
A Timing-Based Scheme for
Rogue AP Detection

Hao Han, Bo Sheng, Member, IEEE, Chiu C. Tan, Member, IEEE,

Qun Li, Member, IEEE, and Sanglu Lu, Member, IEEE

Abstract—This paper considers a category of rogue access points (APs) that pretend to be legitimate APs to lure users to connect to

them. We propose a practical timing-based technique that allows the user to avoid connecting to rogue APs. Our detection scheme is a

client-centric approach that employs the round trip time between the user and the DNS server to independently determine whether an

AP is a rogue AP without assistance from the WLAN operator. We implemented our detection technique on commercially available

wireless cards to evaluate their performance. Extensive experiments have demonstrated the accuracy, effectiveness, and robustness

of our approach. The algorithm achieves close to 100 percent accuracy in distinguishing rogue APs from legitimate APs in lightly

loaded traffic conditions, and larger than 60 percent accuracy in heavy traffic conditions. At the same time, the detection only requires

less than 1 second for lightly-loaded traffic conditions and tens of seconds for heavy traffic conditions.

Index Terms—Wireless LAN, IEEE 802.11, rogue access point, round trip time.

Ç

1 INTRODUCTION

THE proliferation of IEEE 802.11 networks (WLAN) in
public spaces such as airports and coffee houses has

increased the interest of security and privacy when using
such networks. A thread called rogue access points, or rogue
APs, has emerged as an important security problem in
WLANs [1], [2], [3], [4], [5], [6], [7]. A rogue AP is defined as
an illegal access point that is not deployed by the WLAN
administrator. Two types of rogue APs can be set with
different equipments. The first type uses a typical wireless
router connected directly into an Ethernet jack on a wall. The
second type of rogue APs are set on a portable laptop with
two wireless cards, one connected to a real AP and the other
configured as an AP to provide Internet access to WLAN
stations. We will further explore the differences between
these two types of rogue APs in later sections. In this paper,
we focus on the detection of the second type of rogue APs.

Fig. 1 illustrates that a laptop with two wireless adaptors
can be easily set as the rogue AP considered in this paper.
For example, we let the internal wireless adaptor connect to
a legitimate AP, and external wireless adaptor pretend to be
a real AP to induce users. In Linux, running command
iptables -t nat -A POSTROUTING -o interface -j

MASQUERADE can bridge packets from one adaptor to the
other easily. According to 802.11 standard, when multiple
APs exist nearby, a WLAN client will always choose the AP
with the strongest signal to associate. To attract clients,
therefore, a rogue AP needs to be close to clients so that its
signal can be stronger than other legitimate APs. The rogue
AP can then passively wait for users to connect to it, or
actively send a fake deassociate frame to force users to
change connection. Note that, the setting here only
demonstrates the basic steps of setting up a rogue AP to
launch attacks. In practice, a rogue AP needs further
configuration to avoid easy detections, such as spoofing
MAC address, SSID, and vendor name, setting up a DHCP
server to assign valid IP addresses to connected clients.

Once an innocent client is connected to a rogue AP, the
adversary can manipulate and monitor the incoming and
outgoing traffic of the client, and further launch different
kinds of attacks. For instance, the adversary can easily
launch phishing attacks by redirecting the user’s webpage
request to a fake one to steal the user’s sensitive information
such as bank account and password.

The previous work has explored several approaches for
rogue AP detection. One category of solutions is to measure
some identities/fingerprints of an AP such as SSID, MAC
address, RSSI, and clock skew. A rogue AP is detected
when its identities are compared to those of legitimate APs.
The other category of approaches is to analyze network
traffic at the gateway to detect the presence of rogue APs
(more details are described in Section 2). These existing
approaches cannot effectively detect rogue APs from the
client’s side, especially in the strong adversary model
considered in this paper, where “smart” rogue APs are
aware of the current detection schemes, and have oppor-
tunities to circumvent the detections. Here, we list some
challenges for designing a detection scheme:

. Clients may not have access to the information about
legitimate APs, especially those APs deployed in
hotspots. Therefore, it is not possible to compare the

1912 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2011

. H. Han and Q. Li are with the Department of Computer Science, College of
William and Mary, McGlothlin-Street Hall, Williamsburg, VA 23187-
8795. E-mail: {hhan, liqun}@cs.wm.edu.

. B. Sheng is with the Department of Computer Science, University of
Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125.
E-mail: shengbo@cs.umb.edu.

. C.C. Tan is with the Department of Computer and Information Science,
Temple University, 1805 North Broad Street, Philadelphia, PA 19122.
E-mail: cctan@temple.edu.

. S. Lu is with the Department of Computer Science and Technology,
Nanjing University, 502A# MMW Building, 22 Hankou Road Nanjing,
Jiangsu 210093, China. E-mail: sanglu@nju.edu.cn.

Manuscript received 21 June 2009; revised 5 Nov. 2009; accepted 13 Nov.
2009; published online 4 Apr. 2011.
Recommended for acceptance by M. Singhal.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2009-06-0280.
Digital Object Identifier no. 10.1109/TPDS.2011.125.

1045-9219/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

identity of an AP with that of authorized APs stored
in the database.

. Clients have less privileges than administrators.
They are limited by the settings of the network.
For example, clients cannot set dedicated servers for
detection. They cannot use the existing protocols
that are not supported by the local network. Also,
without the assistance from network administrators,
it is not easy for clients to collect network traffic at
the gateway. Therefore, the second category of the
previous approaches is not possible.

. Smart rogue APs know the detection schemes and
manage to escape from detections. They can forge
their identities, block or fake certain unimportant
messages, and directly reply to clients without
forwarding messages to legitimate APs. Therefore,
simple defenses could be easily circumvented. In
Section 3.2, we will look at the strategy for a
sophisticated adversary in more detail.

In this paper, we propose a timing-based rogue AP
detection technique that allows the user to independently
determine whether an AP is legitimate or not without
assistance from the WLAN operator. To the best of our
knowledge, we are the first to propose a rogue AP detection
scheme that can be implemented purely by end users. Our
main contributions are listed as follows:

1. We extend the work in [8] by using an outlier
filtering algorithm to reduce false detection, and
dynamically adjusting the number of samples in
each test to reduce the detection time without
sacrificing accuracy. Furthermore, we improve our
evaluation to include more complex scenarios.

2. We propose a timing-based rogue AP detection
algorithm that is compatible with the existing
networking protocols, and can be applied to 802.11
network (including both 802.11b and 802.11g) with-
out further modifications by network administrators.

3. Our solution can detect powerful rogue APs that
actively try to avoid detections as opposed to an
“accidental” rogue AP deployed, for example, by an
innocent employee in an office [9].

4. We implement our scheme using commercial off-
the-shelf wireless cards and evaluate the perfor-
mance through real experiments at two campus

WLANs. Results from extensive experiments show
our algorithm achieves almost 100 percent accuracy
in distinguishing rogue APs from legitimate APs in
lightly loaded traffic conditions, and more than 60
percent accuracy in heavy traffic conditions.

The rest of the paper is organized as follows: Sections 2
and 3 discuss the related work, and problem formulation,
respectively. Our algorithm is detailed in Section 4, and our
implementation is presented in Section 5. We depict the
evaluation results in Section 6 and conclude in Section 7.

2 RELATED WORK

The threat of rogue APs has attracted significant attentions
from both industrial and academic researchers. We can
classify rogue AP detection into two categories.

The first category relies on wireless sniffers to monitor
wireless network to detect rogue APs. These sniffers usually
scan the spectrum at 2.4 and 5 GHz for unauthorized traffic.
The sniffers will alert the system administrators when such
traffic is detected. Some commercial products [1], [2], [3]
have been developed using this technique. In these
products, a variety of identifying characteristics including
MAC addresses, vendor name, and SSID are used to
distinguish between a legitimate AP and a rogue AP. Other
alternatives include collecting RSS values [10], radio
frequency variations [11], and clock skews [12] as finger-
prints to identify rogue APs. For example, work by Jana and
Kasera [12] calculates every AP’s clock skew by collecting
their beacons and probe response messages. If any AP’s
clock skew is different from existing clock skews in the
database, the AP is then identified as a rogue AP. Other
work like [4], [6], [9], [13] proposes several hybrid detection
schemes consolidating both wired and wireless-side efforts.
For instance, in [6], special packets are sent to a specified
wired station through wired network. If wireless sniffers
capture such packets on air, the tested machine is identified
as a rogue AP.

However, deploying wireless sniffers to adequately
cover large scale networks such as public hotspots is very
expensive. Our solution on the other hand has a much
lower operating cost since we do not use any wireless
sniffers at all. In addition, our solution can be executed by
the users themselves who have a natural interest in not
connecting to a rogue AP, instead of relying on system
administrators to disable the rogue APs.

In the second category, network traffic is analyzed at the
gateway to detect the presence of rogue APs. In [14], the
authors were among the earliest to suggest using temporal
characteristics, such as interpacket arrival time to detect
rogue APs. Later work by Shetty et al. [7] builds on this idea
by creating an automated classifier. In [15] and [5], two
similar detection schemes are proposed by examining the
arrival time of consecutive ACK pairs in TCP traffics. Work
by Watkins et al. [16] and Mano et al. [17] utilizes round trip
time of TCP traffic to detect rogue APs, based on the
CSMA/CA mechanism and physical properties of half
duplex channel. Recent research [18] detects rogue APs by
extracting characteristics unique to a wireless stream from
network traffic.

HAN ET AL.: A TIMING-BASED SCHEME FOR ROGUE AP DETECTION 1913

Fig. 1. Demonstration of the hardware for setting up a rogue AP. The
requirement is only a laptop with two wireless adaptors: A is an
internal wireless adaptor which is connected to a legitimate AP, and
B is an external wireless adaptor which behaves as a legitimate AP
to induce users.

The prior work focuses on detecting rogue APs that

are directly connected to a wired network. Our detection

scheme targets at a different type of rogue AP attack, where

the rogue AP is connected to legitimate APs instead.

Furthermore, the prior work all requires a network admin-

istrator to detect the rogue APs, which is more feasible in

environments such as corporate networks. In public net-

works like those found in coffee shops, users cannot assume

that the network provider will implement any rogue AP

detection scheme. Our proposed scheme can be executed by

end users without any help from network administrators.

3 PROBLEM FORMULATION

We consider a scenario when a wireless station tries to join

a WLAN to access the Internet. After scanning the

channels, the station will discover multiple APs within its

communication range. Some of these APs are legitimate

and some might be rogue APs. Our objective is to design

an algorithm that helps the station to detect the rogue AP.

The detection algorithm should function in all IEEE 802.11-

based wireless networks without requiring additional

modifications from the network administrator. Our pro-

posed scheme uses a client-centric approach, where a user

can avoid connecting to a rogue AP. This can be combined

with administrator-centric approaches (described in Sec-

tion 2) where the system administrators actively detect and

disable rogue APs.
We assume that the rogue AP will be launched using a

mobile device with two wireless interfaces. The first inter-

face connects the rogue AP to the legitimate AP. The second

interface pretends to be a legitimate AP to induce users to

connect to it. When a user associates to the rogue AP, the

rogue AP will forward packets from the second interface to

the first interface, and then toward the legitimate AP. This

way, the user will still be able to access the Internet as if

connected to a real AP. Fig. 2 illustrates the setup.

We do not consider a rogue AP setup where the
adversary directly plugs the rogue AP into an Ethernet
jack in the wall. There are three reasons for this.

First, there are a limited number of available Ethernet
jacks in public places like airports. Since a rogue AP that
needs an Ethernet cannot launch an attack without an
available Ethernet jack, this makes this type of rogue AP
attacks less likely in such places.

Second, rogue APs convince users to associate with them
by offering a better connection as indicated by a stronger
signal strength. Ethernet-based rogue APs must remain
connected to the Ethernet while launching the attack. As
such, it is difficult for such rogue APs to physically move
closer to users to increase their signal strength to induce
people to connect to them, thus limiting their impact.

Finally, network administrators can use other methods
[5], [9], [13], [18] to disallow devices from accessing the
network via Ethernet jacks, if they are not registered or do
not “behave” as wired stations. In this case, the rogue AP
will be unable to provide Internet access to users, making
them easy to be detected.

3.1 Rogue AP Effectiveness

To demonstrate the effectiveness of our rogue AP, we set up
a testbed shown in Fig. 3. The station is placed in an office
several meters away from a legitimate AP mounted on the
ceiling. The SNR of legitimate AP measured by the station is
40 dbm. We then set up the rogue AP and place it at three
separate locations A, B, and C. Location A is 1 meter away
from the station, location B is 3 meters away, and location C
is 6 meters away behind a wall. The goal is to determine if
we could induce the station to connect to the rogue AP
instead of the legitimate AP. Table 1 shows the SNR values
received by the station when the rogue is placed at different
locations. By default, the station will select the AP with the
highest SNR to connect. In our experiments, when the rogue
AP’s SNR is greater than 40 dbm, it is highly likely that
the station will be lured into connecting with the rogue AP.

1914 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2011

Fig. 2. This figure shows the setup of a rogue AP. A rogue AP is
connected to the wired network through a legitimate AP. Some stations
inadvertently connect to the rogue AP because the rogue AP is closer
and broadcasts stronger signals to them. (a) Without rogue AP. (b) With
rogue AP.

Fig. 3. Illustration of rogue AP attacks. In our experiments, a rogue AP is
deployed at locations A, B, and C.

TABLE 1
Average SNR under Different Distance and TX Power

3.2 Adversary Model

Here, we consider some defenses that can be circumvented
by a sophisticated adversary.

Identity verification. Users can run programs like
traceroute to determine whether the connected AP is a
rogue AP. traceroute will return the number of inter-
mediate hops to a host site. From the output, the station will
learn that a suspicious AP exists in the route.

However, the rogue AP can evade this detection by
monitoring the wireless channel to learn the SSID and MAC
address of a legitimate AP, and then set up the rogue AP to
have the same parameters. The rogue can then avoid
forwarding the real AP’s reply to the user, thus giving the
impression that it is connected to the same gateway as a
legitimate AP.

Traffic monitoring. Traffic monitoring is a technique to
distinguish between wireless and wired traffic. For instance,
[5] monitors all the traffic at a gateway and computes the
interval between two consecutive TCP ACK packets. A
longer interval indicates that the TCP packets are traveling
over a wireless connection.

However, since the user connecting to a legitimate or
rogue AP must use a wireless link, the resulting interval
between TCP ACKs will experience high variance due to
fluctuating channel conditions. This makes the traffic
monitoring technique unsuitable for rogue AP detection.

Simple timing. The station may use the timing informa-
tion such as the round trip time (RTT) to detect a rogue AP.
Since the rogue AP consists of an additional wireless link to
the legitimate AP, this may lead to a delay when
transmitting data. The station can determine the RTT by
sending a message such as a ping request or TCP data
packets [16] and wait for a reply.

However, the rogue AP can simply forge a response to
the user, thus avoiding the time penalty of the additional
wireless link. For instance, the rogue AP can generate a
ping response to return to the user without forwarding the
request to the real AP. Similarly when the user sends a TCP
packet, the rogue AP can return the ACK to the user directly.

4 OUR PROTOCOL

Our rogue AP detection protocol uses timing information
based on the round trip time. The intuition is to let the user
probe a server in the local network and then measure the
RTT from the response. The user repeats this process for a
number of times and records all the RTTs. If the mean value
of RTTs is statistically larger than a certain threshold, we
regard the associated AP as a rogue AP. We begin with
examining the motivation and challenges of our approach,
followed by some background discussion. We then propose
our protocol and show how to determine the parameters.

4.1 Motivation and Challenges

There are two reasons for using RTT-based method to
detect rogue APs. First, when a user connects to the
network via a rogue AP, all his packets traverse two
wireless hops, one between the user and the rogue AP,
and the other between the rogue AP and the real AP.
When the user is communicating with a real AP, there is
only one wireless hop. This additional hop will introduce

an unavoidable time delay provided that the rogue is
forced to communicate with the real AP. Second, it is easy
for a user to measure RTTs. Unlike nontiming methods
mentioned in the related work, measuring RTTs does not
require any special equipment, such as sniffers [1], [2] or
radio frequency analyzers [19]. It also does not require any
modification to the AP.

However, using RTT to detect rogue APs requires
addressing three issues. 1) The first issue is which server
to contact. A server in the local network is preferred over a
remote server on the Internet because the RTT-based
method is sensitive to the delay in the wired network.
Probing a remote server may lead to significant variance of
RTT due to the dynamic routing path and Internet traffic.
2) The second issue is what type of probe message to use.
We want a probe message that cannot be easily manipu-
lated by the rogue AP, and can reach the server regardless
of network configuration. As we mentioned earlier, a
simple ping message can be easily returned by the rogue
AP to evade detection and might be blocked by some
network administrators. In addition, our probe message has
to adhere to the existing networking protocols so as to avoid
requiring assistance from the network provider. 3) Finally,
we have to consider the effect of network traffic conditions.
A busy channel may adversely affect RTT timing and lead
to incorrect rogue AP detection.

4.2 Background

Our solution lets the station contact a DNS server, and uses
the DNS lookup as the probe message. In addition, we use
two 802.11 management frames, probe request and probe
response, to determine the effects of network traffic.

DNS server and lookup. The basic function of DNS is to
provide a distributed database that maps human-readable
host names (such as www.cs.wm.edu) to IP addresses (such
as 128.239.26.64). The servers managing this distribu-
ted database are known as DNS servers. Current networks
typically cache the queried records to achieve high
performance.

There are two typical types of DNS lookups, a recursive
query, and a nonrecursive query. In a recursive DNS
lookup, a station queries a local server for a host name. If
this server cannot answer the query, it will contact the root
DNS server which will then recursively ask other servers to
determine the IP address. In a nonrecursive query, the local
DNS server will only search the cached records locally
without contacting the root DNS server. If no matches are
found, the local server will send a “host not found” message
back to the station.

In our algorithm, we use nonrecursive query as the probe
message to measure the RTT between the user and the DNS
server. The user will send a DNS request for a host name
with the nonrecursive option. The user then waits for the
response from the local DNS server and measures the RTT.
The user repeats this process using a different host name
each time.

Our proposed scheme is efficient since most local
networks may have a local DNS server or resolver for
performance reasons [20]. Therefore, a station can always
send a request to the local DNS server and the time spent on
the wired network is small due to the local communication.

HAN ET AL.: A TIMING-BASED SCHEME FOR ROGUE AP DETECTION 1915

Furthermore, since DNS lookup support is mandatory, all
networks will have this function. Finally, since the DNS
response varies for different queries, the adversary cannot
predict in advance the user’s query. The adversary also
cannot determine whether a particular query can actually
be satisfied by the real DNS server. Any rogue AP that
returns an incorrect answer will be detected by the user.
This forces a rogue AP to forward the request to the real
DNS server to ensure that the reply is correct. Details of
how to generate and verify user’s queries are presented in
Section 4.7.

Network traffic conditions. To determine the wireless
traffic conditions, we measure another RTT using probe
request and probe response messages. These messages are
typically used when a station is scanning for APs.

There are two advantages of using probe request and
response. First, by calculating the durations between these
two packets, we can estimate the channel traffic and the
AP’s workload. The reason is that in a busy channel, both
the probe request and response will take a long time to
transmit due to channel contention and retransmission after
signal collisions. Similarly, when the AP has a heavy
workload, i.e., the AP is sending many packets for other
associated stations, the probe response message has to wait
in the AP’s transmission queue for a long time before being
sent out. Second, it is difficult for a rogue AP to replicate a
busy channel by intentionally delaying the probe response
because commercial wireless card drivers do not dispatch
this kind of low level management frames to OS. Further-
more, it is difficult to delay a probe response since this
function is not supported by regular wireless drivers.

However, a regular probe request has a drawback in that
it is a broadcast message and every AP that overhears this
request will respond. This leads to multiple responses,
which will create unnecessary channel contention and lead
to biased RTT measurements. Furthermore, a broadcast
message will not be retransmitted if lost. The associated AP
that does not receive the probe request correctly will never
reply. This may affect the RTT values. Therefore, we modify
the probe request packet to be a unicast message. This is
done by putting the MAC address of the target AP into the
destination field in the probe request. This will ensure that
only the target AP will respond and other APs will not.
Also, the station will automatically retransmit the probe
request if needed.

4.3 Protocol Overview

Here, we present the overview of our rogue AP detection
scheme. We use sta to indicate a station. For a given APx

within sta’s communication range, the station runs the
Algorithm 1 to determine whether APx is a rogue AP.

Algorithm 1. Detecting Rogue AP (APx)

1: Connect and associate with APx

2: for i ¼ 1 to n do

3: Send unicast probe request to APx, record round trip
time RTTprobe ¼ RTTprobe � TdataðprobeÞ.

4: Send DNS lookup to local DNS server, record round

trip time RTTdns ¼ RTTdns � TdataðdnsÞ.

5: end for

6: Filter out outliers

7: RTTprobe ¼ Mean of remaining RTTprobe

8: RTTdns ¼ Mean of remaining RTTdns

9: �probe ¼ Standard deviation of remaining RTTprobe

10: �dns ¼ Standard deviation of remaining RTTdns

11: �t ¼ RTTdns �RTTprobe

12: � ¼ fð�probe; �dnsÞ

13: if �t > � then

14: APx is a rogue AP

15: end if

Our algorithm consists of two phases. The first phase
(lines 2-5) measures the RTTs, and the second phase
(lines 6-15) analyzes the collected RTTs and decides if
the current tested AP is rogue.

In the first phase, the station repeatedly sends a probe
request (line 3) and a DNS lookup (line 4) for n rounds.
RTTprobe (RTTdns) records the round trip time between the
probe (DNS) request and response. Note that we subtract
the data transmission time Tdata from both RTTprobe and
RTTdns, because probe packets and DNS packets have
different packet sizes and transmission rates which may
vary in each round. After eliminating the effects caused by
data transmission time, we can compare RTTprobe and
RTTdns fairly. The details of how to calculate Tdata are
discussed in next section. The choice of parameter n

captures the trade-off between the overhead and accuracy.
Larger n incurs a larger overhead, but increases the
detection accuracy. We describe this issue in Section 4.6.

In the second phase, we first filter out some outlier RTTs
(line 6). After that, we calculate the mean value (lines 7-8)
and standard deviation (lines 9-10) of both RTTprobe and
RTTdns. Finally, in lines 11-15, we check the difference
between these two RTTs �t (line 11) against a threshold
parameter � (line 12) to determine whether this is a rogue
AP. The threshold � reflects the delay induced by the extra
wireless transmissions in rogue AP case, and is calculated
by �probe and �dns according to experimental measurements.
We will present the detail of function f in Section 4.5.

4.4 Outlier Filter

As mentioned earlier, after measuring n sample values of
the RTTs, our algorithm runs a filtering process to
eliminate some abnormally large values of RTTs that
may exist in the n samples due to dynamic network
conditions. We call these abnormal values outliers. These
outlier values may affect the final outcome. For example,
assuming we have 50 RTT samples, and 49 samples are
1ms and a single sample is 100 ms. Without filtering out
100 ms sample, we arrive at a mean value of 2.98 ms,
which is not representative of the majority of the samples.

There are many ways to define an outlier. In this paper,
we consider a conventional definition based on the value
distance. Consider n sample values are illustrated in a one-
dimensional space and each value is represented by a data
point. The distance between any two data points is defined
as the absolute difference between their values. Let DkðpÞ
represent the distance between data point p and its kth
nearest neighbor point, an outlier is defined as follows:
Given k and m, we first sort all n samples according to the value
of DkðpÞ. The data points with the top m largest values of DkðpÞ
are called outliers.

1916 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2011

Algorithm 2 illustrates the filtering process. We set
k ¼ m ¼ 0:2 � n, where n is the number of samples, i.e., we
will filter out 20 percent abnormal values.

Algorithm 2. k-nearest neighbors outlier filter

1: k ¼ m ¼ 0:2 � n

2: for i ¼ 1 to n do

3: di ¼ DkðRTTiÞ

4: end for

5: Sort all di in increasing order

6: Remove the top m largest values

4.5 Parameter Values

Here, we explain how to derive Tdata and � used in
Algorithm 1. We begin with a quick review of the 802.11
protocol.

IEEE 802.11 medium access control adopts CSMA/CA
model and the distributed coordination function (DCF).
Before transmitting a frame, a station first senses whether
the channel is idle. If the channel is idle, the station will
transmit immediately. Otherwise the frame transmission
will be deferred until the channel becomes available. After
the channel is free for certain period of time, which is
defined as DIFS, the station starts a back-off operation with
a slot counter whose value is randomly selected between 0
and the size of a contention window (CWmin). This back-
off counter decreases by one for each idle slot time. When
the back-off counter becomes zero, the station transmits
the frame. When the destination receives the frame
successfully, it sends a MAC layer ACK back to notify
the sender. If the sender does not receive an ACK, it will
retransmit the packet. Table 2 lists some timing parameters
in 802.11 standard that we will use later.

Based on 802.11 mechanism, we can express the delay for
transmitting a packet as

Tdelay ¼ tdefer þ tDIFS þ tbf þ Tdata þ tretransmit;

where tdefer is the time deferred due to a busy channel
medium, tretransmit is the time for retransmission if no ACK
is received, and tbf is the random back-off time. The
expected value of tbf is given by

tbf ¼
CWmin

2
� tslot:

Data transmission time Tdata depends on the data size (L-
byte payload) and the transmission rate (r Mbps)

TdataðL; rÞ ¼ tPCLP þ
ð28þ LÞ � 8bits

r
;

where tPCLP is the physical layer packet overhead of any
IEEE 802.11 packet including two parts: the Physical Layer

Convergence Protocol (PCLP) preamble used for synchro-
nization and the PCLP header. According to the standard,
TPCLP is 192 �s (96 �s) for long (short) preamble, using ERP-
DSSS modulation scheme (supporting 1-11 Mbps). The
TPCLP is 20 �s, using ERP-OFDM modulation scheme
(supporting 6-54 Mbps) [21]. The value 28 is the length of
MAC header plus CRC checksum. For every measured RTT
at each round, the station is aware of the data size (L) and
transmitting rate (r) for every incoming and outgoing
packet. The station can thus compute the exact values of
TdataðprobeÞ and TdataðdnsÞ, and subtract them from RTTs to
eliminate the effect of different transmission time.

In order to derive �, we need to analyze the RTTs. For a
legitimate AP, the path taken for an entire probe request
and response is

STA ! AP ! STA;

and the path taken for an entire DNS lookup and answer is

STA ! AP ! SERV ! AP ! STA:

For simplicity, we only consider the network overhead, and
ignore the time for AP a DNS server to process the packets.
There, after subtracting Tdata, these two RTTs for probe and
DNS can be expressed as

RTTprobe � T
sta!ap
overhead þ T

ap!sta
overhead;

and

RTTdns � T
sta!ap
overhead þ Twired þ T

ap!sta
overhead;

where Toverhead is used to indicate the remaining part of
Tdelay after deducting Tdata. Since the RTTs of DNS and
probe are measured at approximately the same time, we
assume the network conditions are stable during that time
period,1 so we can regard Toverhead of probe and DNS as
the same. Thus, the difference between two RTTs is

�t ¼ RTTdns �RTTprobe ¼ Twired:

Based on our extensive experimental measurements (which
will be shown later in Section 6), �t is no larger than 1.3 ms,
even when we consider several hops between sending a
DNS lookup and receiving the answer back in the idle
network traffic condition.

On the other hand, if the tested AP is a rogue AP, the
path taken for probe messages is still

STA ! RAP ! STA;

but the path for DNS messages is

STA ! RAP ! AP ! SERV ! AP ! RAP ! STA:

Similarly, we get

�t0 ¼ RTTdns �RTTprobe

¼ T
rap!ap
delay þ Twired þ T

ap!rap
delay :

For a station, it is difficult to estimate Tdelay between the
rogue AP and its associated legitimate AP, since the station

HAN ET AL.: A TIMING-BASED SCHEME FOR ROGUE AP DETECTION 1917

TABLE 2
IEEE 802.11 Characteristics

1. Wong et al. [22] mention that wireless network traffic remains stable
within approximately 150-250 ms in practice.

does not know the transmission rate and network condition
at the AP side. However, based on our experiments, we
observe that �t0 is larger than 1.3 ms. In order to effectively
detect a rogue AP, � needs to be set between �t and �t0 as
�t < � < �t0. Therefore, we set the threshold � to be 1.3 ms.

However, the threshold � may not perform well under
heavy traffic condition. This is because that the heavy traffic
congests the AP causing long tx-queue, packet loss, and
retransmission. The mean value and variance of RTTs for
both probe and DNS will become larger. Additionally,
heavy workload may delay each packet waiting in the AP’s
queue until packets buffered ahead are transmitted.

To overcome this problem, we dynamically adjust the
threshold � according to the standard deviation of RTTprobe

and RTTdns. Based on our extensive experiments, we find
that the standard deviation is a good indicator of traffic
load. Heavy traffic conditions usually result in larger
deviation than light traffic conditions. Fig. 4 illustrates the
mean value of �t against the average value of standard
deviation of RTTprobe and RTTdns. In the figure, each data
point indicates a test case for a legitimate AP or a rogue AP.
They are plotted with respect to their mean values of�t and
their standard deviations of RTT. As shown in the figure,
we can divide the data points into two groups, one for
legitimate APs and the other for rogue APs, by a single line.
From the data, we empirically set

� ¼ fð�probe; �dnsÞ ¼ � �
�probe þ �dns

2
þ �; ð1Þ

where the � and � values are 0.49 and 1.3, respectively. We
derive these parameters by adjusting the line to let the most
number of data points of legitimate APs above the line, and
the most number of data points of rogue APs below the line.
The particular line with the furthest mean distance to each
data point is selected.

Finally, recall in Algorithm 1, after measuring enough
samples of RTTs, a station computes the �t and �. If �t > �,
the station will mark the AP it connects to as a rogue AP.
Then, the station will choose another AP for test.

4.6 Value of n

In our experiments, we find that when the wireless traffic is
lightly loaded, our detection algorithm can detect rogue AP
with high probability even if we use a small number of
samples. However, when the traffic is heavy, the algorithm
needs more samples to achieve desired accuracy. In order to

reduce the detection time without sacrificing accuracy, we
present a heuristic algorithm to adjust the number of
samples dynamically, rather than using a fixed number.

The intuition is based on the experimental observations.
In Fig. 5, we illustrates the trend of the mean and standard
deviation of �t against the sample size. In the horizontal
axis, each pair of two bars present the mean value of �t and
the standard deviation of RTT every 10 samples. We observe
the values may vary a lot if the sample size is not large
enough. But once collecting enough number of samples,
the variance will be stable. Therefore, to check whether the
number of samples is large enough, we re-calculate the
variance of the whole samples every 10 samples, and
compare it with previous values. When the difference of the
variances is smaller than a predefined threshold, we stop
sampling. This is because additional samples will not help
detection.

4.7 DNS Operations

Our schemehas twoDNSoperations. The first is to determine
a set of n different host names for measuring n samples of
RTTs. The second operation is verifying DNS answers.

Determining DNS queries. We generate DNS queries
as follows: In a station, two pools are constructed. The first
pool contains valid host names that can be extracted from
local caches of web browsers (like firefox and IE). The
other pool contains some randomly generated host names.
We do not know whether they are valid or not. Once the
two pools have been constructed, we will randomly select
a pool to pick a host name to test. Then, we delete that
host name from the pool to avoid using it again. This
prevents a rogue AP from remembering the corresponding
answers. Note that if we need a lot of samples, we assign a
smaller weight to the first pool to prevent it from
exhausting too fast.

Verifying DNS answers. Suppose that a station hears
mþ 1 ðm � 1Þ APs composed of m legitimate APs and one
rogue AP. The station will first randomly select one AP and
send a recursive DNS query to it.

Assuming this selected AP is not a rogue AP, it will
execute this recursive query. This forces the local DNS
server to provide an answer to the query by querying
other name servers on the Internet and cache the response.
The station then uses the same host name and queries all
other APs in nonrecursive queries. Now the answer to the

1918 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2011

Fig. 4. Mean value of �t against the average value of standard deviation
of RTTprobe and RTTdns under different traffic load condition. Fig. 5. Illustration of the trend of mean value and standard deviation of

�t against the number of samples.

query should be cached on the DNS server. We then

execute Algorithm 1 on the remaining APs. The legitimate

APs will respond accordingly with a reasonably short

RTT. For the rogue AP, if it chooses to forward the query,

the rogue AP will be detected by our algorithm. If the

rogue AP does not forward the query, the rogue AP does

not know the correct answer and can only return a “host

not found” message. The station can thus determine that

AP is a rogue AP.
If the selected AP is a rogue AP, it must forward the

recursive DNS query to the real AP. This is because if the

rogue AP does not forward the query, the DNS server

would not contain the correct answer. When the station

runs our algorithm, all the other APs will reply with a “host

not found” message. When this happens the rogue AP will

be detected, since a legitimate AP will always execute the

recursive DNS query.
We then repeat the process for the remaining APs to

detect the rogue AP. In this paper, we do not consider the

case of multiple rogue APs colluding with each other. This

will be examined in our future work.

5 IMPLEMENTATION AND SETUP

5.1 Hardware Description

Fig. 6 illustrates the infrastructure of our testbed which

consists of two APs and three laptops: one laptop is used as

a traffic generator, and the remaining laptops serve as a

station and a rogue AP. Server A is the DNS server in the

campus network. To investigate the effect of wired link on

our algorithm, another DNS server B in the same subnet of

APs is utilized.
The hardware specification of each component is

described as follows:

1. Access points. We use a Linksys WPA54G and D-
Link DI-624+A for our APs. Both APs operate in the
802.11g mode.

2. Wireless stations. All laptops in Fig. 6 are 2 GHz x86
machines running Linux 2.6x kernel. The traffic
generator and the station are equipped with a TP-
Link TL-WN610G wireless card while the rogue AP
possesses 2 wireless cards, one TP-Link TL-
WN610G, and the other Intel 3495ABG.

3. DNS server. Both DNS servers are campus servers
connected in local wired networks at different
locations.

5.2 Software Description

5.2.1 Drivers

We use Madwifi (v0.9.4) driver [23] for the wireless cards
with Atheros chipset, ipw3945 (v1.2.2) driver [24] for those
with Intel chipset, and BCM4311 linux driver for those with
Broadcom chipset. Table 3 lists all commercial wireless
cards, chipsets, and corresponding drivers used in our
experiments.

5.2.2 Click Toolkit on Station

On the station side, we implement the proposed algorithm
using Click [25] toolkit with the wireless card turned into
monitor mode. Click toolkit is a powerful tool over the
driver layer. It is well connected with the wireless card’s
monitor mode and provides a flexible programming
environment to implement our protocol. The most impor-
tant feature is that we can inject raw data by using Click,
such that our unicast probe request can be sent easily. The
comparison between two probe requests are shown in Fig 7.

5.2.3 Configuration on the Rogue AP

For the rogue AP, one of its wireless cards is configured to
work in the AP mode, and the other wireless card is
configured to the station mode and connects to a legitimate
AP. Tunneling these two interfaces is achieved by adding
rules in iptables.

We use a tool called macchanger to spoof the MAC
address of a legitimate AP. A station connected to the rogue
AP will be assigned a valid IP address by dnsmasq, as if it
obtains it from a legitimate AP. The adversary’s strategies
mentioned before are implemented by netfilter/iptables.

5.2.4 Traffic Load

We use channel utilization as in [26] to quantify the traffic
load. The channel utilization per second is computed by
adding 1) the time spent by the on-air transmission of all

HAN ET AL.: A TIMING-BASED SCHEME FOR ROGUE AP DETECTION 1919

Fig. 6. Illustration of the architecture of the testbed.

TABLE 3
Description of Commercial Wireless Cards, Chipsets and

Corresponding Drivers Used in Our Experiments

Fig. 7. MAC header comparison between unmodified probe request and
our probe request.

data (including retransmitting), management, and control
frames transmitted during a second, and 2) the overhead for
each frame, such as DIFS and SIFS. This overhead is a part
of channel utilization, since the channel remains unavail-
able at that time. In our experiments, the traffic generator
will send packets with constant bit rate (CBR) to generate a
required channel utilization.

5.2.5 Recording RTTs

Click toolkit leverages libpcap [27] to push (pull) packets to
(from) the WLAN driver (shown in Fig. 8). Once a probe
request (or DNS lookup) is created in a click module, the
packet will be sent to the WLAN driver for link-level
processing before being pushed to the tx-queue of the
wireless card. We record the transmission time just before
the packet is pushed to the tx-queue. It is known this time is
not the instance when the packet is actually transmitted,
since the packet must wait until previous packets in the
queue have been transmitted. To account for this delay, we
regulate the rate in which packets are added to the tx-queue
such that there is at most one packet in the queue at all times.

When the wireless card receives a probe or DNS
response, we record the arrival time when an interrupt is
delivered to the driver. This may incur a slight delay since
the kernel has to process the interrupt. Since we determine
�t by subtracting RTTprobe from RTTdns, this delay is
eliminated.

Unlike previous method mentioned in [8] where RTTs
are recorded in user space, our method can record more
accurate RTTs. That is because each packet is timestamped
close to the time when the packet is actually being sent or
received. This may prevent including the delay for packets
walking through the kernel. Thus, our measured RTTs are
not affected by the workload of the station.

6 EVALUATION

Here, we present the experimental results of our rogue AP
detection algorithm. We use real settings to evaluate the
robustness of our algorithm in practice. Our experiments
are performed in two places: one is in the China State Key
Laboratory of Novel Software Technology at Nanjing
University (location 1), and the other is in the campus at
College of William and Mary (location 2). The configura-

tions in both places follow the architecture shown in Fig 6.
However, the network environment including AP’s capa-
city, the workload of local DNS server, the number of users,
and interference may be different.

Fig. 9 shows the observable experience of our detection
algorithm in those two places. In the location 1, we first use
the algorithm to test a real AP 50 times. Our approach only
fails three times. The false positive rate is only 6 percent.
Then, We repeat tests for determining a rogue AP. At this
time, detection fails eight times. The false negative rate is
nearly 16 percent. Similar experiments are conducted in the
location 2. The corresponding false positive rate and false
negative rate are 12.5 and 5 percent, respectively. As we see,
our detection accuracy is about 90 percent in total. That is
really robust in practice.

In the following, we investigate the performance of our
detection scheme, while considering some factors that may
affect our algorithm. Recall that, the key of our approach is
using the round trip time to detect a rogue AP. We consider
the following factors that have influence on timing RTT.

1. Data transmission rate. RTT is inversely propor-
tional to data transmission rate. High transmission
rate usually leads to small RTT. In Section 6.1, we
investigate whether a rogue AP can manipulate its
transmission rate to avoid detection.

2. Location of DNS server. In some small hotspots
(e.g., coffee shops, restaurants), APs are usually
connected to a close DNS server or resolver
provided by ISP. This server may be located some
hops away from APs. In this case, we have
possibility to falsely identify a legitimate AP as a
rogue AP due to large RTT. Section 6.2 describes the
impact of this factor. We show that our scheme can
tolerate a DNS server with several hops away.

3. Wireless traffic. As mentioned early, wireless traffic
may incur large variance of RTT. That is because
some packets may be sent immediately with no
contention, but some packets may be deferred for a
long time due to collision or interference with others.
The variance may hide rogue AP’s additional
wireless link, and make the detection hard. In
Section 6.3, we evaluate our algorithm under
different wireless traffic conditions.

1920 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2011

Fig. 8. Basic journey of a packet and the place where we record RTTs.

Fig. 9. Testing the accuracy of our detection algorithm at different
locations in real world. Location 1 is in the China State Key laboratory of
Novel Software Technology at Nanjing University, and location 2 is in the
campus at College of William and Mary.

4. AP’s workload. AP’s workload is related to the
utilization of AP’s queue. It is caused by network
traffic, but not equivalent to the traffic. We examine
this factor in Section 6.4.

Finally, Section 6.5 discusses the accuracy of our algorithm
by using different number of samples, and Section 6.6 shows
how much time we will spend to test an AP.

6.1 Data Transmission Rate

Most wireless devices adopt rate adaptation algorithms to
adjust their transmission rate with respect to varied wireless
conditions. However, since there are no specifications with
regards to rate adaptation in 802.11 networks, the rogue AP
is free to use any 802.11 transmission rate to try to avoid
detection. The idea is that a rogue may attempt to always
use the highest rate when connected to a legitimate AP so as
to reduce the RTT.

To test, we first set up a rogue AP to use the default rate
adaptation in idle traffic condition, and run our detection
algorithm. We then repeat the experiment using the same
traffic condition, except we set the rogue AP to always use
the highest possible transmission rate of 54 Mbps. In both
tests, we use the same settings, where sample size n ¼ 100

and contacting the DNS server B. Table 4 shows the results
for the two tests, where RTTprobe (RTTdns) is average RTT
between probe (DNS) request and the response minus the
data transmission time (see lines 7-8 in Algorithm 1),
�t ¼ RTTdns �RTTprobe, and � is computed according to
(1). In our algorithm, if �t > �, the tested AP is identified as
rogue; otherwise as legitimate. We observe that 1) even if the
rogue AP were set to always send at the highest possible
rate, we can still detect the rogue AP, and 2) the performance
gain by the rogue AP in using a fixed rate appears to
be minor, since rate adaptation can quickly converge to use
the best possible rate even if the initial rate is much lower. In
fact, in a practical environment, using a fixed rate may result
in a worse performance since more packets will be dropped
when traffic conditions fluctuate. This is shown in the larger
�t values in fixed rate experiments. These results are
omitted due to page limit. Lastly, since utilizing a fix rate
yields no benefits, we let the rogue AP use rate adaptation
for the rest of our experiments.

6.2 Location of DNS Server

To illustrate the delay introduced by multiple wired hops,
we send 64 byte packets to a local host located at two, four,
and five hops away from the station, and measure the time
taken for the host to respond. Fig. 10 shows the results. We

find that the increased time resulting from additional hops
is every small. One additional hop only incurs less than
0.1 millisecond time.

Next, we examine our detection algorithm when tested
APs are connected to different DNS servers under idle traffic
condition. In the first test, we let the legitimate AP and the
rogue AP both use a far DNS server A (see Fig. 6). Packets
sent by the station need three wired hops to reach the DNS
server, and two wired hops for the response coming back. In
the second test, we have both legitimate and rogue APs
connect to a close DNS server B which is located in the same
subnet with APs. Table 5 shows the results. We see that our
algorithm is able to detect the rogue AP even when the DNS
server is located at the place several hops away.

6.3 Wireless Traffic

Here, we examine the effects of wireless traffic on our
detection algorithm. Since we adopt a timing-based ap-
proach, variations in network traffic may adversely affect
our results. To only evaluate the negative impact, we ignore
the traffic occurs on the channel used between rogue AP and
real AP, since this will help us to detect the rogue AP. We
only consider the wireless traffic between the station and the
tested AP, and set the rogue AP to use the most favorable
conditions to avoid detection. Because the rogue AP can best
avoid detection when it can forward packets from the station
to the real AP as fast as possible, we let the connection

HAN ET AL.: A TIMING-BASED SCHEME FOR ROGUE AP DETECTION 1921

TABLE 4
Comparison between Rate Adaptation and Fixed 54 Mbps

under Idle Traffic Condition

Fig. 10. Delay for transmitting 64 byte packets via different number of
hops on wired link. t is the mean of delay, and � is the variance.

TABLE 5
Average RTT for DNS Server under Idle Traffic Situation

between the rogue AP and the AP A be free of any traffic,
thus ensuring the fastest possible transmission between the
rogue AP and real AP. In our experiments, this connection is
set to the channel 11 with idle traffic and good quality of
signals. We then test the rogue AP against AP B, both of
which are set to the channel 1. We use separate laptops as a
traffic generators to control the amount of traffic on that
channel. We experiment over three traffic conditions, idle
traffic, half-saturated traffic, and saturated traffic. In all
experiments, we set n ¼ 100 and use DNS server B.

Idle traffic. We create idle traffic condition by restricting
data packets on the channel. But note that, idle traffic does not
mean the channel utilization (asmentioned in Section 5.2.4) is
zero (nearly 10 percent in our testbeds), since there are
management frames including beacons and so on. Fig. 11
describes the empirical CDF of RTT for a legitimate AP and a
rogue APmeasured in one experiment. The complete results
are listed in Table 5. As we can see, the value of �t is small,
and the � varies a little in idle traffic situation. For the
legitimate AP, all �t are smaller than corresponding �,
whereas all�t for the rogueAP are larger than �. Our scheme
achieves nearly 100 percent accuracy, and the total testing
time is no longer than 1 s.

Half-saturated traffic. We define a half-saturated traffic
condition when the ratio of on air time of all transmitted
packets to the total time is nearly 45 percent. The traffic
generators periodically send packets to create this condi-

tion. The experiment is then repeated to test our algorithm.
We find that as the traffic load increases, the average RTT
for both probe and DNS messages also increase. At the
same time, our algorithm is still able to identify the rogue
AP with high probability. Fig. 12 illustrates CDF for one
experiment. The details are shown in Table 6.

Saturated traffic. Here, we let the traffic generators send
enough packets to create a 90 percent channel utilization
before starting the experiments. Fig. 13 and Table 7 describe
the results. We find that under heavy traffic condition, the
variance of RTT for a probe request (DNS lookup) becomes
large. The values range from several milliseconds to
hundreds of milliseconds. As a result, some of the
legitimate APs may be incorrectly classified as a rogue AP.

In summary, Fig. 14 shows the trends of the mean value
of �t and the threshold � for both legitimate AP (a) and
rogue AP (b) varying against the channel utilization. In the
experiments, we set n ¼ 100 and contact the DNS server B.
In the figure, the circles represent the false detections. As
we see, the threshold � according to the standard deviation
of RTT can reflect the traffic condition. Large channel
utilization incurs a large value of �. By dynamically
adjusting the threshold, our detection algorithm can achieve
relatively high accuracy under different channel utilization.

6.4 AP’s Workload

Besides the channel contention of wireless traffic, AP’s
workload also affects packet’s RTT. When an AP suffers
heavy workload, each packet needs more time to process,
and has to wait in the queue of the AP until packets ahead
are sent out. It will adversely affect the detection. Hence, we
focus on AP’s workload to evaluate the performance of our
approach in this section.

We conduct four sets of experiments. For all experi-
ments, we use the same settings except changing the
throughput of the AP. For each set, we test our detection
algorithm 10 times. In the first set, we restrict the AP with
idle workload, that is either the uplink or downlink

1922 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2011

Fig. 11. Empirical CDF of RTT for legitimate AP A and rogue AP in idle
traffic situation, while the DNS server is B, transmission rate is
automatic, and n ¼ 100.

Fig. 12. Empirical CDF of RTT for legitimate AP B and rogue AP in half
saturated traffic situation, while DNS server is B, transmission rate is
automatic, and n ¼ 100.

TABLE 6
Average RTT in Half Saturated Traffic Situation

Fig. 13. Empirical CDF of RTT for legitimate AP B and rogue AP in
saturated traffic situation, while DNS server is B, transmission rate is
automatic, and n ¼ 100.

TABLE 7
Average RTT in Saturated Traffic Situation

throughput is smaller than 10 kps. For the second set, to

create 1 Mbps throughput for both uplink and downlink of

the AP, a wireless station is used to transmit UDP packets at

constant bit rate to another wireless station through the AP.

Similarly, 2 and 5 Mbps throughput are generated for the

third and fourth set separately.
Fig. 15 shows the comparison of four kinds of situations.

In the figure, the dark shaded bar describes the number of

correct detections out of 10 times, and the light shaded bar

indicates the number of wrong detections. We find our
algorithm works well when the AP’s workload is lower
than 5 Mbps. After that, the performance decreases.

Note that we only consider the case of an AP being
falsely identified as a rogue AP due to the workload. We
ignore the case that a rogue AP may suffer heavy workload,
since that will help us to detect the rogue AP. Therefore, we
assume a rogue AP will never have heavy workload.

6.5 Number of Samples

Previously, we found that our algorithm does not work well
when the wireless traffic is saturated. Here, we are curious
whether increasing n could improve the performance. In
our experiments, we increase the original value of n from
100 to 300. Again, we test a legitimate AP and rogue AP
separately under different channel utilization. Both tests are
repeated 10 times. The detection accuracy is the ratio of the
number of the tests in which the AP is correctly identified
over the total number. Fig. 16 illustrates the accuracy of our
algorithm against the channel utilization.

We find that using n ¼ 100 is enough to achieve
100 percent of detection accuracy in low traffic situation.
However, the accuracy falls to 65 percent as the channel
becomes increasingly saturated. When setting n ¼ 300, we
are able to obtain 80 percent as the channel saturation
increases.

6.6 Testing Time

To evaluate the efficiency of our detection algorithm, we
use testing time, which is approximately the product of the
mean value of RTT and the sample size. We do not consider
other factors such as the time needed to associate to an AP
or to obtain an IP address because those factors are
dependent on specific AP configuration and may vary
widely from one AP to another. Clearly, heavy traffic and
large number of samples will lead to long testing time.
Table 8 shows the time for testing a rogue AP under three
traffic conditions. As we see, our algorithm requires less

HAN ET AL.: A TIMING-BASED SCHEME FOR ROGUE AP DETECTION 1923

Fig. 15. Histogram of the accuracy of our detection algorithm under
different AP’s workloads. The “Correct” means a legitimate AP is
correctly identified, and the “Wrong” indicates falsely detecting an AP as
a rogue AP.

Fig. 16. Detection accuracy against channel utilization.

TABLE 8
Testing Time under Different Network Traffic Conditions

Fig. 14. Illustration of the trend of the mean value of�t and the threshold
� varying against the channel utilization. (a) Legitimate AP case.
(b) Rogue AP case.

than 1 second under lightly loaded traffic condition, and

tens of seconds for heavy traffic condition.

7 CONCLUSION

The ease of setting up a successful rogue AP makes this

form of wireless attack a serious security problem. While

existing techniques can alleviate this threat, they none-

theless require active participation on the part of the

network administrator. In this paper, we present a practical,

timing-based scheme for the end user to avoid connecting

to rogue APs. This is done without any assistance from the

network administrator. We implement our approach on

commercially available hardware for evaluation, and show

an extensive experimental study.

ACKNOWLEDGMENTS

This project was supported in part by US National Science

Foundation (NSF) grants CNS-0721443, CNS-0831904, CA-

REER Award CNS-0747108, the National High-Tech Re-

search and Development Program of China (863) under

Grant No. 2006AA01Z199, the National Natural Science

Foundation of China under Grant No. 90718031, No.

60721002, No. 60573106, and the National Basic Research

Program of China (973) under Grant No. 2009CB320705.

REFERENCES

[1] Air defence, www.airdefence.net, 2009.
[2] Air magnet, www.airmagnet.com, 2011.
[3] Air wave, www.airwave.com, 2011.
[4] L. Ma, A.Y. Teymorian, and X. Cheng, “A Hybrid Rogue Access

Point Protection Framework for Commodity Wi-Fi Networks,”
Proc. IEEE INFOCOM, 2008.

[5] W. Wei, K. Suh, B. Wang, Y. Gu, J. Kurose, and D. Towsley,
“Passive Online Rogue Access Point Detection Using Sequential
Hypothesis Testing with TCP ACK-Pairs,” Proc. Seventh ACM
SIGCOMM Conf. Internet Measurement (IMC), 2007.

[6] H. Yin, G. Chen, and J. Wang, “Detecting Protected Layer-3 Rogue
APs,” Proc. Fourth IEEE Int’l Conf. Broadband Comm., Networks, and
Systems (BROADNETS ’07), 2007.

[7] S. Shetty, M. Song, and L. Ma, “Rogue Access Point Detection by
Analyzing Network Traffic Characteristics,” Proc. IEEE Military
Comm. Conf. (MILCOM ’07), 2007.

[8] H. Han, B. Sheng, C.C. Tan, Q. Li, and S. Lu, “A Measurement
Based Rogue AP Detection Scheme,” Proc. IEEE INFOCOM, 2009.

[9] P. Bahl, R. Chandra, J. Padhye, L. Ravindranath, M. Singh, A.
Wolman, and B. Zill, “Enhancing the Security of Corporate Wi-Fi
Networks Using DAIR,” Proc. Fourth Int’l Conf. Mobile Systems,
Applications and Services (MobiSys ’06), 2006.

[10] Y. Sheng, K. Tan, G. Chen, D. Kotz, and A. Campbell, “Detecting
802.11 MAC Layer Spoofing Using Received Signal Strength,”
Proc. IEEE INFOCOM, 2008.

[11] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless Device
Identification with Radiometric Signatures,” Proc. Mobicom,
2008.

[12] S. Jana and S. Kasera, “On Fast and Accurate Detection of
Unauthorized Wireless Access Points Using Clock Skews,” Proc.
Mobicom, 2008.

[13] A. Adya, P. Bahl, R. Chandra, and L. Qiu, “Architecture and
Techniques for Diagnosing Faults in IEEE 802.11 Infrastructure
Networks,” Proc. Mobicom, 2004.

[14] R. Beyah, S. Kangude, G. Yu, B. Strickland, and J. Copeland,
“Rogue Access Point Detection Using Temporal Traffic Character-
istics,” Proc. IEEE Global Telecomm. Conf. (GLOBECOM ’04), 2004.

[15] W. Wei, S. Jaiswal, J.F. Kurose, and D.F. Towsley, “Identifying
802.11 Traffic from Passive Measurements Using Iterative Baye-
sian Inference,” Proc. IEEE INFOCOM, 2006.

[16] L. Watkins, R. Beyah, and C. Corbett, “A Passive Approach to
Rogue Access Point Detection,” Proc. IEEE Global Telecomm. Conf.
(GLOBECOM ’07), 2007.

[17] C.D. Mano, A. Blaich, Q. Liao, Y. Jiang, D.A. Cieslak, D. Salyers,
and A. Striegel, “Ripps: Rogue Identifying Packet Payload Slicer
Detecting Unauthorized Wireless Hosts through Network Traffic
Conditioning,” ACM Trans. Information and System Security, vol. 11,
no. 2, 2008.

[18] A. Venkataraman and R. Beyah, “Rogue Access Point Detection
Using Innate Characteristics of the 802.11 Mac,” Proc. Int’l ICST
Conf. Security and Privacy in Comm. Networks (SecureComm ’09),
2009.

[19] 89600s Series VXI-Based Vector Signal Analyzer. Agilent
Technologies.

[20] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS Performance
and the Effectiveness of Caching,” Computer Comm. Rev., vol. 32,
no. 1, p. 74, 2002.

[21] D. Vassis, G. Kormentzas, A.N. Rouskas, and I. Maglogiannis,
“The IEEE 802.11g Standard fo High Data Rate Wlans,” IEEE
Network, vol. 19, no. 3, pp. 21-26, May/June 2005.

[22] S.H.Y. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust Rate
Adaptation for 802.11 Wireless Networks,” Proc. Mobicom, 2006.

[23] Madwifi, http://madwifi.org, 2011.
[24] Ipw3945, ipw3945.sourceforge.net/, 2011.
[25] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M.F. Kaashoek,

“The Click Modular Router,” ACM Trans. Computer Systems,
vol. 18, no. 3, pp. 263-297, 2000.

[26] A.P. Jardosh, K.N. Ramachandran, K.C. Almeroth, and E.M.
Belding-Royer, “Understanding Congestion in IEEE 802.11b
Wireless Networks,” Proc. Fifth ACM SIGCOMM Conf. Internet
Measurement, pp. 279-292, 2005.

[27] Libpcap, http://www.tcpdump.org/, 2011.

Hao Han received the BS degree in computer
science from Nanjing University, China. He is
currently working toward the PhD degree in the
Department of Computer Science at College of
William and Mary. His research interests include
RFID systems, wireless LAN.

Bo Sheng received the PhD degree in computer
science from the College of William and Mary in
2010. He is an assistant professor in the
Department of Computer Science at the Uni-
versity of Massachusetts Boston. His research
interests include wireless networks and em-
bedded systems with an emphasis on the
efficiency and security issues. He is a member
of the IEEE.

Chiu C. Tan received the PhD degree in
computer science from the College of William
and Mary in 2010. He is a research assistant
professor in Computer and Information Science
Department at Temple University. His research
interests include security for mHealth systems,
wireless network and cloud computing. He is a
member of the IEEE.

1924 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2011

Qun Li received the PhD degree in computer
science from Dartmouth College. He is an
associate professor in the Department of Com-
puter Science at the College of William and
Mary. His research interests include wireless
networks, sensor networks, RFID, and pervasive
computing systems. He received the US Na-
tional Science Foundation (NSF) Career award
in 2008. He is a member of the IEEE and the
IEEE Computer Society.

Sanglu Lu received the BS, MS, and PhD
degrees from Nanjing University in 1992, 1995,
and 1997, respectively, all in computer science.
She is currently a professor in the Department of
Computer Science and Technology and the State
Key Laboratory for Novel Software Technology.
Her research interests include distributed com-
puting, pervasive computing, and wireless net-
works. She has been a member of the IEEE and
the IEEE Computer Society since 2004.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HAN ET AL.: A TIMING-BASED SCHEME FOR ROGUE AP DETECTION 1925

