
A Tool for Describing and Evaluating Hierarchical
Real-Time Bus Scheduling Policies

Trevor Meyerowitz
UC Berkeley

Berkeley, CA 94704

tcm@eecs.berkeley.edu

Claudio Pinello
UC Berkeley

Berkeley, CA 94704

pinello@eecs.berkeley.edu

Alberto
Sangiovanni-Vincentelli

UC Berkeley
Berkeley, CA 94704

alberto@eecs.berkeley.edu

ABSTRACT
We present a tool suite for building, simulating, and analyzing
the results of hierarchical descriptions of the scheduling policy for
modules sharing a bus in real-time applications. These schedules
can be based on a variety of factors including characteristics of
messages and time slicing and are represented in a hierarchical
tree-like structure that specifies multiple levels of arbitration. This
structure can describe many popular arbitration schemes. Our sim-
ulator evaluates the specified scheduling structure on a set of mes-
sage traces for a given bus. We illustrate our approach by applying
it to two examples: the SAE Automotive Benchmark and Voice
Over IP (VoIP). Although this paper deals with just bus schedul-
ing policies, the approach can be easily extended to other real-time
scheduling problems.

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Applications;
J.6 [Computer-aided Engineering]: Computer-aided design (CAD)

General Terms
Performance

Keywords
Scheduling, Hybrid Scheduling, Bus Scheduling, Metrics

1. INTRODUCTION
Today many embedded systems consist of multiple processing

elements communicating via a potentially complicated communi-
cation structure. This distributed nature introduces more chances
for error because of the increased complexity of interaction be-
tween blocks. This design becomes even more difficult when ap-
plications, e.g., automotive control, multimedia, and network QoS
(quality of service) routing, have real time constraints. This paper
focuses on the representation and evaluation of various scheduling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003,June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

policies for real-time messages among modules communicating via
a shared bus. We assume that tasks have been allocated to process-
ing elements, and that the topology of the bus to be optimized has
been defined. From this point the arbitration1 policy can be defined,
evaluated through simulation, and optimized (either manually or
automatically).

Our tool suite, calledSTRANG, provides a simple hierarchical
tree-based language for describing the arbitration policy for multi-
ple nodes contending for the usage of a common bus, and for sim-
ulating the policy using a trace-driven simulator. The simulator
implements the arbitration policy specified by the scheduling tree,
allowing the user to explore the design space without the need for
the costly and error-prone process of writing (and possibly rewrit-
ing) a custom simulator.

2. BACKGROUND

2.1 Scheduling
Much work has been done on the scheduling problem for com-

munication blocks and task scheduling on a processor. In [6] a good
overview of the common real-time scheduling methods is given. In
this paper, we examine only communication scheduling. The rele-
vant scheduling approaches can be classified as follows.

2.1.1 Event Triggered Scheduling
In event-triggered scheduling messages are selected based on

their priorities, notable examples are FIFO ordering, Fixed Prior-
ity, EDF (Earliest Deadline First) scheduling, and others. FIFO
and Fixed priority are simple to implement. EDF is a dynamic
method that gives priority to the message with the nearest deadline.
While EDF does usually produce very good results it has a large
implementation overhead due to its dynamic nature.

The CAN bus [17] is an event-triggered bus protocol that has
been successfully used in real-time systems such as manufacturing
and automotive control. It uses a fixed priority arbitration scheme
based on messageid numbers, where each node has knowledge
of the bus, and they only can contend for the bus when there is
no message being transmitted. It is a highly flexible scheme that
ensures that the bus will always be used if there is a message present
at one of the nodes.

2.1.2 Time-Triggered Scheduling
The simplest example is TDMA (Time Division Multiple Ac-

cess), the basic period is divided into a sequence of time slices, that
1In this paper we use the terms scheduling and arbitration inter-
changeably.

19.3

312

cycle over and over. During a particular time slice only the node
associated with that time slice is allowed to access the bus. This
makes it easy to ensure fairness between the nodes.

A less rigid technique is called FTDMA (Flexible TDMA). Whe–
reas TDMA dedicates an entire time slice to the selected node, FT-
DMA dedicates that time slice only if the node has a message to
send on the bus at the start of the time slice, otherwise it moves
on to the next node in the following cycle. This allows FTDMA
to achieve higher bus utilization and response time than TDMA, at
the added cost of a more complicated arbitration logic and jitter in
the response time.

TTP (Time-Triggered Protocol) utilizes the TDMA policy, re-
sulting in a lower arbitration overhead than CAN, and has the po-
tential for higher bandwidth utilization. While it is very easy to
guarantee latencies, TTP is inflexible and potentially inefficient for
transmitting non periodic messages. TTP has been used in hard
real-time systems, such as automotive and avionics electronics sub-
systems.

2.1.3 Hybrid Approaches
Rather than selecting time-triggered or event-triggered schedul-

ing policies, improved performance can be obtained by using a
combination of the two. Recent work [1, 2] combines the pre-
dictability of TTP with the flexibility of CAN. These methods allow
arbitration within some of the time slices, while keeping others ex-
clusive, providing the flexibility of CAN with the determinism of
TTP. In [8, 21, 19], hierarchical approaches such as hybrid static-
dynamic and time slotting have been used for QOS (Quality of Ser-
vice) applications achieving higher utilizations than traditional ap-
proaches [12] which are purely static or purely dynamic. Hybrid
approaches have also been explored in multimedia domains. In [5],
an MPEG decoder achieves a relatively constant rate by using hy-
brid methods. In [18], a Voice Over IP application is shown to
benefit from customized hierarchical schedulers.

2.2 Arbitration and Communication Synthe-
sis

Most of the previous work in this area has focused on selecting
process mapping and communication topology, but doesn’t focus
on the arbitration policy of the bus. Usually a single simple pol-
icy is considered or a policy is selected from a library of protocols,
missing out on the potential performance gains achieved by using a
custom arbitration policy. Our work instead allows such optimiza-
tions, making it a nice complement to communication synthesis
tools, such as the ones listed in this section.

In [13], a technique is presented for synthesizing and optimiz-
ing communication topologies connected via fixed protocols taken
from a library.

In [22], a communication synthesis technique is presented for
distributed embedded systems with periodic tasks that have real-
time deadlines. It includes processing elements selection, task allo-
cation, process priority assignment, and worst case timing analysis.
An inverse deadline priority heuristic is used for bus arbitration.

In [15], a communication requirements graph is first constructed,
and then an optimal implementation graph is selected using ele-
ments from a library of channels, multiplexors, and demultiplexors
each with associated costs and capabilities. This work does not deal
with arbitration between blocks.

In [16], time-triggered and event-triggered arbitration is com-
bined in a single protocol. This is done with a top-level TDMA
system that has slices open for dynamic tasks.

This paper does not specify how the arbitration occurs in the dy-
namic slots, and is not as flexible as STRANG, which can express
schedules with arbitrary levels of hierarchy.

Dey’s Communication Architecture Tuners in [10] has been a
source of inspiration for this paper. Controllers are synthesized that
base bus arbitration on certain properties of the messages. An ex-
ample that is unschedulable using static priorities, is actually sched-
uled making the arbitration policy a function of multiple message
characteristics (i.e.- packet size, arrival time, and deadline). In
other examples, the number of deadlines missed is minimized. We
go beyond this work by considering hierarchy, additional message
variables, time-triggered scheduling and pre-emption policies. Fur-
thermore, we provide a tool that simulates a schedule for a given
bus and message trace, as well as a tool for generating the traces.

3. PROBLEM FORMULATION
We want to find a hierarchical (and potentially hybrid) arbitration

policy to schedule messages betweenP entities communicating via
a shared bus, as shown in Figure 1. We call theseP entities primary
nodes. The primary nodes communicate via deadlined messages
over a common busB. For a given configuration, the goal is to pick
a scheduling policy that maximizes the given fitness metric (e.g.
maximizing the number of messages meeting their deadlines).

Bus

Bus Scheduling Policy (ZB)

p1 p2 ... p|P|
? ? ?
6 6 6

6
M1

6
M2

6
M|P|

6MB

Figure 1: Physical System

p1 p2 ... p|P|

z1 z2 z|P|

x1 ... xi

x|X|
Bus

�� HH

�� @@ AA��

6
M1

6
M2

6
M|P|

6MB

Figure 2: Bus Scheduling Pol-
icy Tree

Given message tracesM1, ..,M|P| for the primary nodes, a mes-
sage trace for the busMB is generated based onZB, the overall
scheduling policy for the bus.

3.1 Messages and Nodes
Each message has a set of attributes that can be used for deter-

mining priorities. These include: thesender-id, thereceiver-id, the
sizeof the message in bits, themessage-id, the messagearrival-
time, thedeadlineof the message, thetime until the deadline, and
the time elapsed since arrival. All of these values may be used for
selecting an appropriate arbitration policy, even though we suspect
that in most cases a few will suffice.

Messages become available for transmission at the primary nodes.
These choose among the available messages the one to present to
the bus, based on a local scheduling policy. Then the bus schedul-
ing policy determines which among these candidate messages go
first.

3.2 Arbitration Characteristics
We are interested in mixing Event-Triggered priority-based schedul-

ing with Time-Triggered scheduling, both in preemptive and non-
preemptive settings. In order to restrict the search space and for the
sake of implementation efficiency we limit the admissible schedul-
ing policies to those not requiring a fixed point computation. This

313

requirement will be translated in the absence of cycles in the hier-
archy of schedulers.

3.3 Metrics
When a trace is run through a particular arbitration tree, statistics

are collected, and the tree is assigned a value based on a specified
“quality” metric, calledfitness function. The statistics collected for
each message include whether it was transmitted or not, and its
transmission start and finish times.

Fitness functions provided in STRANG that can be used to rank
arbitration policies are:

• The number of missed deadlines.
• The overall execution time
• The average throughput of the bus

Users can specify custom functions if they so desire.

4. SCHEDULER REPRESENTATION AND
EVALUATION

In this section we explain how to specify a scheduling problem
using STRANG, provide several example schedulers, and explain
the semantics of the simulator. A full explanation is provided in
[11].

4.1 Scheduler Configuration
Communication scheduling policies in STRANG are represented

as an acyclic directed graph, like in Figure 2. It is useful to distin-
guish between primary nodes (leafs of the graph) and arbitration
nodes. In particular removing the primary nodes we are left with
the arbitration tree, that itself models the bus scheduling policy.
Each arbitration node has a priority function that specifies how it
selects between its children for event-triggered arbitration, and an
allocation policy which specifies the time-triggered arbitration.

Message selection is made up by composing the selections of
individual nodes in a bottom up fashion.

The bus is specified by the arbitration tree along with the bus
characteristics specified in the configuration file. These characteris-
tics are:cycle-time, bandwidth(bits per cycle),message-overhead
(in bits), and the overheads forarbitration andpreemption(in bus
cycles).

4.2 Tree Representation
The arbitration tree is specified using the syntax shown in figure

3. First custom operation tree policies are specified (represented by
P). Next, the top level arbitration node is specified. Finally chil-
dren of the top node are specified. These children can be arbitration
nodes (represented byA), or primary/sender nodes (specified byS).
PolicyID indicates the policy number or predefined policy name
used by the node. The predefined policies in STRANG are: FIFO,
LIFO, EDF, and Fixed Priority.Preemptionis the preemption pol-
icy. Alloc indicates the style of time allocation used by the node.
SndrID is the id of the node used at the sender node. Finally, the
number of children and a list of that length of durations (in cycles)
are specified.

4.2.1 Operation Trees
As indicated above, custom scheduling policies can be specified

by operation trees instead of using the predefined policies. The
operation tree represents the function used to describe the different
policies for sorting between various messages at a particular node.
Each policy is a function of the 8 message variables and, in the case
of arbitration nodes, thechild id, which is based on the ordering of
the arbitration-node children.

#PolicyFunctions
(P PolicyID1 OpFunc1) ...
(P PolicyIDN OpFuncN))
(A PolicyIDa Alloc Preemption #Children (Durations)

(child 1) ...
(S PolicyIDci Preemption SndrID) ...
(A...)...
(child #children)

)

Figure 3: Arbitration Tree Syntax

The operation tree uses floating point constants in addition to
addition, subtraction, and multiplication as operators. Division is
not allowed because it would be difficult to check “divide by zero”
errors. We use prefix ordering to ease parsing of these trees.

4.2.2 Sample Trees
Figure 4 shows a CAN tree. It has a custom priority based upon

the id of the messages used by all nodes and a single arbitration
node with the primary nodes as children.

Figure 5 shows a TTP tree. It has the same topology as the CAN
tree. The top level node is based on time allocation, the children
having slices of 10, 20, 30 cycles respectively.

Figure 6 mixes time-triggered and event-triggered scheduling
domains. It has a top level node that has a fixed priority so it always
favors its first child over its second child. The first child presents
messages from the first sender in the order specified by the cus-
tom priority functionP1 = messageID+deadline, the structure of
which is shown inFigure 7. The second child is a TDMA node
with 2 senders as children, namely, 2nd and 3rd senders with FIFO
ordering of their messages.

1
(P 1 messageID)
(A 1 NONE NO 3 (0 0 0)

(S 1 NONE 1)
(S 1 NONE 2)
(S 1 NONE 3)

)

Figure 4: Simple CAN
Tree

0
(A FIFO TDMA NO 3 (10 20 30)

(S FIFO NONE 1)
(S FIFO NONE 2)
(S FIFO NONE 3)

)

Figure 5: Simple TTP Tree

1
(P 1 + messageID deadline)
(A FIXED NONE NO 2 (10 10)

(S 1 NONE 1)
(A FIFO TDMA NO 2 (10 10)

(S FIFO NONE 2)
(S FIFO NONE 3))

)

Figure 6: Simple Hybrid Tree

MessageID Deadline

+

¶
¶¶

S
SS

Figure 7: Sample Opera-
tion Tree

4.3 Scheduler Evaluation
There are two parts to this section, how a given policy, configu-

ration, and trace are simulated to get results, and how to evaluate
such results.

4.3.1 Simulator Behavior
The simulator is a trace-driven discrete-event simulator. The

simulator obtains its timing and configuration information from the

314

configuration file. Message traces are loaded from the trace file,
where each message is loaded into the event queue based on its ar-
rival time. Next, the scheduling tree is loaded. If the scheduling
tree has time dependent modes, then the mode update events are
added to the event queue. From here the events are popped out of
the event queue and executed in order.

When a message arrives it is placed in a message queue at the ap-
propriate sender node. The scheduling tree is used to select which
message will be transmitted on the bus. When a message begins
transmission on the bus, the bus state changes to running, and an
event is scheduled for when the transmission ends. Unless there
is preemption there can be no other messages submitted to the bus
while one is transmitting.

4.3.2 Evaluating a Design
Once a policy is simulated, one may wish to improve the qual-

ity of his/her design. The simulator outputs the complete message
trace withbeginandend of transmission times making it easy to
calculate the quality of the results according to an appropriate fit-
ness function. In section 5.1.4, we will show how to use the analy-
sis to improve the scheduling policy.

We are exploring the use of automatic techniques such as the
tracer tokens from [10] and genetic algorithms to aid in the explo-
ration of the design space.

5. EXPERIMENTAL RESULTS
In this section, we provide a set of examples that have been run

using the tool. We begin by evaluating CAN and TTP solutions to
the SAE automotive control benchmark. From here, we optimize
both solutions; CAN by adding EDF arbitration and TTP by sharing
some time slots. We then evaluate different scheduling policies for
a Voice over IP (VoIP) example.

5.1 The SAE Automotive Control Benchmark
Here we compare the results of several different protocols at the

bus speeds of 100Kbps, 125Kbps, and 250Kbps for the SAE (So-
ciety of Automotive Engineers) benchmark as laid out in [17]. The
SAE benchmark has 53 message types that travel between 7 nodes
in a system, as shown below in figure 8. The messages are either
sporadic or periodic, each with required deadlines, jitter, and av-
erage period. For all of the results we use 5 second long message
traces, these traces vary based on the clustering of the messages.

Bus and Bus Arbitration Policy

Vehicle Control Brakes Battery

Transmission IM Control Driver

Inst. Panel

Figure 8: Physical System

5.1.1 CAN Bus
Here we use the simplified solution from [17], where different

messages are grouped together to reduce the total number of mes-
sage types to 17. Also, we follow their solution and give sporadic
messages a regular period of 20ms to represent the worst case.

In the CAN bus each message has an 11-bit priority identifier,
and the bus is constructed in such a way that it will only accept
writes from the highest priority message. To represent a CAN-like

bus we merely have to specify the priority based on the message-ID
number, and specify a estimated overhead of 55 bits2.

Below the results of running the CAN solution to the SAE con-
trol benchmark is shown at 3 different bandwidths, 100Kbps, 125Kbps,
and 250Kbps. These are evaluated on the same 7365 message trace.

Bandwidth 100Kbps 125Kbps 250Kbps
Deadlines Missed 746 0 0
Bus Utilization >100.0% 84.4% 41.7%
Message Utilization 22.2% 18.6% 9.3%
Median Deadline Slack (ms) 3.91 4.43 4.72
Min. Deadline Slack (ms) -5072.56 1.28 3.81

Figure 9: Regular CAN SAE Results

Bus Utilizationrefers to the percentage of the time that the bus is
in use.Message Utilizationrefers to the percentage of time that the
bus is being used to transmit the actual data. A message’sDeadline
Slackis its deadline minus its transmission completion time.

5.1.2 TTP Bus
In [9] Kopetz presents a TTP solution to the SAE benchmark,

but doesn’t fully explain how messages are grouped to achieve the
general schedule. Even without this information we can model their
solution3. Following Kopetz’s solution, we leave out the instrument
panel messages in this benchmark.

p1 p2 p3 p4 p5 p6

FIFO FIFO FIFO FIFO FIFO FIFO

Bus with Allocate (TDMA) Arbitration Policy

40 20 40 20 16 20 16 20 8 20 9 20

Figure 10: TTP-style Arbitration Tree

Figure 10 shows a graphical representation of the arbitration tree
used for the SAE solution. In it the arbitration node for the bus is
a time allocate node, which is segmented into different slots. Each
slot contains the number of cycles that it is active for, and may have
a line connecting it to the node that it sends messages from. Every
other slot is a dummy node used to model the TTP overhead.

We use the full 53 message traces, with the sporadic messages
having a strict period of 50ms. We use the same 12481 message
trace for all TTP and modified TTP results.

Figure 11 gives the results of the SAE automotive benchmark
running on a TTP bus at 3 different speeds. At each bus speed
all of the deadlines are met. Every instance automatically has an
overhead of at least 48% because each time slice has 20 cycles
devoted to the CRC and TTP overhead.

2CAN has a fixed overhead of 47 bits per message, but employs bit
stuffing when there are 5 identical bits in a row. We estimate this
by adding an overhead of 8 (out of a possible 19) bits per message.
3We simply define the configuration as having an additional sender
node, with no message overhead or arbitration overhead. Every
other time slot is the dummy sender with duration of 20 cycles to
represent the overhead of TTP. This allows us to implicitly model
the clustering of Kopetz’s solution.

315

Bandwidth 100Kbps 125Kbps 250Kbps
Bus Utilization 64.4% 61.2% 54.7%
Message Utilization 16% 12.8% 6.4%
Median Deadline Slack (ms) 4.39 4.53 4.78
Min. Deadline Slack (ms) 0.26 1.23 3.07

Figure 11: TTP SAE Results

5.1.3 CAN with EDF
We model the work done in [7], where a CAN bus protocol is

modified to use EDF arbitration, instead of being based on the
message-id. We keep the same CAN trace, and add 3 to the mes-
sage overhead to account for the added complexity of EDF.

Bandwidth 100Kbps 125Kbps 250Kbps
Deadlines Missed 7235 0 0
Bus Utilization >100% 86.9% 43.5%
Message Utilization 21.4% 18.6% 9.3%
Median Deadline Slack (ms) -207.4 4.4 4.7
Min. Deadline Slack (ms) -425.1 2.74 4.0

Figure 12: CAN with EDF SAE Results

The bus utilization of the EDF extension to CAN is higher than
regular CAN because of our added overhead. At 125Kbps the me-
dian deadline slack does decrease slightly, but the more critical
minimum deadline slack improves from 1.28ms to 2.74ms.

5.1.4 Shared TTP
To try to increase the flexibility of the TTP solution, we exam-

ined the message results. We observed that messages from the
Sender 1 (the first primary node) have significantly higher dead-
line slacks than those from Sender 6. Sender 2 also has significant
slack when compared to Sender 5. We modified the scheduling tree
so that Sender 6 can use Sender 1’s slot when Sender 1 isn’t using
it, and that Sender 5 can use Sender 2’s slot when Sender 2 isn’t
using it. A graphical representation of this tree is shown in figure
13, and the input file for it is shown in figure 14.

p1 p2 p3 p4 p5 p6

FIFO FIFO FIFO FIFO FIFO FIFO

FIXED

FIXED

Bus with TDMA Arbitration Policy

40 24 40 24 16 20 16 20 8 20 9 20

q

q

Figure 13: Shared TTP Arbitration Tree

To model the increased complexity of shared slots we added an
overhead of 4 cycles to each of the shared slots. By doing this we
increased the minimum deadline slack, making the system more
jitter tolerant.

As can be seen the minimum slack is greatly improved over that
of TTP at the lowest bit rate, and slightly improved at the highest
bit rate.

0
(A FIFO NONE TDMA 12

(40 24 40 24 16 20 16 20 8 20 8 20)
(A FIXED NONE NO 2 (0 0)

(S FIFO NONE 1)
(S FIFO NONE 6)

)
(S FIFO NONE 8)
(A FIXED NONE NO 2 (0 0)

(S FIFO NONE 2)
(S FIFO NONE 5)

)
(S FIFO NONE 8)
(S FIFO NONE 3) (S FIFO NONE 8)
(S FIFO NONE 4) (S FIFO NONE 8)
(S FIFO NONE 5) (S FIFO NONE 8)
(S FIFO NONE 6) (S FIFO NONE 8)

)

Figure 14: Shared TTP Arbitration Text

Bandwidth 100Kbps 125Kbps 250Kbps
Bus Utilization 65.2% 62.8% 56.4%
Message Utilization 16% 12.8% 6.4%
Median Deadline Slack (ms) 4.56 4.65 4.84
Min. Deadline Slack (ms) 0.53 1.28 3.33

Figure 15: Shared TTP SAE Results

5.1.5 SAE Results Discussion
These results are summarized in Figure 16. TTP is more effec-

tive than CAN for lower bandwidths. If the bandwidth is higher,
then CAN exhibits faster response times. Adding EDF to CAN im-
proves matters even further. Through careful analysis of the TTP
message trace we were able to substantially improve the minimum
deadline slack by sharing some time slots.

5.2 Voice over IP Benchmark
We have taken 5 seconds from 6 generated VoIP traces and simu-

lated them on a shared 128kbps link with different arbitration poli-
cies. We obtained the information about the G.729A voice codec,
the delay overheads, and the protocol overheads from [20] of 40
bytes per packet. The G.729A produces 10 byte samples, which
occur every 10ms. Between 1 and 10 samples from G.729A can be
clustered into a packet. The 6 streams have 1, 4, 4, 5, 5, and 6 sam-
ples per packet respectively. The delay of each packet can be cal-
culated with the following formula,D = 5+10∗N, whereN is the
number of samples andD is the queueing delay in milliseconds. A
stream’s performance is acceptable if it has a one-way total latency
of less than 150ms. To account for transmission and decode time
we give each sample a deadline of 100ms. A packet in a stream has
a deadline of 100ms minus the queueing delay. For each of these
we assume a jitter of 0.1 ms, and no arbitration overhead.

We evaluate this using 4 types of arbitration policies: EDF, FIFO,
Fixed Priority with RMS (Rate Monotonic Scheduling), Fixed Pri-
ority with DMS (Deadline Monotonic Scheduling). TheRMSso-
lution is a fixed non-preemptive ordering where the messages with
the shortest periods have the highest priorities. TheDMSsolution
orders the messages, where the ones with the shortest deadlines get
the highest priorities, which in this case is the opposite ordering of
RMS. Because the messages have deadlines greater than their peri-
ods, none of the theoretical guarantees aboutRMSor DMSapply.

As expected, EDF provided the best result with a minimum dead-
line slack of 5.07ms. The FIFO policy achieves a worse minimum

316

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ttp can shared ttp can-edf

100 kbps
125 kbps
250 kbps

M
in

. D
ea

d
lin

e
S

la
ck

Figure 16: SAE Min. DS Results Summary(Negative results trun-
cated at -1ms for graphical clarity)

Policy EDF FIFO DMS RMS
Deadlines Missed 0 0 0 25
Avg. Deadline Slack (ms) 57.29 50.71 57.29 58.01
Med. Deadline Slack (ms) 50 50 50 50
Min. Deadline Slack (ms) 5.07 1.79 5.07 -23.05

Figure 17: Voice over IP Benchmark Results

deadline slack of 1.79ms. The surprising result was that the DMS
fixed priorities achieved the same results as the EDF, at a lower
implementation cost. On the other hand, the RMS solution misses
some deadlines.

6. CONCLUSIONS
We have motivated and formulated the problem of scheduling

real-time messages on a shared bus, as well as shown the benefit of
using hierarchical arbitration policies for optimizing the schedule.
We presented a tool that can represent a wide variety of trees, and
simulate them using message traces. We exercise the tool on sev-
eral non-trivial examples and has shown results consistent with the
literature, and have improved upon them using hierarchical sched-
ulers.

STRANG specifies scheduling in a general sense and can easily
be applied to more than just buses. It could easily be generalized to
evaluate scheduling policies in a variety of other domains. Possible
domains include: deadlined resource contention problems, RTOS
scheduling, and QOS Network Routing.

The scheduling tree structure is extensible, and natural to work
with. Two simple extensions are: the addition of round robin schedul-
ing and token-bucket models. Constructs should be added for spec-
ifying non-trivial overheads, and custom cost functions. Addition-
ally, the ability to estimate the complexity of a custom cost func-
tion needs to be added to make the results from optimization tools
(such as the genetic algorithm we are currently developing) more
meaningful. Future work includes: expanding STRANG to handle
multiple resources, synthesizing protocols for the given arbitration
schemes, and adding more flexible mode switching.

The simulator should be modified so that it could be easily in-
terfaced with other simulators such as [4], and system-level design
environments such as [3], as well as point tools such as [15, 14] to
create a complete real-time system design flow.

7. ACKNOWLEDGEMENTS
This research was funded in part by the Semiconductor Research

Corporation and the MARCO GSRC program.

8. REFERENCES
[1] Byte flight consortium web site. http://www.byteflight.com.
[2] FlexRay consortium web site. http://www.flexray-group.com.
[3] Metropolis group web site. http://www.gigascale.org/metro.
[4] SystemC web site. http://www.systemc.org/.
[5] L. Abeni and G. Buttazzo. Hierarchical qos management for time

sensitive applications. InSeventh IEEE Real-Time Technology and
Applications Symposium, pages 63–72. IEEE Comput. Soc., 2001.

[6] F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-Vincentelli.
Scheduling for embedded real-time systems.IEEE Design and Test
of Computers, 15(1):71–82, Jan.-March 1998.

[7] M. Di Natale. Scheduling the can bus with earliest deadline
techniques. In21st IEEE Real-Time Systems Symposium, pages
259–68. IEEE, 2000.

[8] D. Isovic and G. Fohler. Efficient scheduling of sporadic, aperiodic,
and periodic tasks with complex constraints. In21st IEEE Real-Time
Systems Symposium, pages 207–16. IEEE, 2000.

[9] H. Kopetz. A solution to an automotive control system benchmark. In
Proceedings of 1994 Real-Time Systems Symposium, pages 154–8.

[10] K. Lahiri, A. Raghunathan, G. Lakshminarayana, and S. Dey.
Communication architecture tuners: a methodology for the design of
high-performance communication architectures for system-on-chips.
In Design Automation Conference, pages 513–18. IEEE, June 2000.

[11] T. Meyerowitz and A. Sangiovanni-Vincentelli. Describing,
simulating, and optimizing hierarchical bus scheduling policies.
UCB/ERL Technical Report M03/5 available at:
http://www-cad.eecs.berkeley.edu/˜tcm.

[12] K. Nicols, V. Jacobson, and L. Zang. A two-bit differential services
architecture for the internet. InInternet Draft, 1997.

[13] R. Ortega and G. Borriello. Communication synthesis for distributed
embedded systems. InProc. Int. Conf. Computer Aided Design,
pages 437–444, June 1998.

[14] R. Passerone, J. Rowson, and A. Sangiovanni-Vincentelli. Automatic
synthesis of interfaces between incompatible protocols. In35th
Design Automation Conference, pages 8–13. ACM, June 1998.

[15] A. Pinto, L. Carloni, and A. Sangiovanni-Vincentelli.
Constraint-driven communication synthesis. InProceedings 39th
Design Automation Conference, pages 783–8, 2002.

[16] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis of
mixed time/event-triggered distributed embedded systems. In
Proceedings of the Tenth International Symposium on
Hardware/Software Codesign, pages 187–92. ACM, 2002.

[17] K. Tindell and A. Burns. Guaranteeing message latencies on
controller area network (can). InProceedings of 1st International
CAN Conference, September 1994.

[18] C.-Y. Wang, C.-C. Hsu, and Y. Huang. Voral: a system for voice over
ip routing in application layer. InProceedings Seventh IEEE
Real-Time Technology and Applications Symposium, pages 165–70.
IEEE Comput. Soc., 2001.

[19] R. West and C. Poellabauer. Analysis of a window-constrained
scheduler for real-time and best-effort packet streams. In21st IEEE
Real-Time Systems Symposium., pages 239–48. IEEE, 2000.

[20] D. Wright.Voice Over Packet Networks. John Wiley & Sons Ltd.,
Chichester, 2001.

[21] C.-H. Yeh. Scalable qos supports for multimedia applications in the
next-generation internet. InProc. IEEE Real Time Technologies and
Applications Symp., pages 39–50. IEEE, May/Jun 2001.

[22] T. Yen and W. Wolf. Communication synthesis for distributed
embedded systems. InProc. Int. Conf. Computer Aided Design,
pages 288–294, November 1995.

317

