
A Tool Converting Finite State Machine to VHDL

Amr T. Abdel-Hamid, Mohamed Zaki and Sofiène Tahar
Dept. of Electrical & Computer Engineering, Concordia University
1455 de Maisonneuve W., Montreal, Quebec, H3H 1M8, Canada

Email:{at abdel, mzaki, tahar}@ece.concordia.ca

Abstract

Finite state machines (FSM) are a basic component in
hardware design, they represent the transformation between
inputs and outputs for sequential designs. FSMs can be rep-
resented graphically, which would help the designer to visu-
alize and design in a more efficient way, on the other hand
the designer requires a fast direct way to convert the vi-
sualized design to hardware description languages (HDL)
code directly in order to simulate and implement it for syn-
thesis and analysis. In this paper, we present a tool which
starting from a graphical FSM representation, produces a
behavioral HDL code which can be directly analyzed and
synthesized.

1 Introduction

The behavior of computer systems can be described and
analyzed by means of transition systems. Understanding
and gaining more insight by inspecting these systems can be
of great advantage when constructing complicated systems.
The most commonly used transition systems are based on
explicit state enumeration known as finite state machines
(FSM). FSMs are a basic component of hardware designs,
they represent the transformation between inputs and out-
puts for sequential designs. FSMs can be represented graph-
ically, which would help the designer to visualize and de-
sign in a more efficient way. The designer requires a fast
direct way to convert the visualized design to hardware de-
scription languages (HDL) code directly in order to simu-
late and implement it. CAD tools support built-in visualiza-
tion software or interfaces to third party software. In this
project, starting from a visualization tool Graphviz [7] al-
lowing users to interactively explore large state spaces, we
extract HDL code which can be used in simulation and syn-
thesis. The state machine design is converted to a state table

and then, into VHDL description. The Graphviz is used as
a graph editor for drawing the state transition graph (STG)
of the design required. Graphviz outputs adot language [7]
file that gives a textual representation for the FSM machine.
The proposed tool converts this file first to Kiss2 format [9],
which is a standard FSM format that is used by many tools.
This Kiss2 file is used by the other part of the tool to directly
generate sequential VHDL code.

In the next sections, we will discuss relevant related work
concerning visualization languages, FSM based languages
as well as the most popular HDLs on the market today.
Then, we will describe the proposed tool in details, and fi-
nally we are going to give an example of one file converted
from FSM to VHDL by our tool.

2 Related Work

2.1 Interface Languages and Visualization Sys-
tems

Graphs are frequently used in computer applications as a
general data structure to represent objects and relationships
between them. They are used to implement hierarchies,
dependency structures networks, configurations, dataflows,
and so on. Usually graph visualization tools support the
following options: directed, undirected, and mixed graphs,
hypergraphs, hierarchical graphs, graphical representations
[11]. Different format have been proposed as input to the
visualization tool. They usually consist of a language core
to describe the structural properties of a graph and a flex-
ible extension mechanism to add application-specific data.
Among the most important is thedot format described in
this paper. Other format include GraphML (GML) [4]
which is an upcoming graph specification standard. Among
the tools using GML is GraphLet [4], implemented in C++.
It provides a scripting language to support user interfacing
and animation tailoring of the graph editor. VGJ [13] is also
a graph layout tool based on GML. It is written in Java and
includes techniques for hierarchical directed graphs. The
tool supports 3D and file input/output in GML.

- 1907 -

Sean Dunne



Other visualization tools include the daVinci graph vi-
sualization [3] program and VCG tool [12] which automati-
cally computes the most optimal way to view the finite-state
automaton by minimizing the number of crossing edges.
AiSee [1], which is a part of the Absint static analyzer tool
suite [1], was developed initially to visualize the internal
data structures found in compilers. Today it is widely used
in many different areas including visualizing FSMs. AiSee
automatically calculates a customizable layout of graphs
specified in GDL (graph description language) [3]. This
layout is then displayed, and can be printed or interactively
explored.

The Xilinx company provides a commercial tool for the
rapid prototyping of a FSM design directly from the state
diagram. Xilinx ISE tools [14] include an editor, named
StateCAD, which allows users to graphically input state
diagrams and have it translated into a Verilog behavioral
HDL model. Non-commercial tools includes Visual Soft-
ware (SYNTHA) [10] where the input is an FSM speci-
fication using an autogram, a Kiss [2] table or (in the fu-
ture) VHDL and the output is an encoded, minimized, and
mapped netlist of gates, which implements the given FSM.
A variety of options allow the user to select encoding strate-
gies and flip-flop types.

2.2 Modelling Languages

Among existing FSM modeling languages, we have cho-
sen the Kiss format [2]. Its FSM description assumes sym-
bolic names for the state (pre-encoding), while inputs and
outputs are specified using the three symbols 1, 0, and -
(don’t care). Kiss is a tabular format, where each row has
four entries: input field, present state field, next state field
and output field. There are as many rows as transitions in
the state graph of the FSM. BLIF [9] (Berkeley Logic In-
terchange Format) was developed to describe a logic-level
circuit in textual form. A circuit is a combinational or se-
quential network of logic functions. It can be viewed as a
directed graph of combinational logic nodes and sequential
logic elements. Each node has a single-output logic func-
tion associated with it. Each feedback loop must contain at
least one latch (flip-flop). Each net (or signal) has only a
single driver, and either the signal or the gate which drives
the signal can be named without ambiguity.

2.3 HDL Languages

Modern hardware designers typically uses hardware de-
scription languages (HDLs) to express designs at various
levels of abstraction. A hardware description language is a
high level programming language, with the usual program-
ming constructs such as assignments, conditions and iter-
ations, as well as extensions for timing specification, con-

currency and data structure suitable for modelling different
aspects of hardware. The most popular hardware descrip-
tion languages are VHDL [5], and Verilog [6]. We have
chosen VHDL in this project.

VHDL (VHSIC (Very High Speed Integrated Circuits)
Hardware Description Language) [5] is an IEEE Standard
since 1987 while Verilog was only standardized in 1995.
Both languages are programming language that has been
designed and optimized for describing the behavior of digi-
tal systems, they support the development, verification, syn-
thesis, and testing of hardware designs. Like C and C++,
VHDL and Verilog include features useful for structured
design techniques, and offer a rich set of control and data
representation features.

3 Tool Structure

In this section, we describe the developed tool which
generates VHDL behavioral code out of an FSM descrip-
tion. The tool was implemented using C++ under Unix
environment. It is composed of two different modules in-
teracting together. The advantage of this modularity is the
simplicity of updating its architecture by modifying the in-
put format, the VHDL subset or enhancing its performance.
The tool is basically composed of two parts:

1. A Dot-to-Kiss2 module, that converts the dot file to a
kiss2 formatted FSM.

2. A Kiss2-to-VHDL module, that uses the generated
kiss2 file to generate the VHDL description of the de-
sign.

3.1 DOT-to-Kiss2

Figure 1 shows the architecture of the DOT-to-Kiss2
module which transform adot representation file of an FSM
design into Kiss2 format. The first two modules parse the
dot file, analyze it to check for possible syntax violation or
errors and then create a parse tree. The parse tree is then in-
put to a Kiss2 Generator which create at the back end a kiss
format. A transition in dot format has the following form:

current_state -> Next_state [label =
"input1 .. inputn / output1...outputn
or...or input1 .. inputn /
output1...outputn"]

The translation from the dot format to the Kiss2 format is
straight forward as transitions and states are directly identi-
fied. Theor in the transition description means that several
input/output combinations could lead to the same transition.

As an illustrative example, we consider one of the
LGSynth93 benchmark FSMs [8] in Figure 2, calledlion.

- 1908 -



The lion FSM has four different states, two inputs and one
output. Each of these states has four transitions as shown
in Figure 2(a). Figure 2(b) shows the output generated by
the Graphviz tool in dot format. Figure 3 shows the output
of the first stage of the tool after converting the dot file to
Kiss2 standard representation.

Parser
Dot Dot

Analyzer
Kiss2

Generator

Figure 1. Dot-2-Kiss2 Block Architecture

st0 x0/0 or 11/0

st1

01/x 11/0

0x/1

st2

10/1 00/1

1x/1

st3

01/1 11/1

0x/1

(a)

digraph EX1 { 0 [label = "st0" ]
1 [label = "st1" ]
2 [label ="st2" ]
3 [label = "st3" ]
0 -> 0 [label = "x0/0 or 11/0" ]
0->1[label = "01/x" ]
1 -> 1 [label = "0x/1" ]
1 -> 0 [label = "11/0" ]
1 -> 2 [label = "10/1" ]
2 -> 2 [label = "1x/1" ]
2 -> 1 [label = "00/1" ]
2 -> 3 [label = "01/1" ]
3 -> 3 [label = "0x/1" ]
3 -> 2 [label = "11/1" ]
}

(b)

Figure 2. Lion FSM and its dot Representation

.i 2

.o 1

.p 11

.s 4
-0 st0 st0 0
11 st0 st0 0
01 st0 st1 -
0- st1 st1 1
.
.

Figure 3. Generated Kiss2 Code for the Lion
FSM

3.2 Kiss2-to-VHDL

Figure 4 shows the architecture of the Kiss2-to-VHDL
converter. The converter is composed of three blocks: Kiss2
parser, Kiss2 analyzer, and VHDL generator.

Kiss2
Parser Analyzer

Kiss2
Generator

VHDL

Figure 4. Kiss2-to-VHDL Block Architecture

The Kiss2 parser takes the Kiss2 file as its input. Fig-
ure 3 shows a sample Kiss2 file, which starts by four lines
specifying the different attributes. These attributes are: the
number of inputs (i), the number of outputs (o), the num-
ber of transitions (p), and the number of states (s). These
attributes are followed by the system description stating all
the transitions of the system starting by the input then the
current state, the next state and the associated output.

The Kiss2 analyzer is the main component of this part
of the tool part. It accept the output of the analyzer and
use it to build the FSM tree that will be used to generate
the VHDL code afterwards. This tree includes the number
of transitions associated with each state to ease the VHDL
code generating in the next step. This module generates
also the names of the states, and if the states are defined
using binary bits, it changes this to integer numbers initiated
with the two letters ‘st’ to make it possible for the VHDL
generator to generate the VHDL code directly.

The VHDL generator takes the number of inputs, the
number of outputs, the number of transitions, as well as
the number and names of the states. The module then de-
fines the different aspects needed in a VHDL file, it starts by
generating the name of the module as well as the different
associated numbers in VHDL format. Finally, it generates
different transitions of the design and associates it will dif-

- 1909 -



ferent states by using the tree defined in the previous mod-
ule.

For the lion benchmark FSM discussed in the previous
section, Figure 5 shows the final representation of the FSM
design in VHDL sequential code.

ENTITY lion IS PORT(
INPUT1: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
OUTPUT1: OUT STD_LOGIC ) ;
END loin ;

ARCHITECTURE Behavior OF lion
IS TYPE State_type
state(st0,st1,st2,st3);
BEGIN

PROCESS (INPUT) BEGIN
case state is

when st0 => if (INPUT1 = ’X1’) then
{ OUTPUT1 = ’0’; state <= st0 }

elseif (INPUT1 = ’11’) then
{OUTPUT1 = ’0’; state <= st0}

.

.
when st1 =>

.

.
END PROCESS ;

END Behavior ;

Figure 5. Generated VHDL Code for the Lion
FSM

4 Conclusions

We presented in this paper a tool extracting behavioral
VHDL code from a graphical representation of FSMs. We
have implemented this tool in C++. Similar industrial tools
are available, but to our best knowledge not in the open
source library. Pruteanu [2] has implement a similar tool
that converts Kiss2 files directly to Verilog HDL [6], but it
is missing the graphical user interface proposed in our tool.
We believe our tool provides a very friendly graphical user
interface that can be used very effectively in simulation and
synthesis of sequential circuits.

References

[1] Absint Inc., http://www.absint.com/index.html, 2003.
[2] C. Pruteanu, “Kiss to Verilog FSM Converter”, co-

drin.freeshell.org, 2000.

[3] M. Frohlich, and M. Werner, “Demonstration of the interac-
tive Graph Visualization System daVinci”, In Graph Drawing,
Volume 894 of Lecture Notes in Computer Science, Springer
Verlag, 15-22, 1995.

[4] M. Himsolt, “GraphEd: A Graphical Platform for the Imple-
mentation of Graph Algorithms”, In Graph Drawing, Volume
894 of Lecture Notes in Computer Science, Springer Verlag,
182-193, 1995.

[5] IEEE Standard 1076-1993, IEEE Standard Description Lan-
guage Based on the VHDL Hardware Description Language,
1993.

[6] IEEE Standard 1364-2001, IEEE Standard Description Lan-
guage Based on the Verilog Hardware Description Language,
2001.

[7] E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo,“A
Technique for Drawing Directed Graph”, IEEE Transactions
on Software Engineering, 19 (3), 214-230, 1993.

[8] K. McElvain, “LGSynth93 Benchmark Set Version 4.0”,
http://www.cbl.ncsu.edu/pub/Benchmarkdirs/LGSynth93/,
1993.

[9] E. M. Sentovichet. al., “SIS: A System for Sequential Cir-
cuit Synthesis”. Dept. of Electrical Engineering and Com-
puter Science, University of California, Berkeley, USA, Tech-
nical Report CA 94720, 1992.

[10] Software Visualization Tools,
http://www.ece.pdx.edu/∼alanmi/software/, Portland
State University, USA, 2000.

[11] F. van Ham, H. van de Wetering, and J. J. van Wijk, “Interac-
tive Visualization of State Transition Systems”, IEEE Trans-
actions on Visualization and Computer Graphics, 8(4),319-
329, 2002

[12] VCG Graph Visualization, www.cs.uni-
sb.de/RW/users/sander/html/gsvcg1.html, Universitat
des Saarlandes, Germany, 1996.

[13] VGJ Tool: www.eng.auburn.edu/department/cse/research
/graphdrawing/graphdrawing.html, Auburn University,
USA, 1998.

[14] Xilinx ISE Tools, http://www.xilinx.com/ise/designtools/,
2003.

- 1910 -


