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As an important regulatory mechanism at the posttranscriptional level in metazoans,

adenosine deaminase acting on RNA (ADAR)-induced A-to-I RNA editing modification of

double-stranded RNA has been widely detected and reported. Editing may lead to non-

synonymous amino acid mutations, RNA secondary structure alterations, pre-mRNA

processing changes, and microRNA-mRNA redirection, thereby affecting multiple cellular

processes and functions. In recent years, researchers have successfully developed

several bioinformatics software tools and pipelines to identify RNA editing sites.

However, there are still no widely accepted editing site standards due to the variety of

parallel optimization and RNA high-seq protocols and programs. It is also challenging to

identify RNA editing by normal protocols in tumor samples due to the high DNA mutation

rate. Numerous RNA editing sites have been reported to be located in non-coding regions

and can affect the biosynthesis of ncRNAs, including miRNAs and circular RNAs.

Predicting the function of RNA editing sites located in non-coding regions and ncRNAs

is significantly difficult. In this review, we aim to provide a better understanding of

bioinformatics strategies for human cancer A-to-I RNA editing identification and briefly

discuss recent advances in related areas, such as the oncogenic and tumor suppressive

effects of RNA editing.
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INTRODUCTION

In mammals, ADAR-induced adenine to inosine (A-to-I) is a widespread primary type of RNA

editing (1). As adenosine deaminases, ADAR proteins are able to bind to both intracellular and
extranuclear double-stranded RNA (dsRNA), producing inosine (I) from adenosine (A) by

deamination on RNA coding and non-coding regions. Since inosine prefers to pair with cytidine

(C), researchers have also recognized A-to-I RNA editing as A-to-G (guanine) editing (2). ADAR

proteins include three types in mammals, ADAR1, ADAR2 (ADARB1), and ADAR3 (ADARB2)

(Figure 1A). ADAR1 and ADAR2 reside in most human tissues and are the major mediators of A-

to-I RNA editing. Without deaminase activity, ADAR3 is mainly expressed in the brain. Recent
research has indicated that ADAR3 may disturb ADAR2 function by acting as a competitive

inhibitor (3). Moreover, ADAR1 has two isoforms resulting from the alternative promoters ADAR1

p110 and ADAR1 p150. ADAR1 p110 is constitutively expressed, while ADAR1 p150 is inducible
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by interferons (IFNs). When dsRNA sensors (such as MDA5 and

PKR) in cells sense the presence of exogenous nucleic acids, they

can induce the generation of IFNs and activate ADAR1 p150 (4).

Although past research has indicated that ADARs and A-to-I

RNA editing are essential for multiple biological processes,

abnormal expression or editing levels can trigger various diseases

(5, 6). ADAR1 is required for mammalian early development (7–
10), null ADAR1 expression causes embryonic death in mice (11,

12), and knocking out MDA5 can rescue the ADAR−/− embryonic

phenotype because MDA5 is responsible for distinguishing

and helping remove exogenous dsRNA, except for ADAR-edited

dsRNA (13). ADAR1 is a suppressor of interferon signaling (7)

and controls innate immune responses to exogenous RNA (14).
Abnormal expression of ADAR1 results in IFN production, which

may take part in enhancing autoimmunity and inducing systemic

lupus erythematosus to a certain degree (15). ADAR1&2

expression is positively correlated with the proliferative activity

of most cells and inflammatory responses, especially playing a vital

role in the occurrence and development of several cancers (16).

RNA editing affects many basic biological processes. When

editing occurs in the mRNA coding region, it may cause

mutations that increase the regulation diversity at both the

transcriptional and proteomic levels (Figure 1B). When

editing occurs in the non-coding RNA region, it can affect the
RNA secondary structure (Figure 1C), circular RNA

biosynthesis (Figure 1D), microRNA (miRNA)-mRNA

targeting (Figure 1E) and mRNA alternative splicing (Figure

1F). Editing-induced RNA secondary structure alterations may

affect the related protein abundance by changing the RNA

stability (17–19). Therefore, accurate identification of RNA
editing sites in cancer is important for investigating cancer

development. Currently, many RNA editing identification

bioinformatics strategies and software tools have been

developed. Using these tools and algorithms, researchers have
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FIGURE 1 | ADARs and RNA editing effects. (A) There are three main proteins of ADAR enzymes, ADAR1 (p110 and p150), ADAR2, and ADAR3. Vertebrate

ADARs share a conserved deaminase domain and two to three dsRNA-binding domains (dsRBDs). In addition, ADAR1 p110 and p150 have similar Z-DNA-binding

domains. ADAR3 is unique since its deaminase domain is catalytically inactive, and it also has an arginine-rich domain (R). (B) RNA editing in gene coding regions

may introduce protein mutations. (C) Binding ADARs to certain dsRNAs may affect the RNA structure, thereby altering RNA biological processing and stability.

(D) ADAR1 binds and inhibits the generation of circular RNAs. (E) microRNA (miRNA) or 3’ UTR editing may change or redirect the interactive relationship between

certain UTRs and miRNAs. (F) RNA editing sites were identified in all three main regions involved with pre-mRNA alternative splicing (donor: 5’ splicing site, acceptor:

3’ splicing site and branch site), and pre-mRNA intron editing may contribute to pre-mRNA alternative splicing.
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systematically identified RNA editing sites (20–22) on a large

scale. At present, these identified human RNA editing sites are

mainly summarized in four databases, REDIportal (http://srv00.

recas.ba.infn.it/atlas/index.html) (21), DARNED (https://

darned.ucc.ie/) (23), RADAR (http://rnaedit.com/) (24), and

CLAIRE (http://srv00.recas.ba.infn.it/atlas/claire.html) (25).
There are about 15.6 million editing sites in REDIportal, 0.2

million in DARNED, 2 million in RADAR, and 1,147 in

CLAIRE, and REDIportal almost covered all human RNA

editing sites of these four databases. Statistical analysis of these

RNA editing site gene regions showed that most sites resided in

non-coding RNA regions. In fact, protein-coding RNA regions
account for only 2% of the human genome (26), while a large

number of regions are non-coding regions, and most of the

known RNAs are non-coding RNAs (ncRNAs). ncRNAs come

from a wide range of sources and are abundantly expressed.

While many rRNAs and tRNAs have high abundance, some

ncRNAs, such as miRNAs, circular RNAs, long non-coding
RNAs (lncRNAs), and Piwi-interacting RNAs (piRNAs), have

low abundance (27). ncRNAs play a vital role in tumor

regulation (28), and multiple ncRNAs interact in tumors,

forming a competing endogenous RNA (ceRNA) network in

cancer formation (29). Abnormal expression of some ncRNAs,

such as miRNAs and lncRNAs, can affect cancer occurrence and

progression. Moreover, the level of RNA editing in non-coding
regions was identified to be significantly associated with cancer

patient survival (30). As a special ring-shaped ncRNA, circular

RNA is usually produced during the back-splicing of exons.

Because of its circular structure property, it is more stable than

linear RNA. Current studies have shown that circular RNAs

mainly function by acting as miRNA sponges and interacting
with RNA-binding proteins and lncRNAs. Circular RNA also

plays an important role in multiple cancer types and can be used

as a cancer biomarker (31). Due to its unique formation

mechanism, the generation of circular RNA is easily affected

by the expression of ADARs. Many studies have shown that

ADARs can inhibit the synthesis of circular RNAs (32–34).
As a novel characteristic of tumors, certain genes display

different expression patterns in cancer patients and show distinct
RNA editing levels that vary within the same patient in different

tissues. Interestingly, high RNA editing levels posttranscriptionally

increase the heterogeneity of genes, including both oncogenes and

tumor suppressors, in cancer. Researchers have previously

investigated the RNA editing levels between tumor and

paracarcinoma tissues from the TCGA database (35–38),

including sites in coding regions and non-coding regions
(miRNAs, intergenic regions, etc.) and have analyzed functional

RNA editing events (16, 39, 40). Furthermore, ADARs were found

to be highly expressed in Lgr5+ cells (controversial cancer stem

cells) (41). In addition to DNA mutations, RNA editing caused by

ADARs significantly increases the RNA abundance, which could

increase the protein heterogeneity in tumor cells and induce tumor
drug resistance (39). The identification of RNA editing sites in

tumors will help us study the mechanism of tumorigenesis and

identify some tumor-specific molecular markers. However, because

of the high DNA mutation in tumors, it is a challenge to identify

RNA editing sites accurately.

It is difficult to predict the function of RNA editing sites

located in non-coding regions owing to their diversity and

interactions with various ncRNAs. Moreover, except for typical

RNA editing sites (such as those resulting in proteins and

microRNA seed region alterations) that can be intuitively

selected according to their locations, many other potentially
functional RNA editing sites residing in non-coding regions

still need to be explored and validated (42). This problem is

complicated by the lack of effective judging and predicting tools.

This review outlines the existing bioinformatics strategies for

identifying editing sites in tumors, which can be used for further

experimental verification of downstream effects and clinical
relevance. Simultaneously, we provide some suggestions for

ncRNA editing research and the potential application of

ADAR inhibitors in the treatment of cancer.

RNA EDITING SITE IDENTIFICATION

In 1991, the first A-to-I RNA editing report was published when

researchers detected RNA editing events on GluR mRNA (43).

At the same time, four editing sites on 5-HT(2c) mRNA were

identified (44). As DNA/RNA sequencing technology has
developed, abundant high-seq data have made it possible to

search RNA editing sites and analyze RNA editing levels by

comparing RNA-seq data to related DNA-seq data, even using

RNA-seq data alone (45–47). In addition, there are several

experimental methods that directly detect inosine, including

ICE-seq (48), EndoVIPER-seq (49), and other methods for
capturing inosine (50–52). However, these methods also have

obvious defects. (1) The effects of enzymatic or chemical

treatments are usually incomplete, and RNase T1 will also

induce RNA degradation. (2) RNA modifications could directly

disturb reverse transcription (53), such as m1A (54, 55), and this

effect induces many false-positive results that must be corrected

with complex bioinformatics methods.

Lateral Computational A-to-G RNA Editing
Site Calling Strategy
Editing site calling is a complicated process involving many

aspects and requiring appropriate optimization and high
accuracy in each step. Therefore, researchers have summarized

some functionally integrated pipelines (56–59). Currently, there

are two popular analysis methods targeting A-to-I RNA editing,

including comparing the RNA-seq data with its DNA-seq data

and directly analyzing the RNA-seq data alone. In 2012, several

groups separately reported their optimized RNA editing calling
methods by directly comparing the RNA-seq data with its

corresponding DNA-seq data (60–62). Since there is no need

to delete SNPs (single-nucleotide polymorphisms), the editing

identification accuracy will be improved in theory. At present, it

is acknowledged that directly comparing RNA-seq data with the

original DNA-seq data is the most ideal strategy by which to

perform RNA editing calling. Unfortunately, matched DNA and
RNA sequencing data from the same sample are not always

available. To decrease costs and reduce processing times,

researchers prefer to adopt RNA-seq alone to search for
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editing events. Until 2013, detection methods using tissue- and

cell-specific RNA-seq alone were reported by several different

groups (46, 63). This strategy has substantially promoted

research in related fields, and it is thought to be useful in other

organisms carrying suitable reference genomes.

As mentioned above, the two popular strategies share a
common calling strategy that includes the following four steps:

(1) preprocessing sequencing data, (2) sequencing read mapping,

(3) RNA editing calling, and (4) RNA editing site annotation.

When analyzing RNA editing levels, studies usually employ

certain common mapping tools, such as BWA (64), Bowtie (65),

HISAT2 (66), GSNAP (67), and STAR (68). Interestingly, the
same high-seq data usually display low repeatability when

processed by different mapping tools; therefore, some specific

tools for RNA editing calling have been developed, such as

RASER (69). However, recent integrated pipelines for RNA

editing analysis usually require specific mapping tools according

to each developer’s optimization. RNA editing calling is the key
step that identifies true RNA editing events according to DNA-

RNA mismatches. A conventional identification method is to

identify DNA/RNA mismatches in samples using the tools

HaplotypeCaller in GATK, Samtools (70), VarScan 2 (71), etc.,

followed by removing SNPs and DNA mutations. Researchers

have also developed a large number of tools for accurate

identification of RNA editing. For instance, to filter out these
false-positive events, REDItools provided a threshold according to

an empirically observed distribution (47). We summarize the

popular RNA editing bioinformatics tools in Table 1.

Current Situation and Challenge of RNA
Editing Calling
Sequencing errors, DNA mutations, and a lack of a suitable SNP

database will result in false-positive results that affect RNA

editing detection. These sequencing errors are mainly caused

by reverse transcription, homopolymers, low-quality sequences,

etc. An important factor resulting in sequencing errors is RNA

modification, such as m1A and m6A. The reverse transcriptase

will likely misidentify modified nucleotides as other types of

nucleotides (91) [e.g., m1A is usually recognized as G instead of
A (92)], which will produce many false-positive editing sites in

the final results. In addition, tumor tissues are usually stored in

paraffin or formalin for further research, and chemical reagents

may damage DNA and RNA in these samples and ultimately

affect the quality of the DNA/RNA library. To acquire high-

quality sequencing reads, researchers usually perform several
corrective processes. Pinto et al. summarized the related progress

and provided several necessary remarks in their review (57). The

processes mainly included adjusting the read quality (QC)

threshold value to over 20, removing low-quality reads and

using the random sequencing primer adaptor.

Upon removing SNPs, several tools, such as REDItools (47)
and RNAEditor (74), automatically compare the data with

the SNP databases. Researchers have established several SNP

datasets, including dbSNP and HapMap (93). Plainly, the SNP

database quality and selection are important determinants for

analyzing the editing level using RNA-seq alone. Interestingly,

it appears that a problem is caused by the accuracy of the

dbSNP database remaining uncertain, since some SNP cases
reported in past experimental results have recently been

reclassified as RNA editing (94). For this reason, researchers

have developed many other tools that remove SNPs better.

GIREMI includes a mutual information (MI) model that is

able to directly remove SNPs without comparing the data to

a reference SNP database (45), and SPRINT is capable of
directly identifying RNA editing events via a novel SNP-free

algorithm (77).

TABLE 1 | Main bioinformatics tools for RNA editing detection.

Tools Required sequencing data URL Ref

REDItools RNA-seq or RNA and DNA-seq https://github.com/BioinfoUNIBA/REDItools (47)

RES-Scanner RNA-seq and DNA-seq https://github.com/ZhangLabSZ/RES-Scanner (72)

JACUSA RNA-seq or RNA and DNA-seq https://github.com/dieterich-lab/JACUSA (73)

GIREMI RNA-seq https://github.com/zhqingit/giremi (45)

RNAEditor RNA-seq http://rnaeditor.uni-frankfurt.de/ (74)

DeepRed RNA-seq https://github.com/wenjiegroup/DeepRed (75)

RED-ML RNA-seq or RNA and DNA-seq https://github.com/BGIRED/RED-ML (76)

SPRINT RNA-seq https://sprint.tianlab.cn/ (77)

RDDpred RNA-seq http://epigenomics.snu.ac.kr/RDDpred/ (78)

Rcare RNA-seq or RNA and DNA-seq http://www.snubi.org/software/rcare/ (79)

DREAM miRNA-seq http://www.cs.tau.ac.il/~mirnaed/ (80)

RASER RNA-seq https://www.ibp.ucla.edu/research/xiao/RASER.html (69)

InosinePredict RNA-seq http://hci-bio-app.hci.utah.edu:8081/Bass/InosinePredict (81)

VIRGO RNA-seq https://github.com/InfOmics/VIRGO (82)

AIRLINER RNA-seq http://alpha.dmi.unict.it/airliner/ (83)

PAI RNA-seq N/A (84)

iRNA-AI RNA-seq N/A (85)

EPAI-NC RNA-seq N/A (86)

isoTar RNA-seq https://ncrnaome.osumc.edu/isotar/ (87)

REP RNA-seq or RNA and DNA-seq http://www.rnaeditplus.net/ (88)

RED RNA-seq or RNA and DNA-seq https://github.com/REDetector/RED (89)

PRESa2i RNA sequences http://brl.uiu.ac.bd/presa2i/index.php (90)
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Improvements in Editing Site Calling for
Cancer Research
Although the detection of editing sites with high-seq data is

widely accepted and utilized, systematic optimization for

accurately measuring RNA editing is still insufficient. Here, we

offer several suggestions for applications using next-generation

RNA sequencing for cancer RNA editing research (Figure 2).

1. Perform DNA-seq sequencing of the same sample if available.

Tumor tissues generally have a high DNA mutation rate, and

the filtration of DNA mutations is very difficult without

DNA-seq sequencing. The method commonly used is to

refer to previously reported DNA mutation data, such as

the COSMIC database (35, 95).
2. Adapt the strand-specific and ribosome-free strategy for

preparing the RNA-seq library. This will improve the

accuracy of editing calling, yield more editing events on

unspliced pre-mRNA fragments, and obtain more

information from non-coding RNAs. Generally, the

abundance of some ncRNAs, such as circular RNAs, is low,

so we can obtain more circular RNAs or improve the depth of
sequencing by removing linear RNAs through RNase R

treatment.

3. Using hg38 as a reference genome and repeatable mapping is

feasible for improving the fault-tolerant ability for

hyperediting reads. Recent research indicates that the RNA

editing site location usually displays a clustering pattern (96),
and sequencing reads containing multiple mismatches are

considered to be hyperediting. Porath et al. developed a

specific method that recognized all A as G in unmapped

reads before the mapping process to avoid the excessive

deletion of hyperediting reads (97). Subsequently, Picardi

et al. analyzed human hyperediting levels from different

tissues via this method (22). Therefore, we recommend
referring to Porath’s strategy to analyze hyperediting reads.

4. Employ the Alu editing index (AEI) to measure the global

editing levels in different samples. Erez Y. Levanon and Eli

Eisenberg et al. provided the Alu editing index (AEI) to

measure the global editing levels in different samples. The

AEI ratio weighted by A-to-G mismatches within Alu repeats

relative to the total number of adenosines within Alu
elements represents the average Alu editing levels,

indirectly showing the overall RNA editing levels (36, 98).

5. For the identification of RNA editing in tumor samples with

both DNA-seq and RNA-seq data, we suggest BWA (DNA

and RNA-seq) or BWA (DNA-seq) + STAR (RNA-seq) for

mapping the sequencing data and REDITools for RNA
editing calling. Maria et al. compared some commonly used

alignment tools, including BWA, GSNAP, HISAT, and

STAR, and RNA identification tools, such as RNAEditor,

GIREMI, REDItools, RES, and JACUSA, and analyzed the

ability of these tools to identify RNA editing (59). In their

findings, BWA and STAR achieved the best alignment.
REDItools is a more comprehensive RNA editing

identification tool with high accuracy that can analyze the

data obtained from various strategies of library construction

(stranded or non-stranded RNA-seq) and provide additional

options, allowing researchers to filter (SNP or DNA

mutations) and annotate (genomic region or Alu region)

the editing sites with their own files. To our delight, Picardi
shares their updated protocol, which is a relatively systematic

and detailed RNA editing identification process, for

identifying RNA editing sites (99). The protocol explains

how to analyze the original DNA/RNA sequencing data and

obtain the candidate RNA editing sites in detail. Taking

Huntington disease (HD) as an example, it also introduces
how to compare the differences in RNA editing levels in

different tissues. Moreover, they also developed high-

performance HPC-REDItools for large-scale samples, which

greatly improves the speed of operation (100). For the

FIGURE 2 | Optimized editing sites identification strategies for cancer research. This flow chart is briefly regarding the content of Improvements in Editing Site

Calling for Cancer Research.
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identification of RNA editing in tumor samples with only

RNA-seq, we recommend HISAT2 to handle RNA-seq data

and REDITools to conduct RNA editing calling. We

compared several RNA editing identification processes

using YH’s RNA-seq data and concluded that this

combination is better in terms of speed and accuracy (88).
At present, some researchers only focus on the known editing

sites in existing RNA editing databases, such as RADAR and

REDIportal. In our opinion, especially for cancer RNA

editing research, de novo identification of these unknown

RNA editing sites is necessary.

6. We suggest selecting unique molecular identifiers (UMIs)
when building RNA-seq libraries, which will bring many

advantages (101): PCR mutations will be directly removed,

the editing levels will be absolutely quantified according to

the accurate number of edited RNAs, and the computational

operational process will be simplified. However, this novel

method requires further refined algorithms and processing
flows.

THE EFFECTS OF ADARS INDUCED A-TO-I
RNA EDITING IN CANCER

Based on tens of thousands of potential RNA editing sites

reported from bioinformatics methods, many experimentally

validated A-to-I editing sites and their regulatory mechanisms

have been demonstrated. As shown in Figure 1B, editing in
mRNA may results in missense mutations and alterations in the

beginning and terminating translation (102). Multiple editing

sites located in certain coding regions, such as AZIN1 (103, 104),

GABRA3 (105, 106), and COPA (40, 107, 108), have been shown

to affect tumor progression. According to the reported databases,

most editing sites reside within non-coding regions (>90%), and
RNA editing has been detected in many types of ncRNAs,

including piRNAs (109). Here, we briefly summarize the

mechanisms of several typical editing effects in non-coding

regions. (1) Editing occurs in the 5’ splice site, branch point,

and 3’ splice site and is able to affect pre-mRNA alternative

splicing. (2) When combined with pre-miRNA or pri-miRNA,

ADARs inhibit Drosha and Dicer1 functions, affecting miRNA
maturation and expression. The editing-induced sequence

changes in mature miRNAs (especially in the seed sequence)

or in the 3’ UTR can disturb their specific interactions. (3) For

long non-coding RNAs, several reports analyzing editing levels

have been published (110–112), and partial editing sites having

direct effects have been reported (113). (4) Since circular RNAs
are byproducts of RNA splicing, editing effects on RNA splicing

theoretically affect circular RNA expression. Researchers have

observed high levels of A-to-I editing in circular RNA precursors

and have confirmed that ADAR is related to its formation (32,

33). (5) Editing sites occurring in the 3’ UTR or intron region are

able to affect the RNA structure and stability (17–19). For

convenience, we list recently reported tumor-effectible RNA
editing sites in Supplementary Table S1.

RNA Editing Events in Non-Coding
Regions Are Involved With Cancer
There are a large number of RNA editing phenomena in ncRNAs

(114), and researchers have identified many RNA editing sites

located in ncRNAs, such as lncRNAs (112). In addition, several

specific databases aimed at ncRNAs have been built, including

MiREDiBase (https://ncrnaome.osumc.edu/miredibase/) (for
miRNA) (115) and LNCediting (http://bioinfo.life.hust.edu.cn/

LNCediting/) (for lncRNA) (110). Several typical editing effects

that occur on ncRNAs are listed below. (1) ADAR1-mediated

miR-200 overediting affects an oncogene in thyroid cancer (116).

The overediting of miR-200 weakens its interaction with and

targeting of ZEB1, resulting in inhibition of epithelial-

mesenchymal transition (EMT). (2) In prostate cancer,
ADAR1 promotes cell proliferation by editing lncRNAs and

PCA3 and improving the stability and expression of PCA3,

thereby inhibiting the tumor suppressor PRUNE2 (113). (3) In

glioma tumors, ADAR2 inhibits cell migration and invasion by

editing miR-376a-1 and shifting the targeted gene from RAP2A

to AMFR (117). (4) In melanoma, ADAR1 attenuates the
inhibition of CPEB1 by miR-455-5p by editing miR-455-5p,

which promotes the proliferation and metastasis of melanoma

(118). (5) Zipeto et al. found that the edited miRNA Let-7 is a

main factor promoting leukemia cell self-renewal (119). (6)

Hepatocellular carcinoma (HCC) and the android receptor

(AR) promote the expression of ADAR1 p110, while ADAR1

p110 inhibits circular RNA (hsa_circ_0085154) expression and
finally inhibits the proliferation of HCC tumors (120).

Search Strategies for Effective RNA
Editing Events in Cancer
Tumor and adjacent tissue samples are suitable subjects for

studying RNA editing—a large number of non-cancer-specific

RNA editing sites can be excluded by comparing RNA editing in
cancer and adjacent tissue. The investigation range of essential

RNA editing sites affecting cancer occurrence and development

can be effectively narrowed by comparing the editing levels in

cancer and adjacent tissue. Most cancers are accompanied by

detailed clinical data, from which the characteristics of RNA

editing in different cancers can be summarized and the range of

key targets can be further streamlined.
ADAR1&2 expression is different in various cancers. ADAR1

expression increases in most cancer types, such as breast invasive

carcinoma and liver hepatocellular carcinoma, but decreases in a

few cancers, such as kidney chromophobe. Some researchers

found that the expression of ADAR1 and ADAR2 in the same

cancer can be totally opposite. For example, some studies show
that ADAR1 is a potential tumor enhancer with high levels, and

ADAR2 is recognized as a tumor suppressor in HCC (40, 108).

The role of specific RNA editing level changes mediated by

different ADAR enzymes in tumors has been partially discovered.

To further determine which RNA editing site is closely related to

tumor development and maintenance, researchers can select

paired samples from cancer patients and identify these tumor-
related RNA editing sites using statistical methods such as Fisher’s

exact test and Wilcoxon rank sum and signed rank test. Studies
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have shown that certain site editing levels are greatly associated

with patient survival (30). Therefore, we can link the editing level

of RNA editing sites with clinical data such as the tumor clinical

stage, cancer subtype and patient survival. In addition, Han et al.

showed that editing levels of certain genes are associated with

tumor drug sensitivity, which could be used as a potential
screening strategy in clinical medication (35).

Based on the initial selection strategies mentioned above, a

large number of candidate editing sites related to cancer could be

identified, and we can further narrow the range according to

previously reported important tumor-related genes. Additionally,

since the level of RNA editing is regulated by ADAR1 and/or
ADAR2, we can determine which enzyme acts on a specific

editing site by analyzing the correlation between the expression

levels of ADAR1/2 and editing sites. Moreover, RNA editing

affects the gene expression level in various ways, so we were able

to analyze whether there was a correlation between the change in

the editing level of RNA editing sites and the expression level of
the gene in which RNA editing sites were located. Finally, a

necessary confirmation step should be performed for the newly

identified editing sites via Sanger sequencing (121), mmPCR-seq

(122), or RESSq-PCR (123).

Predicting the Function of RNA Editing
Events in Cancer
Predicting the capabilities of editing is challenging. Before

carrying out experiments to verify the abovementioned tumor-

related editing sites, we can roughly analyze the impact of these
RNA editing sites by in silico prediction to guide subsequent

experiments. RNA editing sites are distributed in different regions

of the gene, such as CDS, introns, and UTRs, so it is vital to

distinguish different locations of these editing sites when

predicting their functions. RNA editing sites occurring in CDS

may cause non-synonymous amino acids or lead to early
termination of mRNAs, and many tools, such as ANNOVAR

(124), VEP (125), SnpEff (126), and SnpSift, can predict these

sites. Julie et al. compared the three tools and discovered that VEP

and SnpEff can better annotate the mutations of different

transcripts, which is helpful for the functional prediction of

RNA editing sites (127). In fact, 95% of nascent pre-mRNA

could be influenced by RNA editing (128). Some predictable RNA
editing sites are involved in splicing, and the conventional way of

detecting these sites is predicting the conserved 5’ splice site and

3’ splice site and then analyzing the proportion between variant

RNAs after editing occurs and the original RNAs, which is also

called the percent spliced in index (PSI) (129). For RNA editing

sites that occur in 3’ UTR, a large number of current studies have
revealed miRNA interactions, and there are also multiple tools

that can analyze the relationship between mutant RNAs and the

corresponding miRNAs (130). In addition, a few RNA editing

events lead to alterations of the RNA structure, and these editing

cases that change the free energy of RNAs can be predicted by

platforms such as RNAfold (131) and STRUM (132).

To predict functional editing sites with high efficiency, we took
the lead in developing an in silico online analysis system, RNA

Editing Plus (REP), that effectively calls and annotates human A-

to-I RNA editing events, predicting their downstream effects on

pre-mRNA alternative splicing and miRNA-3’ UTR targeting via

human high-seq data (88).We believe that our platform governing

multiple optimized prediction methods will assist more scientific

groups in investigating their targets of interest in cancer.

Effects of ADARs Induced A-to-I Editing
on Circular RNAs
ADARs can significantly affect the biosynthesis of circular RNAs

(32–34). We summarize that ADARs affect circular RNAs in two

ways. In the first effect, despite the lack of direct evidence,

theoretically, RNA editing sites located in the recognition
region of 5’ splice site and 3’ splice site could directly affect the

generation of circular RNAs. When RNA editing takes place in

the 5’ splice site and 3’ splice site regions, it not only affects pre-

mRNA splicing but also further changes the splicing mode of

mRNA, which may directly affect the generation of circular

RNAs. In addition, it has been pointed out that approximately
99.2% of circular RNAs require 5’ splice sites and 3’ splice sites

simultaneously (133), so if RNA editing occurs in these regions,

most of the circular RNAs will be directly affected. On the other

hand, the formation of dsRNA structures is accompanied by the

formation of circular RNAs. Since ADARs can act on these

regions and produce A-to-I RNA editing, the structure of dsRNA

is destroyed, and the biosynthesis of circular RNAs is affected. In
conclusion, changes in ADAR1 expression could directly

influence the biosynthesis of circular RNAs.

Interestingly, mutations resulting from RNA editing occurring

in pre-mRNA could be transmitted into mature circular RNAs.

For instance, Hosaka et al. reported a circular RNA edited by

ADAR2 named circGRIA2 (hsa_circ_0125620) in mouse spinal
motor neurons and human SH-SY5Y cells, and circGRIA2 editing

level alteration is a potential marker for early serum diagnosis of

amyotrophic lateral sclerosis (ALS) since it can be secreted out of

the cell (134). They claimed that circular RNA can be used as a

marker for the early diagnosis of neoplastic diseases because it can

be excluded from extracellular properties. However, the clinical

feasibility of blood tests for measuring circular RNAs needs to be
further validated. As mentioned earlier, in cancer, various types of

ncRNAs, such as circular RNAs, miRNAs, mRNAs, and

lncRNAs, can work together to form a ceRNA regulatory

network. miRNA plays a vital role in this process. As sponges

of miRNAs, circular RNAs can inhibit the function of miRNAs.

In addition, we can use the aforementioned splicing prediction
tools to analyze the changes in RNA editing at 5’ splice site and 3’

splice site through RNA-seq sequencing data (128), thus directly

predicting the changes in circular RNAs.

Application of ADARs Induced A-to-I
Editing in Cancer Therapy
Since the ability of ADARs to deaminate has also been applied to

the field of gene editing, they also have great potential in cancer

therapy (135, 136). Nevertheless, recent findings have pointed us
toward new avenues to identify the posttranscriptional regulatory

mechanisms in cancer research. The editing of endogenous

dsRNA by ADARs was found to be required to prevent innate

immune system activation (14, 137, 138). Two groups also

showed that knockdown of ADAR1 reduced the sensitivity of
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several tumor cells to antitumor drugs by activating interferons

(IFNs), meaning that ADAR1 is able to enhance the effects of

certain tumor immune drugs (139, 140). In addition, it has been

shown that RNA editing is associated with drug resistance in

tumors, and some clinically relevant RNA editing sites occurring

on ncRNAs have also been demonstrated (30). Overall, ADAR1
and RNA editing can be used as targets in cancer immunotherapy

(141) to treat cancer together with tumor immune drugs.

It has been found that some chemically synthesized small-

molecule drugs can inhibit the expression of ADAR1. Ding et al.

reported that 8-chloro-adenosine can inhibit the ADAR1/p53

pathway, inhibiting the proliferation of breast cancer (142).
Erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride

(EHNA) has also been proven to be an inhibitor of ADARs

(143). Targeted inhibitors are considered to be effective in cancer

treatment, and these small-molecular drugs are currently mainly

divided into artificial drugs and natural products. There are some

effective components in natural drugs that can inhibit cancers
and have been used in clinical treatments. For example, paclitaxel

extracted from plants is an effective antitumor drug (144). This is

also why some researchers have used a variety of methods to

identify the ingredients of important natural products to treat

cancer (145). However, there are few studies on the active

components of natural products as inhibitors of ADARs.

Natural compounds may change the level of ADAR-mediated
editing in tumors or play an anticancer role by virtue of the non-

editing function of ADARs, which will provide a new research

direction for the potential of ADARs in cancer therapy.

CONCLUSIONS AND FUTURE
PERSPECTIVES

To date, great efforts have been made to develop computational

methods alongside the advancement of sequencing technologies
to detect RNA editing events, and millions of editing sites have

been reported, allowing researchers to gain growing information

on different tissues. However, many aspects could be optimized to

explore tissue-specific editing levels in the future. In addition, the

advent of third-generation long-read sequencing technologies

such as Pacific Biosciences and Oxford Nanopore brings about
more facilities for editing calling since it will theoretically

circumvent the current technical bottlenecks, such as PCR

errors and hyperediting read loss (96, 146, 147). On the other

hand, more high-seq data from single cells have beenmade public,

providing necessary information for unraveling RNA editing

effects on cell diversity at the single-cell level. Interpreting the

level of RNA editing at the single-cell level in cancer has a great

promoting effect on our further understanding of tumor

heterogeneity and the development of tumor heterogeneity.
Although initial research has been reported on the human brain

(148), reads with low abundance and coverage have restricted the

application of these data (57). As mentioned earlier, RNA editing

located in the non-coding region is most abundant in cancer. It is

also urgent to clarify the functions of RNA editing sites and apply

them to the treatment of tumors. RNA editing could dramatically
increase ncRNA abundance, while ncRNAs such as lncRNAs are

able to affect the drug resistance of tumors (149). Therefore, in-

depth mining of the mechanism of RNA editing in lncRNAs

facilitates our in-depth understanding of tumor heterogeneity,

helping us treat cancer. There is a link between RNA editing and

drug sensitivity—for example, the levels of RNA editing of COG3
and COPA have a strong correlation with drug sensitivity (37),

which indicates that RNA editing has great potential in cancer

therapy and drug development.
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