
A Tool for Enterprise Architecture

Analysis Using the PRM Formalism

Markus Buschle, Johan Ullberg, Ulrik Franke,
Robert Lagerström, and Teodor Sommestad

Industrial Information and Control Systems, KTH Royal Institute of Technology,
Osquldas v. 12, SE-10044 Stockholm, Sweden

{markusb,johanu,ulrikf,robertl,teodors}@ics.kth.se

Abstract. Enterprise architecture advocates for model-based decision-
making on enterprise-wide information system issues. In order to provide
decision-making support, enterprise architecture models should not only
be descriptive but also enable analysis. This paper presents a software
tool, currently under development, for the evaluation of enterprise ar-
chitecture models. In particular, the paper focuses on how to encode
scientific theories so that they can be used for model-based analysis and
reasoning under uncertainty. The tool architecture is described, and a
case study shows how the tool supports the process of enterprise archi-
tecture analysis.

Keywords: Enterprise Architecture, Probabilistic relational Models,
Software tool, Security Analysis.

1 Introduction

Over the last two decades, enterprise architecture has grown into an established
approach for holistic management of information systems in organizations [1,2].
A number of enterprise architecture initiatives have been proposed, such as The
Open Group Architecture Framework (TOGAF) [3], the Zachman Framework
[4], and military architectural frameworks such as DoDAF [5] and NAF [6].
The core concept of the enterprise architecture approach is the employment of
models, in terms of diagrammatic descriptions of information systems and their
environment. Diagrammatic descriptions of IT systems and their environment
are heavily used. However, enterprise architecture models are not limited to
descriptive use only, but can also be employed to predict the behavior and effects
of decisions. Rather than modifying enterprise information systems using trial
and error, models allow predictions about the behavior of future architectures.

One prominent challenge to rational decision making is uncertainty. Therefore,
a good enterprise architecture model should be able to capture uncertainties
about assessment theory, system configuration or data quality, thus providing
better decision support and risk management.

P. Soffer and E. Proper (Eds.): CAiSE Forum 2010, LNBIP 72, pp. 108–121, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Tool for Enterprise Architecture Analysis 109

What constitutes a “good” enterprise architecture model is dependent on its
purpose, i.e. the type of analysis it is intended to support [7]. For instance
in the case of analyzing cyber security, the property of whether it is possible
to reconfigure a firewall is of interest. This property however, is irrelevant for
a number of other analyses, such as performance evaluation or data quality
analysis.

Several enterprise architecture software tools are available on the market,
including Metis [8], System Architect [9] and Aris [10]. These tools generally
focus on the modeling of an architecture whereas the analysis functionality is
generally limited to performing an inventory or to sum costs over the modeled
architecture. None of the mentioned tools has significant capabilities for system
quality analysis based on an elaborated theory. Furthermore, these tools do not
support the consideration of uncertainty as described above.

In this paper an enterprise architecture software tool is presented. This tool
does not only provide functionality to model enterprise architectures, but also
supports the analysis of them. In order to support enterprise architecture analysis
as it has been outlined in [7] the tool consists of two main components. In the
first component the theory relevant to analyze a certain system quality, such as
data quality or modifiability, is modeled. One can consider this as the definition
of a language tailored to describe a certain aspect, e.g. cyber security. The second
component supports the application of the theory to evaluate a specific enterprise
architecture. This is done by modeling the “as-is” or “to-be” architecture of the
enterprise. Based on the created models it is possible to determine how the
architecture fulfills the requirements as they have been defined in the theory. The
two-component architecture encourages the reuse of the developed theory as it is
possible to use the same language to describe several architecture instances. The
presented tool makes use of the Probabilistic Relation Models (PRM) formalism
as it has been presented in [11] and can thereby manage the uncertainty aspects
discussed above.

2 Enterprise Architecture Analysis

Enterprise architecture models serve several purposes. Kurpjuweit and Win-
ter [12] identify three distinct modeling purposes with regard to information
systems, viz. (i) documentation and communication, (ii) analysis and explana-
tion and (iii) design. The present article focuses on the analysis and explanation
(which is not to denigrate the usefulness of the others). The reason is that analy-
sis and explanation are closely related to the notion of proper goals for enterprise
architecture efforts. For example, a business goal of decreasing downtime costs
immediately leads to an analysis interest in availability. This, in turn, defines
the modeling needs, e.g. the need to collect data on mean times to failure and
repair. In this sense, analysis is at the core of making rational decisions about
information systems [7] [13]. An analysis-centric process of enterprise architec-
ture is illustrated in Fig. 1. In the first step, assessment scoping, the problem is
described in terms of one or a set of potential future scenarios of the enterprise

110 M. Buschle et al.

Evidence CollectionAssessment Scoping Analysis

Calculation

Function

Model Builder

Function

Visualization

Function

Probabilistic Relational

Model (PRM)

System

System System administrator

MTTF

MTTR

Responsetime

Repairtime

Administrate

d by
0..*

Provide

d by
1..*

Provides

1

Administra

tes
1

Error

locate with
0

.

.

*

Uses0

.

.

*Availiability

Evidence

</Evidence>

 <ConcreteEntityEvidence>

 <AbstractName id="Function"/>

 <ConcreteName id="Fault Management"/>

 <Variable id="Availability"/>

 <Probabilities>0.7 0.2 0.1</probabilities>

 <Source id="Erik Johansson"/>

 </ConcreteEntityEvidence>

 <ConcreteRelationEvidence id="uses"/>

 <RelationType id="uses"/>

 <origin>

 <AbstractEntity id="System Administrator"/>

 <ConcreteEntity id="Juliet"/>

 </origin>

 <target>

 <AbstractEntity id="Function"/>

 <ConcreteEntity id="Fault Management"/>

 </target>

 <source id="Pontus Johnson"/>

</Evidence>

Instantiated PRM

Scenarios

Juliet : System administrator

Responsiveness

Experience

CRM System : System

Availability

Reliability

Customer Support : Function

Availability

Fault Management : Function

Availiability

Joseph : System administrator

Responsiveness

Experience

Maintenance system : System

Availability

Reliability

provide

d by

provides

administrate

d by

administrates

provide

d by

provides

administrate

d by

administrates

administrate

s with

used by

Evidence.Observation.Joseph

Hi

gh
Evidence.Document.Log

Hi

gh

Evidence.Interview.Juliet

Me

diu

m

Evidence.Observation.Juliet

Hi

gh

Evidence.Interview.Juliet

Hi

gh

Evidence.Interview.Joseph

Hi

gh

Evidence.Document.Log

Me

diu

m

--

Joseph
(System administrator)

Juliet
(System administrator)CRM System X

(System)
Fault management

(
Syste

m
)

Customer Support
(Function)

Fault Management
(Function)

administrates

administrates
with

used by

administrates

administrated
by

provides

provided by

provides

administrated
by

OK Cancel

Relations EvidenceValues

Availability

11

Fig. 1. The process of enterprise architecture analysis with three main activities: (i)
setting the goal, (ii) collecting evidence and (iii) performing the analysis

and in terms of the assessment criteria with its theory (the PRM in the figure)
to be used for scenario evaluation. In the second step, the scenarios are detailed
by a process of evidence collection, resulting in a model (instantiated PRM, in
the figure) for each scenario. In the final step, analysis, quantitative values of
the models’ quality attributes are calculated and the results are then visualized
in the form of e.g. enterprise architecture diagrams.

More concretely, assume that a decision maker in an electric utility is contem-
plating changes related to the configuration of a substation. The modification of
a new access control policy would reduce the probability that someone installs
malware on a system and thereby reduce the risk that this type of unwanted
software is executed. The question for the decision maker is whether this change
is feasible or not.

As mentioned in the first step assessment scoping the decision maker identifies
the available decision alternatives, i.e. the enterprise information system scenar-
ios. In this step, the decision maker also needs to determine how the scenario
should be evaluated, i.e. the goal of the assessment. One such goal could be to
assess the security [14] of an information system. Other goals could be to assess
the availability [15], interoperability [16] or data quality [17] [18] of the proposed
to-be architecture. Often several quality attributes are desirable goals. In this
paper, without loss of generality, we simplify the problem to the assessment of
security of an electric powerstation.

Information about the involved systems and their organizational context is
required for a good understanding of their data quality. For instance, it is rea-
sonable to believe that a firewall would increase the probability that the system
is secure. The availability of the firewall is thus one factor that can affect the
security and should therefore be recorded in the scenario model. The decision
maker needs to understand what information to gather and also ensure that this
information is indeed collected and modeled. Overall, the effort aims to under-
stand which attributes causally influence the selected goal, viz. data quality. It
might happen that the attributes identified do not directly influence the goal. If
so, an iterative approach can be employed to identify further attributes causally
affecting the attributes found in the previous iteration. This iterative process

A Tool for Enterprise Architecture Analysis 111

Goal

Attribute
Attribute

Attribute
Attribute

Goal

Attribute
Attribute

Attribute
Attribute

Goal

Attribute
Attribute

Attribute
Attribute

Attribute
Attribute

Goal selection
Goal decomposition

iteration

Goal decomposition

result

Indirectly

controllable

Directly

controllable

Fig. 2. Goal decomposition method, from [19]

continues until all paths of attributes and causal relations between them, have
been broken down into attributes that are directly controllable for the decision
maker [19] (cf. Fig. 2).

In the second step collecting evidence the scenarios need to be detailed with
actual information to facilitate their analysis of them. Thus, once the appropriate
attributes have been set, the corresponding data is collected throughout the
organization. In particular, it should be noted here that the collected data will
not be perfect. Rather, it risks being incomplete and uncertain. The tool handles
this by allowing the user to enter the credibility of the evidence depending on
how large the deviations from the true value are judged to be.

In the third and final step, performing the analysis, the decision alternatives
are analyzed with respect to the goal set e.g. security. The mathematical for-
malism to be presented in section 2.1 plays a vital role in this analysis. Using
conditional probabilities and Bayes’ rule, it is possible to infer the values of the
variables in the goal decomposition under different architecture scenarios [20].
By using the PRM formalism, the architecture analysis accounts for two kinds of
potential uncertainties: that of the attribute values as well as that of the causal
relations as such. Using this analysis framework, the pros and cons of the scenar-
ios can be weighted against each other in order to determine which alternative
ought to be preferred.

2.1 Probabilistic Relational Models

A probabilistic relational model (PRM) [21] specifies a template for a probability
distribution over an architecture model. The template describes the metamodel
for the architecture model, and the probabilistic dependencies between attributes
of the architecture objects. A PRM, together with an instantiated architecture
model of specific objects and relations, defines a probability distribution over
the attributes of the objects. The probability distribution can be used to infer
the values of unknown attributes, given evidence of the values of a set of known
attributes. PRMs are related to Bayesian Networks. As it is succinctly put in
[11], PRMs “are to Bayesian networks as relational logic is to propositional logic”.

A PRM model may be instantiated as a relational skeleton, σr, containing ob-
jects, object relationships, and attributes. Furthermore, a qualitative dependency

112 M. Buschle et al.

structure S defines the details of the attribute relationships, i.e. the sets of prob-
abilistic parents influencing each attribute. Finally, the PRM is completed by the
set of parameters θS specifying the full conditional probabilistic dependencies
between attributes in the form of numbers in Conditional Probability Matrices
(CPM). The following expression thus defines the conditional probability of an
instance I, given σr, S, and θS :

P (I|σr, S, θS) =
∏

x∈σr

∏
A∈A(x)

P(Ix.A|IPa(x.A))

=
∏

Xi

∏
A∈A(Xi)

∏
x∈σr(Xi)

P(Ix.A|IPa(x.A))

Compared to the standard chain rule for Bayesian networks, this equation is
different in three ways: (i) the random variables are the attributes of a set of
objects, (ii) the parents of a random variable depend on the model context of
the object, and (iii) the parameters are shared between the attributes of objects
in the same class. In other words, the variables in the dependency structure are
the properties of the objects in the instantiated information model, and their
causal relations are expressed by the CPM [11].

A PRM thus constitutes a formal machinery for calculating the probabilities
of various architecture instantiations. This allows us to infer the probability that
a certain attribute assumes a specific value, given some (possibly incomplete) ev-
idence of the rest of the architecture instantiation. In addition to expressing and
inferring uncertainty about attribute values as specified above, PRMs also pro-
vide support for specifying uncertainty about the structure of the instantiations.

PRMs additionally allow specializing classes through inheritance relation-
ships. Classes can be related to each other using the subclass relation ≺, and
each class X is associated with a finite set of subclasses C[X]. So if Z, Y ∈ C[X],
both Z and Y are subclasses of X . If Z ≺ Y then Z is a subclass of Y , and vice
versa Y is a superclass of Z. A subclass Z always contains all dependencies and
attributes of its superclass Y . PRMs also allow the dependencies and conditional
probability distributions of inherited attributes to be specialized in subclasses.

3 Architecture of the Tool

The presented tool is implemented in Java and is based on a Model-View-
Controller architecture [22] [23]. Where the model represents the knowledge and
considered data that in this case are PRM and instantiated PRM respectively.
The implementation contains a mapping of the PRM structure to JAVA-classes.
Thereby each part of a PRM (e.g. PRM-classes, their attributes, and their rela-
tions) can be used and combined as regular JAVA-objects. The view is in charge
of the visualization of the model for the tool user. It presents the considered data
in an understandable way. The view is updated as soon as the model changes.
Finally the controller links the user to the application making the program react
on the users input. Changes of the model are perforemd via the controller that
acts as an interface in this case. Thereby a decoupling of data access, program
logic, data presentation, and user interaction can be ensured. This facilitates the

A Tool for Enterprise Architecture Analysis 113

CASTOR

Java

PRM

Java

CM

Getter/Setter

Un-/Marshall

Getter/Setter

Un-/Marshall

VIEW

iPRMViewPRMView

iPRMScenePRMScene

SMILE Service 11 Service 22 Service 3 Service n

Via Widgets

Using

JApplication

Framework

Implemented as Singleton

From NetBeans

Visual Library

iPRMScene

…

Java

CM

CASTOR

Getter/Setter

Un-/Marshall

Java

iPRM

Model Controller

XSD

PRM

XSD

iPRM

User
Interaction

with the tool

Fig. 3. High level architecture of the tool illustrating the main components. “iPRM"
is shorthand notation for instantiated PRM.

extension of the implementation and eliminates potential error sources as the
program code is structured and functionality grouped according to its purpose.

The data model for PRMs and instantiated PRMs, is specified in XSD and
stored in XML files [24]. This is done through an application of the Castor
library [25]. As XML is a widespread format created models can be imported
into other applications and data does not need to be captured a second time.
The user interface is built upon the NetBeans Visual Library [26] with usage of
the JApplication framework. This library provides a set of reusable components,
called widgets, and can be applied to create visualization. The widgets can be
aggregated and related to each other thereby reflecting the creation of models
intuitively. These models are drawn on a special canvas that in the NetBeans
terminology is called scene. Besides the modeling capabilities the user interface
provides the one applying the tool with support functionalities such as filtering,
tagging, and exporting. These well-defined tasks are performed by corresponding
tailored services that are implemented following the singleton pattern to ensure
data consistency. The architecture described is depicted in Fig. 3, whereas how
the user interface (and thereby the actions performed by the user) is linked to
the architecture us show in Fig. 4.

The tool is separated into two units, one supporting the modeling of the PRM,
the other one makes the tool user able to instantiate and analyze this defined
structure. These parts have to be used sequentially, reflecting the method that
has been described in section 2, starting with the modeling of classes and their
attributes as well as the relationships and dependencies between them. Thereby

114 M. Buschle et al.

User interface build upon

JApplication Framework

Scene from

NetBeans Visual Library

Widgets of NetBeans Visual

Library visualizing the model

Fig. 4. User interface of the tool illustrating how the user interacts with the tool.
Colors of boxes match with concepts described in Fig. 3.

the focus of the analysis is set, as the defined classes reflect the domain of inter-
est. The second component of the Enterprise Architecture Analysis Tool (EAT)
allows the instantiation of the PRM. Thereby one or several scenarios of interests
are modeled according to constraints defined in the dependency structure for the
PRM. Afterwards the analysis is performed. Therefore the instantiated PRM is
translated into a Bayesian network that is understandable by the Smile library
[27]. This library performs the evaluation of the network. Finally the calculated
values are written back to the instantiated PRM and visualized for the tool user.

The person applying the tool can then compare the modeled scenarios and
their contained classes by considering the probabilities that attributes of the
classes are in a certain state; thereby the identification of the configuration that
qualifies best is made possible.

4 Example Tool Application

This section will illustrate how the tool can be applied in practice. The meta-
model and instance model presented here are drawn from a case study performed
at a Swedish power utility company in November 2009. In this case study the
cyber security of an electric substation was the concern. The metamodel is thus
intended to support cyber security analysis and the instance model represents
one of the utility’s substations. The qualitative structure of the metamodel (or
PRM) was created based on a literature review; the quantitative part was in this

A Tool for Enterprise Architecture Analysis 115

Used by

Run
Belong to

Insecure

zone Secure

zone
Client

Server

Fig. 5. The PRM for cyber security analysis showing classes and attributes relevant
for the analysis

case assessed (subjectively) by a security researcher. Interviews with a system
administrator and investigations of system documentation were used to create
the instance model.

4.1 Probabilistic Relational Model over Security

The PRM used in this case study is depicted in Fig. 5. The PRM covers a
number of concepts that are of relevance to the cyber security computer networks
including firewalls, data flows, software services network zones and organizational
functions. The qualitative structure of this PRM is described below together with
some examples of conditional probabilities defined in the PRM.

The primary purpose of firewalls is to control access to network addresses.
They do so by blocking unwanted data flows from adjacent zones, and by allowing
those that are wanted. With a protection scheme following the principle ‘deny
by default’, a Firewall will allow a number of DataFlows to pass into the secure
Zone from other Zones. In this ConcretePRM a Firewall holds the reference
slots Allow with range DataFlow which point to data flows that are allowed. A
Firewall also has the reference slots SecureZone and InsecureZone with range
Zone which refers to the zones that are directly separated by the firewall.

The Firewall has the attribute PossibleToReconfigure which indicates if it pos-
sible for a threat agent to reconfigure the firewall or not. This attribute influences
the attribute Firewall.Functioning which indicates whether the firewall functions

116 M. Buschle et al.

as it should. If the firewall is working it will prevent unauthorized connections
from insecure zones to secure zones. The attribute Service.PossibleToConnect
states whether the threat agent can connect to a Service. The threat agent can
also connect to the service if it has access to the service’s zone or if data flows are
allowed from a zone where the threat agent have access. If the threat agent has
access or not is expressed through the attribute Zone.PossibleToAccess which
has a different value in the subclasses PublicNetwork, CorportateNetwork and
ProcessNetwork.

If it is possible to connect to the service (i.e. Service.PossibleToConnect=True)
it might be possible to exploit a vulnerability in the service. The attribute Ser-
vice.PossibleToExploitVulnerability expresses whether this is possible or not. The
reference slot Service.Host points to the Host that executes the service. The pos-
sibility to exploit vulnerabilities in the service influences if it possible to execute
malware on the service’s host. The possibility to execute malware on the host is
also influenced by the existence of a functioning malware scanner in the host. The
attribute Host.FunctioningMalwareScanner indicates whether this is the case or
not. Another way to influence the possibility to execute malware is through users
in the Organizational Function that use the host and that install executables,
i.e. the attribute OrganizationalFunction.MakeUserInstallExecutable.

4.2 Instance Model

The classes and reference slots in the PRM were used to model one of the utility’s
substations (cf. Fig. 6 for a screenshot of the tool). Four network zones where
found in this study.

The OfficeNetwork is the insecure side of the CorporateFirewall. The Cor-
porateFirewall allows two data flows: RemoteDesktop to pass through from the
OfficeNetwork to the service TerminalServices and the data flow Substation-
Communication from the zone ControlCenterNetwork to ControlSystemServer.
The GatewayFirewall is connected to the Internet and allows data to pass from
both the OfficeNetwork and the SuppliersLAN.

Within the substation there are two instances of the ProcessNetwork. The
SubstationLAN is where the services ControlSystemServer and TerminalServices
belong; the service VNCInterface belongs to the ModemLAN. The ControlSys-
temServer is within the host StationController. The ControlSystemServer is also
the server side of the data flow SubstationCommunication.

The service TerminalServices is associated with the host ServiceGateway and
acts as the server side of the data flow RemoteDesktop. The ServiceGateway is
known to have a malware scanner that is functioning and evidence to support
this fact is stored within the model. The service VNCInterface belongs to the
ModemLAN and is executed by the host EmbeddedController.

Three organizational functions use hosts within the substation: Supplier, Field-
Engineers and SubstationEngineers. The EmbeddedController is used by two or-
ganizational functions: Supplier and FieldEngineers. The ServiceGateway is used
solely by the SubstationEngineers and the StationController is used by both
SubstationEngineers and FieldEngineers. None of the organizational functions

A Tool for Enterprise Architecture Analysis 117

Fig. 6. Screen shot illustrating part of the instantiated PRM for cyber security analysis.
For readability only the classes and reference slots are shown in the picture, attribute
relationships are hidden.

are covered by a functioning awareness program, i.e. FunctioningAwarnessPro-
gram=false for all instances of OrganizationalFunction. The complete PRM is
shown in Fig. 7

4.3 Scenario Analysis

The instance model shown in Fig. 6 represents the architecture that existed at
the time of the assessment. With this architecture as a starting point, different
alternative scenarios were assessed.

One such scenario was to introduce an awareness program for substation engi-
neers, i.e. to change SubstationEngineers.FunctioningAwarnessProgram to True.
The impact of this is calculated to change SubstationEngineers.MakeUserInstall
Executable from 20 % to 10 %, which in turn influences the PossibleToExe-
cuteMalware-attribute in the hosts StationController, EmbeddedController and
ServiceGateway.

118 M. Buschle et al.

Fig. 7. Instantiated PRM for cyber security analysis. For readability only the classes
and reference slots are shown in the picture, attribute relationships are hidden.

A Tool for Enterprise Architecture Analysis 119

Another scenario that was investigated was the impact of a new access con-
trol policy. This modification would ensure that SubstationEngineers do not
use the EmbeddedController. A change like this would remove the dependency
relationship between SubstationEngineers.MakeUserInstallExecutable and Em-
beddedController.PossibleToExecuteMalware. For all cases other than Substatio-
nEngineers.MakeUserInstallExecutable=False this would reduce the probabil-
ity of EmbeddedController.PossibleToExecuteMalware being true. Making the
change in the tool with the present PRM changes P(EmbeddedController. Pos-
sibleToExecuteMalware) from 50 % to 37 %.

5 Discussion and Future Works

This paper presents a tool which supports enterprise architecture analysis with
the use of the PRM formalism. While providing a powerful mechanism for the
use of discrete variables in an analysis, the PRM formalism in its initial form
has a few weaknesses that deserve further studies. Several system qualities are
typically analyzed through the usage of continuous variables e.g. in [28] con-
tinuous variables are used for performance analysis. In order to perform those
evaluations with support of the presented tool it is necessary to discretize all
continuous variables. At the moment we are investigating how the PRM formal-
ism can be extended so that it can be used with combinations of continuous and
discrete variables, so called hybrid networks [29], as well as a corresponding tool
implementation.

Another weakness of the PRM formalism is that it does not provide any
means to query the models for structural information such as “given an informa-
tion system, how many elements does the set of related data objects contain?”
The Object Constraint Language (OCL) [30] is a formal language developed to
describe constraints on UML models. OCL provides a means to specify such
constraints and perform queries on the models in a formal language. OCL in its
original form is side effect free, but currently an imperative version of OCL is
being added to the tool. Thereby the analysis functionality can be extended to
consider the structure of the PRM instantiation more comprehensively.

Besides the two mentioned shortcomings of the formalism used there are some
improvements with respect to usability. Regarding the user interface of the tool,
we are planning to make the models more intuitive and the information provided
easier to understand. Enterprise architecture models are more understandable if
they only depict the interesting parts of the model (in a goal-sense). Therefore,
the tool should be extended to support views and viewpoints, e.g. as presented in
[28]. Additionally we plan the support of iconic visualization of typical enterprise
architecture elements, such as applications or data objects, to present the models
in an easily understandable way. Finally we are planning to integrate the support
of predefined model components. As models based on the same metamodel are
likely to have common parts, the modeling process can be sped up if common
building blocks are offered by the metamodel provider and used by the person
that creates a certain model.

120 M. Buschle et al.

6 Conclusion

In this paper a tool and method for analysis of enterprise architecture scenarios
was presented. To fulfill this purpose the tool consists of two separate parts, one
for defining analysis theory and another for enterprise architecture modeling, and
makes use of the PRM formalism for specifying theory. Applying this formalism
allows for the consideration of uncertainty, an aspect that so far is uncommon
in the field of enterprise architecture analysis. The paper describes the PRM
formalism as well as the underlying architecture of the tool briefly.

In the paper an example of security assessment was outlined, but the tool sup-
ports the analysis of various quality attributes such as maintainability, data qual-
ity, and interoperability. The tool supports information system decision making
as it allows the comparison of several scenarios with regard to a system quality.
Thereby the “as-is” as well as several “to-be” architecture of an enterprise can
be compared quantitatively in order to find the one that best satisfies decision
maker requirements.

References

1. Ross, J.W., Weill, P., Robertson, D.: Enterprise Architecture As Strategy: Creat-
ing a Foundation for Business Execution. Harvard Business School Press, Boston
(August 2006)

2. Winter, R., Fischer, R.: Essential layers, artifacts, and dependencies of enterprise
architecture. Journal of Enterprise Architecture 3(2), 7–18 (2007)

3. The Open Group: TOGAF 2007 edition. Van Haren Publishing, Zaltbommel,
Netherlands (2008)

4. Zachman, J.A.: A framework for information systems architecture. IBM Syst.
J. 26(3), 276–292 (1987)

5. Department of Defense Architecture Framework Working Group: DoD Architecture
Framework, version 1.5. Technical report, Department of Defense, USA (2007)

6. NAF: NATO C3 Technical Architecture (2005)

7. Johnson, P., Ekstedt, M.: Enterprise Architecture – Models and Analyses for In-
formation Systems Decision Making, Studentlitteratur, Sweden (2007)

8. Troux Technologies: Metis (March 2010), http://www.troux.com/products/
9. IBM: System Architect (March 2010),

http://www-01.ibm.com/software/awdtools/systemarchitect/productline/

10. Scheer, A.: Business process engineering: Reference models for industrial enter-
prises. Springer, New York (1994)

11. Getoor, L., Friedman, N., Koller, D., Pfeffer, A., Taskar, B.: Probabilistic relational
models. In: Getoor, L., Taskar, B. (eds.) An Introduction to Statistical Relational
Learning. MIT Press, Cambridge (2007)

12. Kurpjuweit, S., Winter, R.: Viewpoint-based meta model engineering. In: Enter-
prise Modelling and Information Systems Architectures, EMISA 2007 (2007)

13. Iacob, M., Jonkers, H.: Quantitative analysis of enterprise architectures. Interop-
erability of Enterprise Software and Applications, 239–252 (2006)

14. Sommestad, T., Ekstedt, M., Johnson, P.: A probabilistic relational model for
security risk analysis. Computers & Security (February 2010) (accepted)

http://www.troux.com/products/
http://www-01.ibm.com/software/awdtools/systemarchitect/productline/

A Tool for Enterprise Architecture Analysis 121

15. Franke, U., Johnson, P., König, J., Marcks von Würtemberg, L.: Availability of
enterprise IT systems – an expert-based bayesian model. In: Proc. Fourth Interna-
tional Workshop on Software Quality and Maintainability (WSQM 2010), Madrid
(March 2010)

16. Ullberg, J., Lagerström, R., Johnson, P.: A framework for service interoperability
analysis using enterprise architecture models. In: IEEE International Conference
on Services Computing (July 2008)

17. Redman, T.: Data quality for the information age. Artech House, Inc., Norwood
(1997)

18. Redman, T.: Data quality: the field guide. Digital Pr. (2001)
19. Lagerström, R., Saat, J., Franke, U., Aier, S., Ekstedt, M.: Enterprise meta model-

ing methods – combining a stakeholder-oriented and a causality-based approach. In:
Enterprise, Business-Process and Information Systems Modeling. LNBIP, vol. 29,
pp. 381–393. Springer, Heidelberg (2009)

20. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, New York (2001)
21. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational

models. In: Proc. of the 16th International Joint Conference on Artificial Intelli-
gence, pp. 1300–1309. Morgan Kaufmann, San Francisco (1999)

22. Reenskaug, T.: Models-views-controllers. Technical note, Xerox PARC (1979)
23. Sun Microsystems: Design Pattern: Model-View-Controller (2002),

http://java.sun.com/blueprints/patterns/MVC.html

24. Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., Yergeau, F.: Extensible
markup language (XML) 1.0. W3C recommendation 6 (2000)

25. ExoLab Group: The Castor Project (March 2010), http://www.castor.org/
26. NetBeans: NetBeans Visual Library (March 2010), http://graph.netbeans.org
27. Decision Systems Laboratory of the University of Pittsburgh: SMILE (March 2010),

http://genie.sis.pitt.edu/

28. Lankhorst, M.: Enterprise architecture at work: modelling, communication, and
analysis. Springer, Heidelberg (2005)

29. Lauritzen, S.: Propagation of probabilities, means, and variances in mixed graphical
association models. Journal of the American Statistical Association 87(420), 1098–
1108 (1992)

30. Object Management Group: Object Constraint Language specification, version 2.0
formal/06-05-01. Technical report (2006)

http://java.sun.com/blueprints/patterns/MVC.html
http://www.castor.org/
http://graph.netbeans.org
http://genie.sis.pitt.edu/

	A Tool for Enterprise Architecture Analysis Using the PRM Formalism
	Introduction
	Enterprise Architecture Analysis
	Probabilistic Relational Models

	Architecture of the Tool
	Example Tool Application
	Probabilistic Relational Model over Security
	Instance Model
	Scenario Analysis

	Discussion and Future Works
	Conclusion
	References

