A Timing Attack on Blakley’s Modular
Multiplication Algorithm, and Applications to
DSA

Bahador Bakhshi and Babak Sadeghiyan

Computer Engineering and Information Technology Department
Amirkabir University of Technology, Tehran, Iran
bbakhshi@aut.ac.ir, basadegh@ce.aut.ac.ir

Abstract. In this paper, we introduce a timing attack scheme against
a 160-bit modular multiplication with Blakley’s algorithm. It is assumed
that a set of public inputs are multiplied by a secret parameter and
running time of each multiplication is given, but the multiplication result
is not known and a machine similar to victim machine isn’t available. The
proposed attack extracts all 160 bits of the secret parameter. Running
time of Blakley’s algorithm is analyzed and it is shown that running
time of each step is dependent on the running time of other steps. The
dependencies make the parameters of the attack be dependent on the
secret key, while it makes the attack rather complicated. A heuristic
algorithm is used to find the parameters of the attack. As a real scenario,
the attack is applied against on-line implementation of Digital Signature
Algorithm, which employs Blakley’s modular multiplication. Practical
results show that secret key of DSA will be found using 1,000,000 timing
samples.

Keywords: timing attack, modular multiplication, Blakley’s algorithm,
DSA.

1 Introduction

Any cryptographic primitive, such as a digital signature, can be considered in
two different aspects. It can be viewed as an abstract mathematical function that
takes some inputs and produces outputs. Alternatively, it can be viewed as an
implementation of a mathematical function in the real-world software/hardware
system. In the latter view, the cryptographic system interacts with environment
through side channels, such as power consumption channel and execution time
channel. Side channel attacks use the leaked data from the side channels to
attack on a certain cryptographic system, while make some assumptions about
the implementation. Among different side channel attacks, the timing attack has
special feature, i.e. very limited equipment is required to gather timing data.
Idea of timing attack was first introduced publicly by Kocher in [I0]. He
showed that difference between the required execution times for various inputs,
can be exploited in order to find secret parameters of the underlying system.

J. Katz and M. Yung (Eds.): ACNS 2007, LNCS 4521, pp. 129-{I40] 2007.
© Springer-Verlag Berlin Heidelberg 2007

130 B. Bakhshi and B. Sadeghiyan

Kocher mentioned some systems, which maybe vulnerable to timing attack, in-
cluding RSA and DSA. He also showed how RSA implementation, which employs
square-and-multiply algorithm to implement modular exponentiation is vulnera-
ble to timing attack. Dhem et al. described a practical timing attack on an RSA
implementation [4]. These attack schemes are not applicable to CRT based im-
plementations of RSA. In [16], Schindler proposed another timing attack scheme
on RSA implementation based on CRT method and Montgomery multiplication.
Contrary to Kocher’s and Dhem’s attacks, Schindler’s attack does not directly
find the secret key. His attack factorizes RSA-modulus, instead. Schindler also
introduced advance statistical and stochastic method to model and optimize
timing attack in [T7/I8]. Brumley and Boneh employed and improved Schindler’s
idea to attack remotely on the RSA implementation which is used in OpenSSL
library [2]. They showed that not only smart cards but also general purpose
applications such as cryptographic operations in network communication and
operating systems are vulnerable to timing attack. All these attacks are based
on timing vulnerability of modular exponentiation, in which the exponent and
modulus are constant, but a different base is used in each exponentiation.

Another timing attack, based on the vulnerability of modular exponentiation,
was introduced against GPS identification system in [3]. Differing from previous
attacks, the exponent isn’t constant in this attack. GPS uses two secret keys,
short-term key which is generated in each execution and a long-term key that is
permanent for each user. The short-term key is used in a modular exponentiation
and in a modular addition with the long-term key. In the attack, timing samples
are used to find out only the hamming weight of the short-term key. Using inputs
and outputs of GPS algorithm and the hamming weight, bits of the long-term
key are guessed.

In addition to RSA and GPS, several block ciphers have been also examined
under timing attack such as DES [8], RC5 [7] , Rijndael [I1] . Timing analysis has
been also applied on web privacy [5], in which a malicious web site can determine,
using response of browser to the request, whether or not the user has recently
visited some other, unrelated web page. The attack on web privacy was formally
modeled by Focardi et al. [6]. Timing attack may also be combined with other
side channel attacks in order to improve its performance and efficiency, such
hybrid attacks were introduced in [I4YT5].

Modular multiplication is used in some cryptographic algorithms, such as
public key encryption and digital signature. In such cases, a secret parameter of
system is maybe multiplied by a public value. By default, modular multiplication
is not an NP problem, if attacker knows the public input and the multiplication
result, he simply finds out the secret parameter. But in some cryptographic
algorithms, such as ElGamal Signature and Digital Signature Algorithm, the
multiplication result isn’t known value; it is kept secret [13].

To our best knowledge, until now almost all known timing attacks, except tim-
ing attacks against block ciphers, are based on time measurement of a modular
exponentiation. In this paper we present new timing attack on modular multi-
plication. We use a technique like Dhem’s technique, which is used to attack on

A Timing Attack on Blakley’s Modular Multiplication Algorithm 131

RSA, and propose practical timing attack on Blakley’s modular multiplication
algorithm. In the proposed attack, it is assumed that Blakley’s modular multi-
plication is used to compute a.b mod ¢, attacker knows b, ¢, and running time
of algorithm but he is unaware of the multiplication result. The timing attack
finds the parameter a. Running time of each step of Blakley’s algorithm is not
independent of other steps, so correlation between running time of steps will
be considered in the attack. The attack is applied on DSA’s on-line signature
generation phase. Experimental results show that 1,000,000 time measurements
are sufficient to find 160 bits of the secret key.

This paper is organized as follows. Blakley’s modular multiplication algo-
rithm and its application in DSA’s signature generation phase are described in
section 2. The proposed timing attack is explained in section 3. Running time of
Blakley’s algorithm and inter-steps dependencies are also discussed in section 3.
Section 4 introduces a heuristic algorithm to solve some involved problems with
attack. Practical results of applying the attack on an on-line implementation of
DSA are presented in section 5 and section 6 concludes this paper.

2 Blakley’s Modular Multiplication Algorithm

Blakley or interleaved algorithm is one of the algorithms are deployed in imple-
menting modular multiplication [I]. Blakley’s algorithm interleaves multiplica-
tion and modular reduction. At each step of multiplication, intermediate results
are reduced to desired modulus ¢. If all numbers are ¢ bits, the algorithm is as
following:

Step 3 is like left shift in multiplication. If current bit of operand a, a;, is 1,
operand b is added to partial product, p. Steps 4 and 5 as well as steps 8 and 9
reduce partial product to modulo g. After step 3 or 7, there is always p < 2¢, so
one subtraction, in steps 4 or 8, is sufficient to reduce partial product to modulo q.

In the remainder of this paper following definitions are used:

Addition-1: The modular addition is done in steps 3, 4, and 5 to compute
p=p+pmod q.

Addition-2: The modular addition is done in steps 7, 8, and 9 to compute
p=p+0bmod q.

Ery; : When the condition of step 5 in round j = i is true, an extra assignment
is done, this is called as occurrence of Ery ;.

Ery; : When the condition of step 9 in round j = i is true, an extra assignment
is done, this is called as occurrence of Erg ;.

Er : Either Ery; or Ergy ;.

p1,i : Value of p, which is used in the right hand side of Addition-1 in round
j=1i.

p2,i : Value of p, which is used in the right hand side of Addition-2 in round
j=1i.

Blakley’s algorithm has a few conditional statements that cause running time
of the algorithm be dependent on the input values. Hence, it is vulnerable to

132 B. Bakhshi and B. Sadeghiyan

timing attack. In our attack scheme, it is assumed that attacker knows b, ¢ and
can measure running time of the algorithm, but he does not know the multi-
plication result. The input parameter a is the secret parameter. Such situation
exist in signature generation phase of DSA. DSA signs a hash of message M,
h(M), and produce two values r and s as following:

« 7= (g*¥ mod p) mod q.
o s=k L(h(M)+ x.r) mod q.

Where g, p and g are public parameters, k is a random number which is generated
for each message, and z is the long-term key, i.e. signer’s permanent secret key.
In order to improve performance and reduce bit size of intermediate results, it
is preferred that compute the output s in the following steps:

1. z=z.r mod gq.
2. 2/ = h(M) + z mod q.
3. s=k 12 mod q.

It is assumed that modular multiplications is implemented using Blakley’s
algorithm instead of Montgomery multiplication. As, Montgomery algorithm is
not suitable for a single modular multiplication. Suppose a, b, and ¢ are t-digit
integers with 0 < a,b < ¢. Montgomery algorithm requires a precomputation
on inputs, a,b. Neglecting the cost of the precomputation on the input, Mont-
gomery multiplication algorithm computes a.b.R~! mod ¢, where R is a constant
parameter of the algorithm, while the result is obtained through 2¢(¢ + 1) single-
precision multiplications. The computation of a.b mod ¢ is done in 4¢(t + 1)
single-precision operations through the application of Montgomery multiplica-
tion to a.b.R™' mod ¢ and R? mod ¢. Using classical modular multiplication
(Multiplication a.b then division by ¢) would require 2¢(¢t 4+ 1) single-precision
operations and no precomputation. Hence, the classical algorithm is superior
for doing a single modular multiplication [12]. But Blakley’s algorithm is more
computational effective that classic modular multiplication, because it requires
less memory to store intermediate results and it does not use the complicated
division operation. In addition to using Blakley’s algorithm, it is assumed that
the secret key x is passed as parameter a to Blakley’s algorithm. With these
assumptions, the conditions of the timing attack are met, i.e. the attacker knows
r and ¢, while z is kept as a private intermediate result. But attacker can not
measure the running time of modular multiplication in step 1 directly.

There are two general implementations of DSA: on-line and off-line. In on-line
implementation, both r and s are computed when there is signing request. But
in off-line implementation, r is computed regardless of a signing request and
the computed (r, k=) is stored. When there is a signing request, only s will be
computed using h(M) and a stored (r,k~1). In this paper, the on-line imple-
mentation of DSA are attacked. In this case an attacker measure the running
time for computing 7, z, 2/, and s altogether. The execution time of 7, s, and
z' will be considered as noise included in a measured timing data. Attacker can
compensate for the noise by increasing the number of measurements.

A Timing Attack on Blakley’s Modular Multiplication Algorithm 133

3 Timing Attack

Our approaches for guessing bits likes the approach which Dhem et al. used to
attack on RSA, modular exponentiation [4]. In which, to guess a bit of secret key;
it is assumed that the bit is one and algorithm is simulated on attacker’s machine
using gathered inputs from the under attack machine. According to a feature
of implementation, extra reduction in Montgomery algorithm, the input set is
divided into two subsets. Statistics of the running time of these two subsets are
obtained. According to an oracle function, which is defined on the statistics, the
bit of the secret key is guessed. In our attack, occurrence of the Erj ; is used as
implementation feature. The statistic is the average running time and the oracle
function uses difference between the averages. With the following assumptions,
attacker uses “Timing Attack” algorithm to guess bit a;.

« Attacker collects a set of inputs, which are used for a parameter b of Blakley’s
algorithm, B = {b(1)7 b(z), R b(n)}

o Attacker measures running timing of the algorithm for each input, T' =
{T,Ts,...,T,}, where T; is the running time of the algorithm for input b(;.

. Attacker knows a few most significant bits of the parameter a, i.e. a’ =<
Gt—1G¢—20¢—3 ... Q41 >, Where < a;a; > denotes concatenation of the a; and
a; bits.

ALGORITHM Timing Attack
INPUT: B, T, q, d, and a
OUTPUT: a;
1. Generate a temporary key, a’’ =< a’l >
2. Run Blakley’s algorithm from j = ¢ — 1 to j = ¢ using a” for each b, € B.
3. According to the occurrence of Ers;, T is divided into two sets, Ty and T4:
To = {T; € T|Ers,; does not occur}
T] = {T; € T|Er2, occurs}
4. Compute average of Ty and T4, which are named Ty and T4 respectively.
5. Find difference between the average of times: d = T1 — Tp.
6. If d > d, a; is guessed as zero,
else a; is guessed as one.

Note that step 2 of the “Timing Attack” algorithm, simulating Blakley’s Algo-
rithm using gathered data from victim’s machine, is done on attacker’s machine.
The variable d is the statistic of attack, the variable can be either of two random
variables dy or di. When the bit «a; is actually one, d is equal to di, and when
the bit is zero, d is equal to dy. The “Timing Attack” algorithm will guess bit a;
correctly, if distributions of the random variables dy and d; are not overlapped,
in this case the input d is the border between distribution of dy and dy. In step
6, it is decided whether d equals d through comparing it with d, and a guess on
a; is given according to the result. Attacker repeats this algorithm to find out
the subsequent bits.

134 B. Bakhshi and B. Sadeghiyan

Correctness of “Timing Attack” depends upon following claims:

Claim 1: Distributions of the random variables dy and dy are not overlapped,
therefore we can find the border, d.

Claim 2: Vd' € dy and Vd"” € dy we have d’ > d", so the step 6 guesses the a;
correctly.

In following sections, we investigate the claim 1 and 2 and propose an algo-
rithm to find the d.

3.1 Running Time of Blakley’s Algorithm

This subsection elaborates the claim 1 and 2. In order to investigate the claims,
distributions of dy and d; should be obtained. It requires that running time of
Blakley’s algorithm be inspected in more details. The running time of Blakley’s
algorithm can be formulated as following:

T(r)= > (t+aity + Bi(ts +7it2)) (1)

i=t—1
where:

o t1:is the running time of either steps 3 and 4 or steps 7 and 8.
o lo:is running time of either step 5 or step 9.

o «:is 1if Ery; occurs, otherwise it is 0.

e [3;:is one if bit a; is one.

o v is 1if Ery; occurs, otherwise it is 0.

Running time of each modular addition in Blakley’s Algorithm is not inde-
pendent of other modular additions. The dependency between running time of
steps of Blakley’s algorithm is a major difficulty in obtaining the distributions.
To consider effect of modular multiplications on each other, Fxtra Reductions
Neighborhood Window, ERNW, is used. ERNW {xz, y} of an Er is a set, contain-
ing x numbers of Ers may be occurred before the Er and y numbers of Ers can
be occurred after the Er. It is supposed that occurrence of the Er is independent
of other Ers that do not belong to the window. For example, if a;41 =1, a; =1
and a;—1 = 0, the ERNW{1,1} of Ery; is {Er14, Er1,-1}, and ERNW{2,2}
of Erg; is {Ersi+1, Er1,i, Er1,i-1,Er1,i—2}. The Erg ;1 does not belong to this
set, because a;—1 = 0 and Ery;_; cannot occur.

To compute the distributions, we need expected number of messages in 7)) and
T and their running time. Equation 1 states that running time of a message
is a summation of running time of modular additions. Two random variables,
p and b, are involved in running time of modular additions. Expected number
of messages and running time of each message are approximated in (p,b)—plan.
The (p,b)—plan can be divided into some regions according to a Er and its
ERNW{z,y}. For example if Ery; and its ERNW{1,0} = {Er ;} are consid-
ered, the (p,b)—plan is first partitioned into two regions, a region where Ery ;

A Timing Attack on Blakley’s Modular Multiplication Algorithm 135

is occurred and a region where it does not occurred. Each of these regions are
then divided into two sub-regions according to Ery ;. This partitioning is shown
in Fig. 1. An unique code is assigned to each region that shows a situation of
Ery; and Ery;, for example “region 01”7 contain all p; ; that cause Er;; occurs
but Ery; does not occur.

01 11

00 10

q/2 p

Fig. 1. (p,b)—plane for ERNW = {1,0} of Ery;

The “Approximate the dy or d;” algorithm uses such partitioning, obtains
expected messages numbers in 7 and 77 and their running time, and finds an
approximation for dy or dy for given ERNW {x,y}.

ALGORITHM Approximate the do or dy
INPUT: B, T, ERNW{z,y} of Ers;, and d’
OUTPUT: Approximation for do or d;.
1. To obtain an approximation for do , create ERS = ERNW{z,y}.
To obtain an approximation for di, create
ERS = ERNW{x,y} Er2;; = {Er1,Era,Ers,...,Ery,Erg i, Er1,Era, ..., Ery}.

~ ~ - ~ ~ -

z y

2. According to Ers belong to ERS, the (p,b)—plane is divided into 2IERS] regions.
Each region specifies a situation of Er occurrence and a code is assigned to this region
as < EriErs ... Ery >. For example, the region < 00...0 > covers all (p,b) that none
of modular additions has extra reduction.
3. According to Erz;, B is divided into two subsets, i.e. By and Bi. Bg
contains all inputs that Er2,; does not occur for them, if a” =< a’1 > is used to
simulate the Blakley’s algorithm. B; contains remaining members of B. By and B; also
define two regions in (p, b)-plane.
4. For By and Bj, find their regions overlap size with the created regions in step 2.
5. Find approximation for average running time of By and B;:
To = > for all regions(overlap Sized with By)(Ham(the code of region))
Tr = for all regions(overlap Sized with B1)(Ham(the code of region))
Where Ham(< ... >) is a hamming weight of a code.
6. Return 77 — Ty

136 B. Bakhshi and B. Sadeghiyan

Table 1. dy and d; for some ERNW

ERNW {} {Erl,i, Erl,i—l} {ET’LHl, Eri,i, Erii-1, ETQ,i,fl} {ET1,i+1, Erait1, ETl,i,ET‘l,i—l}

b0 i L, 2,

di to 176 to étQ étg

Dividing (p, b)—plane in step 2 and finding overlap size in step 4 of the algo-
rithm, will be very complicated, if there is no constraint on inputs. We consider
the following assumptions:

1. p and b have uniform distributions in interval [0, g].
2. p and b, which are used in the right hand side of the Addition-2, are inde-
pendent.

The validity of these assumptions will be discussed in subsection 3.2. Using
these assumptions, dg and d; are approximated for some ERNW, which are
shown in Table 1. It can be seen from the table that:

— When bigger ERNW are considered, i.e. dependency between more bits are
considered, dp increases and d; decreases.
— For adequate large FERNW | we have dg > d;.

It is easy to experimentally apply the approximation algorithm to larger
ERNW and verify that dy > dy. Table 1 also indicates that dy and d; are
dependent on ERNW members. Hence they are dependent on the bits of the
input a, which is assumed as secret parameter of a cryptographic function. At-
tacker can not find distribution of dy and d; directly, because he does not know
the secret parameter. Even if he had a machine similar to the victim’s machine,
he could not directly find the distribution of the random variables, because the
distributions are dependent on the secret parameter value. In the section 4 a
heuristic algorithm is described to have a solution for the problem.

3.2 Assumptions

Two assumptions yield dy > dy. First, it is supposed that p and b are dis-
tributed uniformly on interval [0, ¢]. If an uniform random number generator
is used, operand b, which is passed as input to Blakley’s algorithm, has uni-
form distribution. p is obtained from b. It is easy to show that if has b uniform
distribution, p will distribute uniformly, so the first assumption is valid.
Second, it is supposed that the used p and b in the right hand side of the
Addition-2 are independent. Blakley’s algorithm scans bits of the a from the
most significant to the least significant bit. Before the first most significant “1”
of the a, the Addition-2 hasn’t been executed. In a few rounds after the most
significant one, if Addition-2 executes, p and b are not independent; however the

A Timing Attack on Blakley’s Modular Multiplication Algorithm 137

Table 2. Correlation coefficient for a few rounds

7 t—1t—2t—3t—4t—-5t—6
a; 0 0 1 1 1 1
Correlation Coefficient - - - 0.500 0.167 0.071

correlation coefficient of p and b decreases in each round. Correlation coefficient
in each round is dependent on previous bits of a. Table 2 shows the value of bit
a; and the correlation coefficient of p; and b in each round, in an exemplary
experiment.

Therefore the second assumption is also valid, except a few rounds in start of
Blakley’s algorithm. Due to these correlations in the rounds, the random variable
d (step b of “Timing Attack”) does not show expected behavior, so dyp < d; in a
few rounds in start of Blakley’s algorithm. Thus, the attacker can not guess the
most significant bits correctly by simply comparing random variable d, against
distributions of dy and d;. The following heuristic algorithm solves this problem,
too.

4 Threshold Finding Algorithm

Here, we propose a simple heuristic algorithm to solve the above mentioned
problems. First, obtaining the exact distribution of random variables dy and d;
is not necessary to run the attack, but separating the distributions of dy and d;
is sufficient. “Find Threshold” algorithm separates the distributions and finds
the border, d, between the distribution of dy and the distribution of d;. The
step 6 in the “Timing Attack” uses the d to guess a bit of the secret key. It was
already shown that dy > di, hence in this step if d > d it means that d € dy
and the bit a; is guessed as 0, but if d < d then d € d;. Second, when attacker
uses the “Find Threshold” algorithm, he won’t be worry about misbehavior of
random variable d in start of attack.

“Find Threshold” assumes that attacker knows position of the most significant
“1” of the secret parameter a, which is shown by o. He tests all cases of a
few subsequent bits and find d. The method is described formally in “Find
Threshold” algorithm.

After d is obtained, the “Timing Attack” algorithm is applied on B, T" and
a® | and the remaining bits, a;—o_,_1 to ag, are found. Attacker gets 2% guesses
for < a;_o—4w—_1...ap > which only one of them is valid. Other constraints on
parameters might be used to find the correct guess. For example when we are
attacking on DSA. Obtained secret key, z, must satisfy y = ¢* mod q.

In addition to finding an estimation of d, the attacker ignores misbehavior of
d with this algorithm. As if w is large enough, the correlation between p and b is
degraded and the assumptions which were discussed in subsection 4.1 are valid,
hence it is expected that dg > d;.

138 B. Bakhshi and B. Sadeghiyan

ALGORITHM Find Threshold

INPUT: Position of the most significant one, o, size of guessing window, w.

A set of inputs of Blakley’s Algorithm, B = {b(1), b2y, ..., ben)}-

Running time of algorithm for each input. T} is running time of by, T' = {T1,T>,...,Tn}
OUTPUT: d

1. Construct 2" guesses for w successive bits after the most significant one:

a® = 00,..0100,..0, a® = 00...0100...1, a? = 00,.-0100...10,...,

o— w o—1 w o—1 w

1
00...0111...1,.
~ 4

~

CEE))
-

IR

~
w

2. For each a'”, apply the “Timing Attack” algorithm using B, T and a?.

In this case no bit is guessed, only obtained d will be used. The obtained d is added
to set D'.

3. Threshold d is average of D'.

S

Table 3. Attack result, when w = 2

|T| x (10°) 5 5 5 10 10 10 10
d 11370.3 12911.6 11178.7 13096.8 10529.2 11765.0 10239.8
Err.Num. 5 0 1 0 1 0 1

5 Practical Results

The proposed timing attack was practically applied on pure modular multipli-
cation and on-line implementation of DSA. Here, only the results of the attack
against DSA are presented. Victim machine is an on-line implementation of DSA
running in MS-DOS operating system on Athlon-XP 800 MHz. Two internal 32
bit counters of CPU are used as timing measurement facilities [9]. Running time
is measured with respect to the number of required CPU cycles to run the DSA
algorithm.

There are two parameters in our attacks, i.e. size of T, the number of timing
measurements, and size of the guessing window, w, which is used to in “Find
Threshold” algorithm. Table 3. and Table 4. show d and the number of incorrect
guesses in a run of attack for a constant secret key x, for different numbers of
timing measurements and window sizes of 2 and 3, respectively.

In these tables, d and the number of incorrect guesses are not reported, when
the number of measurements is less than 5 x 10°. As in such a case, the distribu-
tions of dy and d; are overlapped and the border between them, d, is meaningless.
Hence, applying the attack is impossible. These tables show that as the number
of measurements increases, the number of errors degrades. The tables also show
that, using bigger window is less erroneous. When very small window are used,
d is prone to error. So, obtained d is unreliable to properly separate the distri-
bution of dy and d;. Our practical attacks found 160 bit of DSA secret key using
window size 3 and 10° timing measurements.

A Timing Attack on Blakley’s Modular Multiplication Algorithm 139

Table 4. Attack result, when w =3

|T| x (10°) 5 5 5 10 10 10 10
d 11288.3 11731.3 11064.1 13004.4 10410.6 11691.1 10124.6
Err.Num. 1 0 5 0 0 0 0

The running time of the attack and the amount of required time to gather the
timing samples are directly related to the size of the parameters w and |T'|. Al-
though increasing the size of parameters enhances the results of attack, it causes
more running time. The Running time of the “Timing Attack” algorithm is O(|T]),
running time of “Find Threshold” algorithm is exponentially related to w. An in-
creasing in the window size from w to w + 1, doubles the attack time to find valid
aD because the number of a(¥ is 2.

In our experiments, given the T and the a’, it takes about 70 min. to run the
“Timing Attack”. Empirical running time of “Threshold Finding” is dependent
on the w. When w = 3 it takes about 12 min.

6 Conclusion

In this paper, we proposed a new timing attack on an implementation of modular
multiplication, which is called as Blakley’s modular multiplication algorithm. To
our best knowledge this is first time that timing attack is applied on modular
multiplication. To attack, it is assumed that the secret key is passed as parameter
a to Blakley’s algorithm, attacker knows the parameter b, and can measure the
running time of Blakley’s algorithm. Blakley’s algorithm may be employed for
multiplication in public key cryptography or digital signature. If the assumptions
are valid, their implementations are vulnerable.

In this paper we focused on DSA and applied our timing attack on on-line
implementation of DSA. Our experimental results shows that the proposed tim-
ing attack finds out the secret key used in DSA, practically. The attack only
gathers timing sample from victim machine and does not require extra infor-
mation about implementation details or a machine similar to victim’s machine.
The set of measured timing data are divided into two subsets based on the extra
reduction in the Addition-2 of Blakley’s algorithm. It is shown that the secret
key can be guessed according to the difference between averages of these subsets.

Our timing attack is against a specific implementation of modular multipli-
cation. The modular multiplication a.b mod ¢ is a symmetric operation in a and
b, this is not anymore the case in the internal operations performed by the
Blakley’s Algorithm. So, if (DSA secret key) is passed as input b of Blakley’s
Algorithm then not much information leaks and our attack is not applicable.
Using Er; ; instead of Ers ; in attack, timing attack on more general implemen-
tation of Blakley’s algorithm, in which secret parameter is passed as parameter
b, use mathematical model to prove dy > d;, and timing attack on other imple-
mentation of modular multiplication are open problems.

140

B. Bakhshi and B. Sadeghiyan

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

G. R. Blakley. “A computer algorithm for calculating the product AB modulo M”.
IEEE Transactions on Computers, 32(5):497-500, May 1983.

D. Brumley, D. Boneh, “Remote Timing Attacks are Practical”, Proceedings of the
12th Useniz Security Symposium, 2003.

J. Cathalo, F. Koeune, and J.-J. Quisquater, “A New Type of Timing Attack:
Application to GPS”, Cryptographic Hardware and Embedded Systems - CHES
2003, LNCS 2779, 2003, pp. 291-303.

. J.F. Dhem, F. Koeune, P. A. Leroux, P. Mestre, J. J. Quisquater and J. L. Willems,

“A Practical Implementation of the Timing Attack”, 8rd Working Conference on
Smart Card Research and Advanced Applications - CARDIS 1998, Springer-Verlag,
LNCS No. 1820, 1998.

E. W. Felten, and M. A. Schneider, “ Timing Attacks on Web Privacy”, CCS 2000,
Athens, Greece, 2000.

R. Focardi, R. Gorrieri, R. Lanotte, A. Maggiolo-Schettini, F. Martinelli, S. Tini,
E. Tronci, “Formal Models of Timing Attacks on Web Privacy”, Electronic Notes
in Theoretical Computer Science, vol. 62, 2001.

H. Handschuh, and H. M. Heys, “A Timing Attack on RC5”, SAC’98, LNCS 1556,
1999, pp. 306-318.

A. Hevia, M. Kiwi, “Strength of Two Data Encryption Standard Implementations
Under Timing Attacks”, LATIN’98, LNCS 1380, 1998, pp. 192-205.

Intel, “Using the RDTSC instruction for performance monitoring”, Technical
report, 1997.

P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSA,
and Other Systems”, Advances in Cryptology - CRYPT(0O’96, Springer-Verlag,
LNCS No. 1109, 1996, pp. 104-113.

F. Koeune, J. J. Quisquater, “A Timing Attack against Rijndael”, Technical Report
CG-1999/1, June 1999.

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, “Handbook of
Applied Cryptography”, CRC' Press, 1996.

National Institute of Standard and Technology (NIST), “Digital Signature
Standard”, FIPS PUB 186-2, http://csrc.nist.gov/publications/fips/fips186-2/
fips186-2.pdf

W. Schindler, “A Combined Timing and Power Attack”, PKC 2002, LNCS 2274,
2002, pp. 263-279.

W. Schindler, C. D. Walter, “More Detail for a Combined Timing and Power
Attack against Implementations of RSA”, 9th IMA International Conference on
Cryptography and Coding, LNCS No. 2898, 2003, pp. 245-263.

W. Schindler, “A Timing Attack against RSA with the Chinese Remainder The-
orem”, Cryptographic Hardware and Embedded Systems - CHES 2000, Springer-
Verlag, LNCS No. 1965, 2000, pp. 109-124.

W. Schindler, “Optimized timing attacks against public key cryptosystems”,
Statistics and Decisions, volume 20, 2002, pp. 191-210.

W. Schindler, “On the Optimization of Side-Channel Attacks by Advanced
Stochastic Methods”, 8th International Workshop on Practice and Theory in
Public Key Cryptography PKC 2005, Springer-Verlag, LNCS No. 3386, 2005, pp.
85-103.

	Introduction
	Blakley's Modular Multiplication Algorithm
	Timing Attack
	Running Time of Blakley's Algorithm
	Assumptions

	Threshold Finding Algorithm
	Practical Results
	Conclusion

