness of the construction is confirmed by checking refine-
ment as before. Now, we model the linear topology scenario with one sender, one
destination and three identical sets of intermediate nodes, one for each RREQ
attempt. In other words, we have three copies of each intermediate node running
in parallel, as illustrated in Figure 1.

destination

intermediate nodes

sender

RREP3

RREQ1

RREP1

RREQ3

RREP3

RREP2

RREQ2

RREP2

RREQ2

RREQ3

RREP1

intermediate nodes

RREQ1

intermediate nodes

Fig. 1. The AODV linear topology model

For the remainder of the paper we consider the simplified model for AODVimpl

which employs the n node. We successfully proved that twelve intermediate
nodes simulate a 12 node multiple node. The automata models can be found
in [14].

6 A Timing Analysis of AODV

In this paper we consider some of the default constants suggested in the lat-
est version of AODV draft standard [6]. We are particularly interested in the
NET DIAMETER (ND) value. This value is a measure of the network size,
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defined as the maximum possible number of hops between two nodes in the net-
work, and is used to determine route lifetime and time-out values. The protocol
suggests that the value of ND be a constant, but does not mention how this value
should be adjusted to suit the dynamic changes in network size. The following
are some of the default constants suggested in [6]:

NODE TRAVERSAL TIME = 10ms. This is the time taken by a node on
average to process a packet.

NET DIAMETER = 20. We use 2 for model reduction.
NET TRAVERSAL TIME = 2 * NODE TRAVERSAL TIME *

NET DIAMETER ms. Time a sender
waits for a RREP.

ACTIVE ROUTE TIMEOUT= max(3000,PATH DISCOVERY TIME)
(abbrev. ART ) where PATH DISCOVERY TIME =

2* 2 * NET TRAVERSAL TIME.
This is lifetime of a valid route. If maximum is
3000ms then we have the situation described
version 13, else version 00.

RETRIES = 3.

Though we work with average message delivery times, it is also possible to
rerun the analysis for an interval of values. We separately consider two cases set
out in the standard:

1. when intermediate nodes are allowed to respond to RREQs, and
2. when intermediate nodes are not allowed to respond to RREQs, with only

the destination node allowed to respond.

Below we describe the outcome of our analysis when intermediate nodes are
allowed to reply to a RREQ; the other case is omitted for reasons of space. As-
sume we have a linear topology with fourteen nodes in the network, one sender
(number 0), one destination (number 13) and twelve intermediate nodes (num-
bered 1 to 12). We also assume that we have no message loss and no delays in
the network. The sender (node 0) sends a message to node 13, and is allowed
to try three times for a route to a destination. We refer to each route discovery
attempt as the Route Request Process (RRP). We ensure that the sender issues
five RRPs, each with three attempts, before it can conclude that a route does
not exists. In real life a sender might try one RRP and conclude that a route
does not exist. At a later stage the same node may try again to find a route to
the same destination, maybe for a different set of data packets, and the topology
might have changed.

We first investigate the correctness property I, i.e. eventual route discovery,
assuming the route exists, in negated form.
I. Can a sender fail to find a route to a destination when the route
exists? Using Upppal we verify the property ‘eventually the sender reaches a
state with no route found’:

E<> sender.no route
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where the no route state is a state in which the sender learns that no route exists,
for a situation in which the route is known to exist.

Because the topology remains static, the number of RREQs the sender issues
does not affect the outcome. This undesirable property is satisfied and the fol-
lowing trace is produced, where we use ‘ip[n]=m’ to denote that the node with
the IP address n is sending to node with address m, and similarly for destination
IP address ‘dip[n]=m’:

RREQ trace : ip[0] = 13 ip[1] = 11 ip[2] = 7
RREP trace : dip[0] = 1 dip[1] = 2 dip[2] = 3

This trace (see detailed illustration in Figures 2 and 3) means that the
first RREQ (RREQ1) gets to the destination node (node 13). The first RREP
(RREP1) is generated and sent back to the sender. When RREQ1 is at node
4, the sender’s RREQ timer times out and the second RREQ (RREQ2) is sent.
RREQ2 gets to node 11 and finds a route (set by RREP1). RREP2 is gener-
ated by node 11. The sender’s RREQ timer times out again and another RREQ
(RREQ3) is sent. RREQ3 gets to node 7 and finds that node 7 has a route to the
destination (set by RREP1). RREP3 is generated by node 7. When RREP1 gets
to node 1, the route to the sender has timed out and is not forwarded. When
RREP2 and RREP3 get to node 1, they are both not forwarded as well, as the
route to the sender node has since expired. Thus, eventually the sender times
out, failing after 3 attempts to find a route to the destination when, in fact, the
route existed.

Note that, in Figures 2 and 3, we show route timers for the intermediate
nodes only, i.e. nodes 1 to node 12. After 70ms, RREQ1 is at the destination
and RREQ2 is at node 8. In the first step, after 40ms in Figure 2, the sender
times out as the RREQ timer is initially set to 40ms. A second RREQ is sent,
and the sender’s RREQ timer is set to 80ms (2*40ms).

In step 3, in Figure 2, RREP1 has been generated by the destination and has
been propagated to node 10. RREQ2 is at node 11. Node 11 has a route to the
destination set by RREP1 and because intermediate nodes are allowed to reply
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30 20 010

node

timer

1 2 3 4 5 6 7 8 9 10 11 12
60 50 40 30 20 10 0 40 30 20 10 0timer
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RREQ1 node 4

route timers to the sender.
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RREQ2 node 8 
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Fig. 2. RREQ1, RREQ2, RREP1 and RREP2 generations
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Fig. 3. RREP3 generations

to RREQs, RREP2 is generated by node 11. RREQ2 has been updating the life
of the route to the sender on its way to the destination. RREQ3 is at node 2.

After 60ms, see Figure 3, RREP1 is at node 5, RREP2 at node 6 and RREQ3
at node 7. Node 7 has a route to the destination set by RREP1, and hence can
reply to RREQ3. RREP3 is generated. RREQ3 has been updating the route
to the sender. After 100ms, as shown in Figure 3 (since RREQ3 was sent),
RREP1 is at node 1, and RREP2 and RREP3 are at nodes 2 and 3 respectively.
The route lifetime at node 1 is 90ms (which is greater than ART=80ms), and
hence RREP1 will not be forwarded to the sender. RREP2 and RREP3 will be
forwarded to node 1 where the route has expired and will not be forwarded to
the sender either. The sender will eventually time out and conclude that the
route does not exist.

Next we consider property II, again in negated form.

II. Can a route expire before a data packet is transmitted? We assume
that the sender starts sending data packets as soon as the route is found. We
consider the first data packet along the way from the sender to the destination
and test to see if any of the intermediate node’s routes to the destination will
time out before they have actually forwarded the first data packet. The property,
‘eventually the intermediate node times out’, is as follows:

E<> (inter.data route timeout)

Assume we have 7 nodes in the network, one sender, one destination and five
intermediate nodes. When the first data packet gets to node 5, the route to the
destination at that node would have timed out, and this property is satisfied.
Below is the trace that is obtained:

RREQ trace : ip[0] = 6 ip[1] = 6 ip[2] = 0

RREP trace : dip[0] = 0 dip[1] = 0 dip[2] = 0

Route Lifetime : route[0] = [170, inf ] route[1] = 30 route[2] = 20
route[3] = 10 route[4] = 0 route[5] = 100

Data trace : dataip = 5
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To explain this outcome, let us consider the point when the sender has just
received RREP2. Below are the values of route timers along the way to the
destination:

Route Lifetime : route[0] = [170, inf ] route[1] = 0 route[2] = 10
route[3] = 20 route[4] = 30 route[5] = 50

The sender will take another 10ms to process the RREP and start sending
data packets, then another 40 ms to get to node 5. Thus, by the time the first
data packet gets to node 5, after 50ms the route timer at node 5 will be 100ms,
which is greater than ART=80ms.

In summary, we have established that, in a network with (constant) default
parameters set by the standard, the correctness requirements I and II are not
satisfied. We have exhibited this property in the refined implementation model,
assuming absence of message loss and delays; since it is existential, it follows that
it is also exhibited by the specification, and in a realistic scenario with message
loss and delays.
How to Define NET DIAMETER. The AODV draft standard may be im-
proved by allowing the value of NET DIAMETER to grow with the network size.
Initially, we can set it to be e.g. the constant suggested by the standard, and
then let individual nodes modify it. If a node receives a RREQ, RREP, or RERR
packet that has a hop count that is greater than the node’s NET DIAMETER,
then the node should adjust its NET DIAMETER to the value of this hop count.
This allows the nodes to learn and adapt to the new network size.

We have modified the model accordingly and re-verified the corrected model
for the variant where intermediate nodes are allowed to reply to RREQs. The
automata for this model can again be found in [14]. We observe that the proper-
ties I and II are now satisfied; in particular, the validity of routes is prolonged.
Note that this does not amount to a full verification of correctness, which would
have required a theorem prover, but is automatic.

For a decrease in network size, we propose to leave the NET DIAMETER
unchanged. This ensures that, if a route exists, the requesting node will eventu-
ally find it. However, if the route does not exist, then the requesting node has
to wait longer before it can conclude that this is so.

7 Related Work

Model checking has been successfully used to analyse various distributed proto-
cols, but few papers have applied model checking in the context of mobile ad
hoc network routing. We mention the discovery of a routing loop error found in
early versions of AODV with the Spin model checker [8] and Murphi [15]. En-
gler et al [18] have analysed three AODV implementations using CMC (a model
checker for the C programming language), reporting several errors of which one
can be attributed to the standard specification on RERR handling. In their
earlier work [15], they explain how reordering of RERR messages by the link
layer could lead to a routing loop. Other errors reported include mishandling of
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memory allocation, missed essential checks of packets and routing loops. Their
handling of time to ensure a compact model can miss timing errors. A pred-
icate abstraction approach (requiring human intervention) was used in [17] to
verify the absence of routing loops. In [9], an automated proof of routing loop
freedom is given under certain conditions, using the model checker Spin and the-
orem prover HOL. Real-valued time-outs are represented as non-deterministic
time-out events, which does not faithfully model real-time passage.

None of the verification studies that we are aware of considered the tim-
ing aspects of AODV, with the exception of [29] which used DTSpin [11], an
extension of Spin with discrete time, but was not as extensive as our study.
They reported that their DTSpin version was too unstable and abandoned their
automatic verification attempt using DTSpin in favour of a manual proof. All
the above AODV studies concern earlier, less complex versions of the standard.
Some aspects of timing properties have been analysed for the LUNAR protocol
[27], using the Uppaal model checker, but for very small models only.

The NET DIAMETER issue has been raised briefly on the MANET mailing
list [25, 26], but not followed up since. Preliminary reports of this work appeared
as [13, 14].

8 Conclusion

We have modelled the AODV protocol with timed automata and analysed certain
configurations using a number of techniques developed for the Uppaal model
checker to obtain model reductions. We observe that the protocol as specified
may unnecessarily result in failure to discover the route or deliver the message.
The problem occurs because nodes wait for a fixed time for RREPs that, in
a dynamically growing network, may take much longer to reach the requesting
node. We propose a modification to the AODV routing algorithm by allowing
the nodes to amend the value of NET DIAMETER through learning about the
size of the network from the incoming packets. To our knowledge, this is the first
solution to this problem.

In contrast with previous work, we have analysed the latest draft specification
[6], as well as earlier versions 00 [4] and 13 [5]. All three exhibit this problem,
albeit in slightly different form. As a sanity check, we ran ns-2 experiments for the
AODV-UU implementation code [30] that complies with version 13, confirming
our observations for this implementation also by obtaining identical traces to
those exhibited by the model. We have notified the AODV authors about our
findings and they have accepted our suggestions [3].
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