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Abstract. Our main purpose is to characterize the class of L-convex
polyominoes introduced in [3] by means of their horizontal and vertical
projections. The achieved results allow an answer to one of the most
relevant questions in tomography i.e. the uniqueness of discrete sets,
with respect to their horizontal and vertical projections. In this paper,
by giving a characterization of L-convex polyominoes, we investigate the
connection between uniqueness property and unimodality of vectors of
horizontal and vertical projections. In the last section we consider the
continuum environment; we extend the definition of L-convex set, and
we obtain some results analogous to those for the discrete case.

1 Definitions and Preliminaries

Let our environment be the integer lattice Z×Z. A discrete set is a finite subset
S of Z × Z considered up to translations.

Usually, a discrete set is represented by a binary matrix or by a set of cells
(unitary squares), as depicted in Fig. 1. In the sequel, we will use the latter
representation, and we number the rows and the columns of the set starting
from the upper left corner of the minimum rectangle containing it. We denote
by (i, j) the cell in the i-th row and j-th column of the rectangle.
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Fig. 2. The polyomino P contains the polyomino P1, but does not contain the poly-
omino P2. The shaded cells of P show the inclusion

In this paper we study a particular class of discrete sets, i.e. the well known
class of polyominoes (cf.[4]). A polyomino is defined as a finite union of cells
whose interior is connected. Given two polyominoes P and P ′, we say that P is
contained in P ′ if P ⊆ P ′ with respect to the standard set-inclusion (see Fig. 2).

A polyomino is said to be h-convex (resp. v-convex) if every its row (resp.
column) is connected. A polyomino is said to be hv-convex, or simply convex, if
it is both h-convex and v-convex (see Fig. 3).

For any two cells A and B in a polyomino, a path ΠAB , from A to B, is a
sequence (i1, j1), (i2, j2), ..., (ir, jr) of adjacent disjoint cells, with A = (i1, j1),
and B = (ir, jr). For each 1 ≤ k < r, we say that the two consecutive cells
(ik, jk), (ik+1, jk+1) form:

– an east step if ik+1 = ik + 1 and jk+1 = jk;
– a north step if ik+1 = hi and jk+1 = jk + 1;
– a west step if ik+1 = hi − 1 and jk+1 = jk;
– a south step if ik+1 = hi and jk+1 = jk − 1.

Finally, we define a path to be monotone if it is entirely made of only two of the
four types of steps defined above.

The cells in a convex polyomino satisfy a particular connection property that
involves the shape of the paths connecting any pair of them.

Proposition 1. A polyomino P is convex iff every pair of cells is connected by
a monotone path.

The property in Proposition 1, allows us to introduce a particular family of
convex polyominoes, called L-convex polyominoes, defined and studied in [3].

1.1 The Class of L-Convex Polyominoes

Let us consider a polyomino P . A path in P has a change of direction in the cell
(ik, jk), for 2 ≤ k ≤ r − 1, if

ik �= ik−1 ⇐⇒ jk+1 �= jk.

In [3] it is proposed a classification of convex polyominoes based on the num-
ber of changes of direction in the paths connecting any two cells of a polyomino.
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Fig. 3. The convex polyomino on the left is not L-convex, while the one on the right
is L-convex. For both the polyominoes two cells are highlighted, and a monotone path
which connects them and which contains the minimum number of possible changes of
direction, is depicted

c)b)a)

Fig. 4. In a) and b) we have crossing intersections among the rectangles, while the
intersection in c) is not crossing

More precisely, we call k-convex a convex polyomino such that every pair of its
cells can be connected by a monotone path with at most k changes of direction.
For k = 1 we have the class of L-convex polyominoes, i.e. those polyominoes
such that every pair of their cells can be connected by a path with at most one
change of direction (see Fig.3).

In the same paper it is given a nice characterization of L-convex polyominoes
that involves the following notion of maximal rectangle.

A rectangle, that we denote by [x, y], with x, y ∈ N \ {0}, is a rectangular
polyomino whose dimensions are x and y (x rows and y columns). We say [x, y]
to be maximal in P if

∀ [x′, y′], [x, y] ⊆ [x′, y′] ⊆ P ⇒ [x, y] = [x′, y′] .

Two rectangles [x, y] and [x′, y′] contained in P have a crossing intersection
if their intersection is a rectangle having as basis the smallest of the two bases,
and as height the smallest of the two heights, i.e.

[x, y] ∩ [x′, y′] = [min{x, x′}, min{y, y′}] .

Figure 4 shows examples of crossing and non-crossing intersections.

Theorem 1. A convex polyomino is L-convex iff every pair of its maximal rect-
angles has crossing intersection.
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Fig. 5. A L-convex polyomino P obtained by one of the overlappings of the four com-
parable rectangles a, b, c and d having crossing intersection

From Theorem 1, it immediately follows that all the maximal rectangles of
a L-convex polyomino are distinct. The same result allows to characterize a
L-convex polyomino as one of the overlapping of its maximal rectangles.

Since the set of maximal rectangles can be partially ordered as follows:

[x1, y1] > [x2, y2] if x1 > x2 and y1 < y2 ,

then each finite overlapping of comparable rectangles such that any pair of
them has a crossing intersection, determines a L-convex polyomino (see Fig.5 for
an example).

1.2 Basic Notions of Discrete Tomography

To each discrete set S, we can associate two integer vectors H = (h1, . . . , hm)
and V = (v1, . . . , vn) such that, for each 1 ≤ i ≤ m, 1 ≤ j ≤ n, hi and vj are the
number of cells of S which lie on row i and column j, respectively. The vectors
H and V are called the horizontal and vertical projections of S, respectively.
Given two vectors H and V , we will denote by U(H, V ) the class of discrete sets
having H and V as projections.

A discrete set S is unique (with respect to H and V) if U(H, V ) = {S}. In
such a case also H and V are said to be unique.

Fundamental problems of discrete tomography concern the retrieval of infor-
mation about some geometrical aspects (cf. [1], [2], [7]) of discrete sets, from the
knowledge of their projections (for a survey cf. [5]).

In general, the horizontal and vertical projections of a discrete set are not
sufficient to uniquely determine it (see Fig. 7), as it is known from [9], where
Ryser pointed out that a discrete set is unique if and only if it does not contain
particular configurations of points called switching components. Figure 6 shows
the two simplest of them, called elementary switching components, and defined
as follows: a discrete set S contains the elementary switching component a) [resp.
b)] if there exists two rows i and i′, and two columns j and j′ such that the cells
in positions (i, j), and (i′, j′) [resp. (i′, j), and (i, j′)] belong to S (represented
in the figure by filled squares), while the cells in positions (i′, j), and (i, j′)
[resp. (i, j), and (i′, j′)] do not belong to S (represented in the figure by dotted
squares).
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Fig. 6. The two elementary switching components. The presence of one of them in a
discrete set assures its non-uniqueness

P  : P  :P : 21

Fig. 7. Three polyominoes belonging to the class U(H, V ), with H = (1, 3, 3, 3, 3, 1)
and V = (2, 6, 4, 2)

Furthermore, Ryser defined an operator, called interchange and successively
switching (operator), which modifies a discrete set by changing one of its switch-
ing component, if it exists, into the other.

In Fig. 7, the discrete sets P1 and P2 are obtained from P by performing the
two highlighted switchings.

Clearly, switching does not modify the projections of a discrete set, which
consequently reveals to be non-unique (cf. [10]). The reverse of this property is
also true, as stated in the following

Theorem 2. (Ryser’s Theorem) A discrete set is non-unique (with respect to its
horizontal and vertical projections) if and only if it has a switching component.

2 A Characterization Theorem for L-Convex
Polyominoes

In this section we furnish a series of results that produce a characterization of
L-convex polyominoes in terms of horizontal and vertical projections.

Lemma 1. A L-convex polyomino P is uniquely determined by its horizontal
and vertical projections.
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Proof. Theorem 2 allows us to achieve the uniqueness of P by proving that it
does not contain any switching component. So, let us assume that there exists
a switching component involving the two cells A and B of P , in positions (i, j)
and (i′, j′), respectively, where i �= i′ and j �= j′. By definition of switching, the
two cells in positions (i, j′) and (i′, j) do not belong to P , and consequently a
monotone path ΠAB having at most one change of direction does not exist. This
fact contradicts the hypothesis of L-convexity of P . 	


Lemma 2. Let j and j′ be two different columns of a L-convex polyomino P ,
such that vj ≤ vj′ . For each row i of P , if (i, j) ∈ P , then (i, j′) ∈ P .

Proof. Let us proceed by contradiction and assume that there exists a row i′ of
P such that (i′, j) ∈ P and (i′, j′) �∈ P . Since vj ≤ vj′ , there exists a row i′′ such
that (i′′, j) �∈ P and (i′′, j′) ∈ P . These four cells form a switching component,
a contradiction by Lemma 1. 	


Obviously a result similar to that of Lemma 2 holds if vj > vj′ , and, further-
more, if we replace the two different columns of P with two of its rows.

We define an integer vector X = (x1, . . . , xk) to be unimodal, if there exists
0 ≤ i ≤ k, such that x1 ≤ x2 ≤ . . . ,≤ xi and xi ≥ xi+1 ≥ · · · ≥ xk.

Lemma 3. If P is a L-convex polyomino then its horizontal and vertical pro-
jections are unimodal.

Proof. Let P be a L-convex polyomino belonging to U(H, V ), with H ∈ N
m and

V ∈ N
n. By Theorem 1, it follows that each element hi of H is the basis of a

maximal rectangle of P . Let us proceed by contradiction and assume H to be
non-unimodal, i.e. there exist 1 ≤ i < j < k ≤ m such that hj < hk and hj < hi.
The following three cases arise:

hi = hk: the cells of P lying on row i and row k belong to the same maximal
rectangle, so hj ≥ hi, a contradiction;

hi < hk: the two values hi and hj are the bases of two different maximal
rectangles. Since each pair of maximal rectangles has crossing intersection, then
hj ≥ hi, a contradiction;

hi > hk: analogous to the previous case.
Since each element vj of V , with j = 1, . . . , m, is the height of a maximal

rectangle of P , a similar reasoning leads to prove that also V is unimodal. 	


The properties stated in Lemmas 2 and 3 directly follow from the defini-
tion of L-convexity. A less intuitive result is the characterization of L-convex
polyominoes by means of the uniqueness and monotonicity of its projections.

Theorem 3. Let P ∈ U(H, V ), with H ∈ N
m and V ∈ N

n.

H and V are unimodal
H and V are unique

}
⇔ P is a L-convex polyomino.
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Proof. (⇒) We prove by contradiction the h-convexity of P : let us assume that
there exist three cells (i, j) ∈ P , (i, j′) �∈ P and (i, j′′) ∈ P , with i < i′ < i′′.
The unimodality of V allows the following three cases:

vj ≥ vj′ ≥ vj′′ : Lemma 2 applied to columns j′′ and j′, implies that (i, j′) ∈
P , which is clearly a contradiction;

vj ≤ vj′ ≤ vj′′ : Lemma 2 applied to columns j and j′, implies that (i, j′) ∈ P ,
a contradiction;

vj ≤ vj′ and vj′ ≥ vj′′ : Lemma 2 applied or to columns j and j′, or to
columns j′′ and j′ implies that (i, j′) ∈ P , again a contradiction.

A similar reasoning leads to the v-convexity of P .
Finally, for any pair of cells (i, j) and (i′, j′) belonging to P , the uniqueness

of P implies that (i′, j) ∈ P or (i, j′) ∈ P , so the cells (i, j) and (i′, j′) can be
connected by a path having at most one change of direction. This determines
the connectedness and the L-convexity of P .

(⇐) The result follows from Lemmas 1 and 3. 	

The following remark is a direct consequence of the proof of Theorem 3:

Remark 1. A convex discrete set is unique if and only if it is L-convex.

3 Extension to Measurable Plane Sets

In this section, we introduce the concept of L-convex plane set in order to extend
to the continuum the uniqueness results stated in Section 2.

In the case of generic measurable plane sets, G.G.Lorentz gave in [8] necessary
and sufficient conditions for a pair of projections to be respectively unique, non-
unique and consistent. These results were obtained by using analytic transforma-
tions of the projection functions. Further studies considered the same problem
from a geometrical point of view, with the aim of defining a switching theory
which translates in the continuum what was introduced for discrete sets. In
particular in [6], the authors introduced the notion of switching components in
the continuum, and stated a result similar to Theorem 2. Furthermore, they
furnished other nice characterizations of plane sets related to their geometrical
properties. In this section we will often rely on these works in order to support
our results.

So, let us start by recalling the following standard definitions: a set S of R
2

is called h-convex (resp. v-convex) if, for each pair of points (x, y), (u, v) ∈ S,
with y = v (resp. x = u), the horizontal (resp. vertical) line segment which join
them is entirely contained in S. We call hv-convex the plane sets that are both
h-convex and v-convex.

Furthermore, a step polygon is a polygonal curve consisting of horizontal and
vertical line segments and having no self-intersections. A step polygon joining
two distinct points (x, y), (u, v) ∈ R

2 can be represented as a finite sequence of
vertices (x0, y0), (x1, y1), ..., (xk, yk) such that each vertex is connected by a line
segment to the next one, (x0, y0) = (x, y), and (xk, yk) = (u, v). To our purpose,
line segments are the continuum counterpart of the four kinds of steps defined
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a) b)

Fig. 8. a) a hv-convex plane set and a monotone step polygon lying inside it; b) a L-
convex plane set, and two of its cells joined with a three vertex monotone step polygon

in Section 1 for the discrete lattice, and so they can be classified as north, south,
east and west segments. A step polygon is called monotone if it is composed of
at most two different kinds of these segments.

Hence, we have the following natural translation of Proposition 1 to hv-convex
plane sets:

Proposition 2. A plane set S is hv-convex iff every pair of points in S can be
joined by a monotone step polygon lying in S.

Now we can finally define a plane set S to be L-convex if each pair of its
points can be joined by a monotone step polygon with at most three vertices,
and entirely contained in S (see Fig.8).

3.1 A Characterization Theorem for L-Convex Plane Sets

In this paragraph, the reader will encounter some basic definitions together with
the continuum counterparts of the results stated in Section 2

A function f(x), defined in the interval [a, b] ⊂ R, is unimodal if there exists
x ∈ [a, b] (called mode) such that f(x) increases from a to x and decreases from
x to b.

Let S ⊆ R
2 be a measurable set such that λ2(S) < ∞ (λ2 being the two

dimensional Lebesgue measure), and let f(x, y) be its characteristic function.
Using notations and definitions from [6], we call horizontal projection of S the
function

fx(y) =
∫ ∞

−∞
f(x, y)dx (1)

and vertical projection of S the function

fy(x) =
∫ ∞

−∞
f(x, y)dy . (2)
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These functions exist almost everywhere on R and they are integrable (Fu-
bini’s theorem).

In [6], it is introduced a notion of switching components in the continuum
which naturally extends the one for discrete sets.

In particular, let t,u be two real numbers. The sets

S(t, 0) = {(x, y)|(x − t, y) ∈ S}

S(0, u) = {(x, y)|(x, y − u) ∈ S}
are called horizontal and vertical translation of S, respectively.

We say that S admits a switching component if there exist four sets A, B, C, D
and two real numbers t and u such that B ∪ C ⊆ S, A ∪ D ∩ S = ∅, and such
that B = A(t,0), C = A(0,u) and D = A(t,u).

We have that if S admits a switching component, then S is not uniquely
determined by its projections, in fact the set

S′ = (S − (B ∪ C)) ∪ (A ∪ D)

is different from S, and it has its same horizontal and vertical projections.
The existence of a switching component is also a necessary condition to guar-

antee the non-uniqueness of the set S (see [6] for a proof), so we have the fol-
lowing result, analogous to Lemma 1:

Theorem 4. A measurable plane set having finite measure is non-uniquely de-
termined by its projections iff it has a switching component.

Finally, L-convexity of a plane set causes the existence of a mode both in its
horizontal and in its vertical projections:

Lemma 4. If a plane set is L-convex, then both its horizontal and its vertical
projections are unimodal.

The proof can be simple inferred from that of Lemma 3. As a consequence
we can obtain, for the continuous case, the same characterization result as for
discrete sets:

Theorem 5. Let fx and fy be projection functions defined in R
2 of a plane set

S. It holds that

fx and fy are unimodal
fx and fy are unique

}
⇔ S is L-convex .

A last remark is needed: in [6], a different and interesting characterization of
unique plane sets is provided. Let S be a measurable plane set of finite measure.
The rectangle X × Y is measurably inscribed (briefly m-inscribed) in S if

X × Y ⊆ S and X × Y ⊆ S .
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Fig. 9. Two m-inscribed rectangles inside a L-convex plane set

The set S is m-inscribable if it is the union of m-inscribed rectangles. We can
immediately argue that the presence of m-inscribed rectangles inside the set S
is similar to the presence of maximal rectangles inside an L-convex polyomino.

This idea is strengthened by the fact that, using Theorem 4, in [6] it is proved
the following

Theorem 6. A measurable plane set having finite measure is uniquely deter-
mined by its projection functions iff it is m-inscribable.

We want to observe that the notion of crossing intersection in the contin-
uum environment, leads to the equivalence between L-convex plane sets and
m-inscribable plane sets. In fact, at the same time, we obtain a nice generaliza-
tion of Theorem 1 and an uniqueness result.

Theorem 7. Let S be a measurable plane set. It holds that S is L-convex iff S
is m-inscribable by rectangles with crossing intersection.

4 Conclusions and Further Work

In this work we have proposed a characterization of L-convex sets in terms of
features relevant to discrete tomography. In particular, we observed that each
L-convex set is unique with respect to its horizontal and vertical projections,
and that both the projections show a unimodal behavior. The characterization
is achieved after showing that these two properties are also sufficient to obtain
a L-convex set.

Finally, the last section of the paper concerns the natural extension of our
main result to the continuum environment.

We would like to point out some open questions: one can ask wether similar
tomographical characterizations can be proved when generalizing the notion of
L-convexity by taking into consideration two or more directions different from
(or possibly strictly including) the horizontal and the vertical ones.
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Furthermore, we could consider the extension of the notion of L-convex poly-
omino to the three dimensional lattice. In fact, it seems not so trivial to keep
maintaining the crucial equivalence between the characterizations of L-convexity
by means of monotone path and of maximal rectangles in such environment.
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