
UDC 007:681.32, DOI: 10.2298/CSIS1002359L

A Tool for Modeling Form Type Check Constraints

and Complex Functionalities of Business

Applications

Ivan Lukovi 1, Aleksandar Popovi 2, Jovo Mosti 1, and Sonja Risti 1

1 University of Novi Sad, Faculty of Technical Sciences,
Trg D. Obradovi a 6, 21000 Novi Sad, Serbia

{ivan, sdristic}@uns.ac.rs, jovom@t-com.me
2 University of Montenegro, Faculty of Science,

Džordža Vašingtona bb, 81000 Podgorica, Montenegro
aleksandarp@rc.pmf.ac.me

Abstract. IIS*Case is a software tool that provides information system
modeling and prototypes generation. At the level of platform
independent model specifications, IIS*Case provides conceptual
modeling of database schemas that include specifications of various
database constraints, such as domain, not null, key and unique
constraints, as well as various kinds of inclusion dependencies. It also
provides conceptual modeling of business applications. In the paper, we
present new concepts and a tool embedded into IIS*Case, that is aimed
at supporting specification of check constraints. We present a domain
specific language for specifying check constraints and a tool that
enables visually oriented design and parsing check constraints. Also, we
present concepts and a tool that is aimed at supporting specification of
complex (i.e. "nonstandard") functionalities of business applications. It is
provided visually oriented and platform independent specification of
business application functions.

Keywords: Information system design; Platform Independent Models
and Model Driven Software Development; Check constraint
specification; Function specification.

1. Introduction

Integrated Information Systems CASE Tool (IIS*Case) is a software tool
aimed at assisting the information system (IS) design and at generating
executable application prototypes. Currently, IIS*Case provides:

 Conceptual modeling of database schemas, transaction programs, and
business applications of an IS;

 Automated design of relational database subschemas in the 3rd normal
form (3NF);

Ivan Lukovi , Aleksandar Popovi , Jovo Mosti , and Sonja Risti

ComSIS Vol. 7, No. 2, Special Issue, April 2010 360

 Automated integration of subschemas into a unified database schema in
the 3NF;

 Automated generation of SQL/DDL code for various database management
systems (DBMSs);

 Conceptual design of common user-interface (UI) models; and
 Automated generation of executable prototypes of business applications.

Apart from the tool, we also define a methodological approach to the
application of IIS*Case in the software development process. By this
approach, the software development process provided by IIS*Case is, in
general, evolutive and incremental. We believe that it enables an efficient and
continuous development of a software system, as well as an early delivery of
software prototypes that can be easily upgraded or amended according to the
new or changed users' requirements.

In the paper [11] we considered the application of the model-driven
software engineering (MDSE) principles in IIS*Case. In our approach we
strictly differentiate between the specification of a system and its
implementation on a particular platform. Therefore, modeling is performed at
the high abstraction level, because a designer creates an IS model without
specifying any implementation details. Such a model may be classified as a
Platform-Independent Model (PIM) of the MDA pattern ([9], [16], [17], [21],
[22], [23]). Besides, IIS*Case provides some model-to-model transformations
from PIM to Platform-Specific Models (PSM) and model-to-code
transformations from PSMs to the executable program code.

In the paper [1] we argued that IIS*Case and our approach are suitable for
end-user development (EUD), as it was considered in [3], [4], [20], and [25].
Besides, there are many EUD approaches and tools that provide the assistance
to designers and end-users in creating IS specifications. One of them is
presented in [24]. We also considered IIS*Case as a tool from the class of
domain oriented design environments (DODE), as it is defined in [20]. In [1] we
also present basic features of SQL Generator that are already implemented into
IIS*Case, and aspects of its application. We also present methods for
implementation of a selected database constraint, using mechanisms provided
by a relational DBMS.

A case study illustrating main features of IIS*Case and the methodological
aspects of its usage is given in [10], and accordingly we do not repeat the
same explanations here. Apart from [1], [10] and [11], detailed information
about IIS*Case may be found in several authors' references, as well as in [15]
and [19]. The methodological approach to the application of IIS*Case is
presented in more details in [13], while an approach to the formal specification
of database constraints provided by IIS*Case is presented in [12].

At the abstraction level of PIMs, IIS*Case provides conceptual modeling of
database schemas that include specifications of various database constraints,
such as domain, not null, key and unique constraints, as well as various kinds
of inclusion dependencies. Such a model is automatically transformed into a
model of relational database schema, which is still technology independent
specification. An SQL generator is embedded into IIS*Case. It provides further

A Tool for Modeling Form Type Check Constraints and Complex Functionalities of
Business Applications

ComSIS Vol. 7, No. 2, Special Issue, April 2010 361

transformation of database schema into the platform specific SQL/DDL code,
for various target DBMS platforms [1]. It is an example of model-to-code
transformations provided by IIS*Case. Apart from the generation of key,
unique, not null, and native referential integrity constraints, SQL Generator
also provides the implementation of the default, partial and full referential
integrity constraints, and the selection of an appropriate action from the set
{No Action, Cascade, Set Default, Set Null}. It also provides the
implementation of the inverse referential integrity constraints [1].

Previous versions of IIS*Case did not provide formal specification of check
constraints, at all. Research efforts presented in this paper were directed
toward introducing new concepts and a tool that enable a designer to formally
specify and validate such constraints. An important expectation was to
introduce new concepts that are platform independent, so as to provide formal
specification of check constraints at the abstraction level of PIMs.

In the paper we present a domain specific language (DSL) aimed at
defining check constraints at the level of PIMs. By means of this language, a
designer may specify logical expressions of an arbitrary complexity for
validating attribute values. The language provides a recognition and usage of
other necessary PIM concepts embedded into IIS*Case, and therefore helps a
designer in specifying expressions using problem domain concepts, as it is
considered in [6], [8] and [14]. Besides, the language does not comprise any
platform specific concepts, so check expressions are created at high
abstraction level. In the paper we also present a tool aimed at specifying and
parsing check constraints in a visually oriented way.

By this, in the process of database constraint design, we provide designers
a possibility to concentrate mainly on the constraint semantics in a problem
domain, instead of wasting time on their formal specification and validation.
To achieve this goal, we need the appropriate DSLs and PIM concepts
embedded into IIS*Case that are mostly problem oriented, instead of using
relational data model concepts that are more technology specific, or even
SQL DDL syntax, which is fully technology oriented programming language.
Therefore, SQL DDL normally may be used to implement database schema
specifications under a DBMS, but should not be directly used in the design of
IS specifications, particularly at the conceptual level, i.e. at the abstraction
level of PIMs.

At the abstraction level of PIMs, IIS*Case also provides conceptual
modeling of business applications that include specifications of: (i) UI, (ii)
structures of transaction programs aimed to execute over a database, and (iii)
basic application functionality that includes the following "standard"
operations: data retrieval, inserts, updates, and deletes. Also, a PIM model of
business applications is automatically transformed into a program code of
business applications. In this way, fully executable application prototypes are
generated. For these purposes, User Interface Markup Language (UIML) and
Java Render by Harmonia Incorporation® are chosen programming and run-
time environment [19]. Such a generator is also an example of model-to-code
transformations provided by IIS*Case and its development is almost finished.

Ivan Lukovi , Aleksandar Popovi , Jovo Mosti , and Sonja Risti

ComSIS Vol. 7, No. 2, Special Issue, April 2010 362

Transaction programs of business applications may often comprise not only
basic operations, but also more complex functionalities that cannot be
expressed by a sole retrieve, insert, update, or delete operation. Such
functionality may comprise complex calculations, as well as series of
database operations. Therefore, such functionality we call specific, complex,
or "nonstandard" application functionality. Besides, specifications of check
constraints may reference various complex functions that should be specified
also formally, i.e. in the same way as complex application functionality.

Basic data operations such as retrieve, insert, update and delete are
common for various problem domains and can be easily specified by means
of IIS*Case concepts. However, business applications from various problem
domains usually comprise complex functionalities. If such functionalities would
not be embedded into the PIM of a software system being designed, a
programmer has to create latter a program code of such functionalities, or at
least has to amend a generated program code, "by hand". In this way,
complex functionalities are modeled at the lowest level of abstraction, by
means of a target programming language which is always platform specific.
As a rule, such created program code becomes unsynchronized with the initial
PIM models of the system during the time. As a consequence, the operational
maintenance of such systems becomes more difficult, with a lot of problems
arising during the software exploitation.

Previous versions of IIS*Case did not provide formal specification of
complex application functionalities or functions referenced in check
constraints, at the level of PIMs. Research efforts presented in this paper
were directed toward introducing new concepts and a tool that enable a
designer to formally specify complex functionalities. An important expectation
was to introduce new concepts that are platform independent, so as to
provide formal specification of complex functionalities at the abstraction level
of PIMs.

In the paper we also present concepts and a repository oriented tool aimed
at the specification of functions at the level of PIMs. The name of the tool is
Function Specification Editor or Function Editor for short. By means of
Function Editor a designer may specify functions of an arbitrary complexity. It
provides usage of necessary PIM concepts embedded into IIS*Case, and
helps a designer in specifying functions using not only programming language
concepts, but also problem domain concepts in a certain extent. Besides,
Function Editor does not comprise any platform specific concepts, so
functions are specified at high abstraction level. Also, it provides specifying
functions completely in a visually oriented way. On the basis of Function
Editor and the appropriate repository definitions used by Function Editor as a
part of IIS*Case, it is possible to create a Domain Specific Language (DSL)
for specifying business functions at the level of PIMs, as it is considered in [6],
[8] and [14].

Apart from Introduction and Conclusion, the paper consists of six sections.
In Section 2 we briefly describe main concepts of the IIS*Case tool that are
important for specification of check constraints and function specifications.
Check constraint expressions are introduced in Section 3, where grammar

A Tool for Modeling Form Type Check Constraints and Complex Functionalities of
Business Applications

ComSIS Vol. 7, No. 2, Special Issue, April 2010 363

rules are presented. The main features and functionalities of the Expression
Editor tool are presented in Section 4, while the implementation details
concerning parsing of check expressions are presented in Section 5. Function
specifications and related concepts are introduced in Section 6, while the
main features and functionalities of the Function Editor tool are presented in
Section 7.

2. Preliminaries

At the abstraction level of PIMs, IIS*Case currently provides conceptual
modeling of database schemas and software applications of an IS. Starting
from such PIM models as a source, a chain of transformations is performed
so as to obtain executable program code of software applications and
database SQL/DDL scripts for a selected target platform. The similar idea
may be found also in [2]. For the purpose of readability, in this section we
briefly describe main modeling concepts of IIS*Case that are used at the
abstraction level of PIMs and have an influence on the specification of check
constraints, as well as on the specification and referencing of functions
defined in IIS*Case repository.

A form type is the main modeling concept in IIS*Case ([10], [12], [15]). It
generalizes document types, i.e. screen forms that users utilize to
communicate with an information system. The similar concept of the form type
may be found in [5] and [7], as well as in many other references. Using the
form type concept in IIS*Case, a designer specifies screen or report forms of
transaction programs and, indirectly, specifies (i) an initial set of attributes and
constraints, (ii) basic functionalities of future transaction programs and (iii)
components of their UI. Each particular business document is observed as an
instance of a form type. A form type concept, as well as related concepts of a
domain and attribute, is platform independent. Here, we use a notion of the
form type instead of a document type, because it is always a structure defined
at the abstraction level of schema. It represents not only a layout structure
(i.e. screen or a report form) of a document, but also a set of database
schema attributes and constraints embedded into a future screen or a report
form of an IS transaction program.

A form type is a named tree structure, whose nodes are called component
types. Each component type is identified by its name in the scope of the form
type, and has nonempty sets of attributes and keys, and a set of unique
constraints that may be empty. Besides, to each component type must be
associated a set of allowed database operations. It must be a nonempty
subset of the set of "standard" operations {retrieve, insert, update, delete}.
Each attribute of a component type is chosen from the set of all information
system attributes.

Attributes are globally identified only by their names. IIS*Case imposes
strict rules for specifying attributes and their domains. Attributes in IIS*Case
are classified as elementary or derived. An attribute is elementary if it

Ivan Lukovi , Aleksandar Popovi , Jovo Mosti , and Sonja Risti

ComSIS Vol. 7, No. 2, Special Issue, April 2010 364

represents values given by end-users directly. Otherwise, it is derived. Values
of a derived attribute are generated (i.e. calculated) from the values of the
other attributes, by applying some algorithm. Such algorithms in IIS*Case are
expressed by a concept of function. Therefore, a specification of a derived
attribute must reference at least one previously defined (elementary or
derived) attribute, and at least one function that is used for calculating its
values.

Domains in IIS*Case are also globally identified only by their names. They
are classified as primitive and user-defined. Primitive domains are defined
"per se" as primitive data types. They are predefined into the repository of
IIS*Case. An initial collection of primitive domains stored in the repository may
be customized by adding, changing, or even removing specifications of
primitive domains. Each user-defined domain in IIS*Case is created by
referencing a primitive domain, or an already existing user-defined domain. In
this way, user-defined domains are derived from primitive or previously
created user-defined domains. There are four derivation rules that may be
applied to create a user-defined domain from the existing domains: a)
inheritance rule, b) tuple rule, c) set rule, and d) choice rule. A domain
obtained by one of the aforementioned rules is called inherited, tuple, set, or
choice domain, respectively. Tuple, set, or choice domains are also called
complex domains. Recursive multiple application of the aforementioned rules
is allowed.

Inherited domain inherits all the properties from its source (parent) domain.
If a domain D is defined by the inheritance rule from the parent domain Ds, we
denote it by D = Inherits(Ds). Besides, a separate check expression is to be
assigned to an inherited domain. Therefore, it is more or at least equally
restrictive as its parent domain. If check expressions are defined for both
inherited and its parent domain, in evaluation they are connected by the
logical AND operator. Consequently, in a recursive application of the
inheritance rule, all the domain check expressions in a hierarchy are
connected by the logical AND operators.

Tuple domain represents tuples (records) of values over source domains.
Therefore, it is defined as a structure D = Tuple(A1 : D1,..., An : Dn), where D is
a tuple domain, and for each i {1,...,n}, (Ai : Di) is a tuple item, i.e. a
member, where Ai is an attribute with an associated source domain Di.

Set domain represents values that are sets, each over the same source
domain. Therefore, it is defined as a structure D = Set{Ds}, where D is a set
domain, and Ds is a source domain.

Choice domain represents values over exactly one of the source domains.
Therefore, it is defined as a structure D = Choice(A1 : D1,..., An : Dn), where D
is a choice domain, and for each i {1,...,n}, (Ai : Di) is a choice item, i.e. a
member, where Ai is an attribute with an associated source domain Di.

Check constraints in IIS*Case may be specified at the level of a domain,
attribute or a component type of a form type. A check constraint associated to
a domain or attribute is used to specify a logical condition constraining
allowable values of a sole attribute. A check constraint associated to a
component type is used to specify a logical condition constraining some

A Tool for Modeling Form Type Check Constraints and Complex Functionalities of
Business Applications

ComSIS Vol. 7, No. 2, Special Issue, April 2010 365

values of each component type instance. Logical conditions of the check
constraints may also reference functions, defined in IIS*Case repository.

3. Check Expressions

The quality of a whole database schema is substantially influenced by the
quality of constraint specifications. It is very important to define these
specifications at early stages of database schema design process, at
abstraction level of PIMs, if possible. IIS*Case provides specification of
various types of constraints, such as domain, not null, key and unique
constraints, as well as various kinds of inclusion dependencies, at the
abstraction level of PIMs.

Commercial CASE tools that provide modeling conceptual database
schema specifications by means of Entity-Relationship (ER) data model and
their transforming into the relational data model either provide only partial
specifications of check constraints at the conceptual level, and/or provide a
usage of standard SQL syntax for that purposes. Accordingly, check
constraints may be fully defined only at the level of an implementation
database schema specification, expressed commonly by relational data model
and SQL syntax. For example, Oracle Designer does not allow all kind of
check constraints to be formally defined at the level of an ER database
schema. Sybase Power Designer provides a usage of SQL syntax for that
purposes. On the contrary, check constraints in the IIS*Case tool are defined
at the level of a conceptual database schema as a PIM model, which is
expressed by a set of created form types. For these purposes, we developed
a DSL to create check expressions of various complexity, in a platform
independent way. Such a DSL and a tool embedded into IIS*Case enable a
designer to specify check constraints using problem domain concepts, in a
visually oriented way.

A check expression is a logical expression. In general, it may include
attribute references, arithmetic, comparison and logical operators, as well as
function calls. As implemented at the level of a target DBMS, it is usually
evaluated in a ternary logic as a value from the set {true, false, unknown},
where true means that an expression is valid, false that it is violated, and
unknown that it is neither valid nor violated. The value unknown is possible to
obtain whenever there are null (missing) values of attributes in the evaluation
of an expression.

By means of the DSL embedded into IIS*Case, check expressions may be
specified at the level of a (i) domain, (ii) attribute or (iii) component type of a
form type, in a similar way.

Ivan Lukovi , Aleksandar Popovi , Jovo Mosti , and Sonja Risti

ComSIS Vol. 7, No. 2, Special Issue, April 2010 366

3.1. Domain Check Expressions

IIS*Case provides a "universal" set of all domains of a project as a whole.
Domains in IIS*Case are used to express domain constraints, as it is
proposed in [12]. Each specification of a user-defined domain allows defining
a check expression, as a property of the domain specification. Such check
expressions are named domain check expressions.

A formal specification of the grammar for domain check expressions is
shown in Table 1, in the Extended Backus-Naur Form (EBNF) notation.

Table 1. Specification of the grammar for domain check expressions

Exp = Exp bin_operator Exp | un_operator Exp | Primary_Exp;

Primary_Exp = constant | value ['.' fieldName] | function_name

'(' [Exp_List] ')' | '(' Exp ')';

Exp_List = Exp { ',' Exp_List};

The list of standard operators includes the following ones:

 Additive (+, -),
 Multiplicative (*, /),
 Comparison (<, <=, >, =>),
 Equality (==, !=),
 Concatenation (||),
 Boolean (NOT, AND, OR, XOR, =>),
 Inclusion (IN), and
 Pattern matching (LIKE).

All the operators and parentheses are introduced with the common meaning
and priorities when applying the rules for evaluation of expressions.

Apart from introducing standard arithmetic, string, comparison and logical
operators existing in all general-purpose languages, we decided also to
introduce the operators LIKE and IN, which are common in database
languages, like SQL. In this way, the language for check expressions
becomes more problem oriented.

The grammar in Table 1 also provides function calls by referencing the
appropriate function names. It is allowed to reference only the functions
existing in the IIS*Case repository. It is supposed that both built-in and user-
defined functions are stored in the repository. IIS*Case also provides a
specialized DSL and a visually oriented tool for specifying various functions in a
project. By this, it is possible to specify function header, a list of formal
parameters, return value, all local declarations, function body and the exception
handler in a structural way. Functions are specified by means of the technology
independent concepts, at the abstraction level of PIMs, as it is presented in
Sections 6 and 7.

The grammar in Table 1 allows the use of constants in check expressions.
The common rules for specification and interpretation of constants are
applied, and accordingly we do not describe them in more detail.

A Tool for Modeling Form Type Check Constraints and Complex Functionalities of
Business Applications

ComSIS Vol. 7, No. 2, Special Issue, April 2010 367

The only variable symbol allowed in domain check expression is value
symbol (VALUE). VALUE denotes any value for which a domain check
expression is validated.

Only in check expressions associated to a tuple or choice domain it is
possible to qualify VALUE by the attribute name of an item. Therefore,
VALUE.Ai denotes a value of a tuple or choice member (Ai : Di), while
nonqualified VALUE denotes a complete tuple or a choice value.

Example 1. A domain check expression for a numeric domain DGRADE is
given:

VALUE >= 5 AND VALUE <= 10.

It constrains allowable values of DGRADE to the interval from 5 to 10.

Example 2. A domain check expression for a string domain DPHONE is
given:

VALUE LIKE '5%' AND StrLen(VALUE) = = 7.

It constrains allowable values of DPHONE to exactly the 7 character long
strings, beginning with '5'. StrLen is a function call that references a function
already specified in the IIS*Case repository.

Example 3. A domain check expression for a string domain DSEMESTER is
given:

VALUE IN {'I', 'II','III','IV','V','VI','VII','VIII','IX', 'X'}.

It constrains allowable values of DSEMESTER to the list of string values
specified after the inclusion operator IN.

Example 4. A tuple domain DDATE is defined as DATE = Tuple(DAY :
INTEGER, MONTH : INTEGER, YEAR : INTEGER), where INTEGER is
primitive domain. A domain check expression for a tuple domain DDATE is
given:

VALUE.DAY <= 31 AND VALUE.DAY >= 1.

It constrains allowable values of DAY member to the interval from 1 to 31.

3.2. Attribute Check Expressions

IIS*Case provides a "universal" set of all attributes of a project as a whole.
According to the universal relationship existence assumption (URSA) adopted
from the relational data model, each attribute in IIS*Case is uniquely identified
only by its name. Exactly one domain must be associated to each attribute in
a project. In this way, allowable values of an attribute are constrained by the
appropriate domain constraint.

IIS*Case allows defining a check expression as a property of the attribute
specification. Such check expressions are named attribute check expressions.
Our DSL has the appropriate grammar rules for specification of attribute
check expressions.

Ivan Lukovi , Aleksandar Popovi , Jovo Mosti , and Sonja Risti

ComSIS Vol. 7, No. 2, Special Issue, April 2010 368

Suppose that we have an attribute A to which a domain D is associated.
We denote it as (A : D). If a domain check expression is associated to D, then
each attribute A with the associated domain D inherits its domain check
expression. Besides, if we have an attribute check expression assigned to an
attribute A, and a domain check constraint assigned to D, where (A : D) holds,
in evaluation they are connected by the logical AND operator. Obviously, if we
have (possibly a recursive) application of the inheritance rule for the domain
D, all the domain check expressions in a hierarchy are connected alongside
with the attribute check expression by the logical AND operators.

A formal specification of the grammar for attribute check expressions is
shown in Table 2, in EBNF notation. It is almost identical to the grammar
specification for domain check constraints given in Table 1. The only
difference is in the following. If we specify the attribute check expression for
an attribute with the name A, the only variable symbol allowed in attribute
check constraints, which may replace attName, is A. It is with the same
meaning as it is the symbol VALUE in domain check expressions. Analo-
gously to the domain check constraints, we may additionally qualify A in the
case of a tuple or choice domain associated to A. Therefore, A.Ai denotes a
value of a tuple or choice member (Ai : Di), while nonqualified A denotes a
complete tuple or a choice value.

Table 2. Specification of the grammar for attribute check expressions

Exp = Exp bin_operator Exp | un_operator Exp | Primary_Exp;

Primary_Exp = constant | attName ['.' fieldName] |

function_name '(' [Exp_List] ')' | '(' Exp ')';

Exp_List = Exp { ',' Exp_List};

Example 5. An attribute check expression for a numeric attribute GRADE is
given:

GRADE >= 6.

It constrains allowable values of GRADE to be greater or equal 6. If
(GRADE : DGRADE) holds, where DGRADE is a domain from Example 1,
then this check expression is connected to the one from Example 1 by the
operator AND. Consequently, allowable values of GRADE are constrained to
the interval from 6 to 10.

3.3. Component Type Check Expressions

In IIS*Case, a form type is a hierarchical tree structure of component types,
each of them having nonempty sets of attributes and keys, and a possibly
empty set of unique constraints. Each attribute of a component type is
selected from the set of all attributes of a project, i.e. from the IIS*Case
repository. Therefore, it inherits all its constraints defined at the levels of the
appropriate attribute and domain specifications.

A Tool for Modeling Form Type Check Constraints and Complex Functionalities of
Business Applications

ComSIS Vol. 7, No. 2, Special Issue, April 2010 369

IIS*Case also allows defining a check expression as a property of the
component type specification. Such check expressions are named component
type check expressions. Our DSL has the appropriate grammar rules for
specification of component type check expressions.

The main purpose of domain and attribute check expressions is to
constrain allowable values of a sole attribute. On the contrary, component
type check constraints are used to specify logical conditions that constrain a
tuple of values representing each component type instance.

A formal specification of the grammar for component type check
expressions is shown in Table 3, in EBNF notation. It is almost identical to the
grammar specification for attribute check constraints given in Table 2. The
only difference is in the following. If we specify the component type check
constraint for a component type N, we may use as variable symbols that are
to replace cmpattName, any of attributes from the component type N, as well
as any of attributes from any superordinated component type in a form type
hierarchy.

Table 3. Specification of the grammar for component type check expressions

Exp = Exp bin_operator Exp | un_operator Exp | Primary_Exp;

Primary_Exp = constant | cmpattName ['.' fieldName] |

function_name '(' [Exp_List] ')' | '(' Exp ')';

Exp_List = Exp { ',' Exp_List};

Analogously to the attribute check constraints, we may additionally qualify
variable A in the case of a tuple or choice domain associated to A. Therefore,
A.Ai denotes a value of a tuple or choice member (Ai : Di), while nonqualified
A denotes a complete tuple or a choice value.

Example 6. In Fig. 1 it is presented a form type Student Records. The form
type is structured as a tree having two component types, STUDENT and
GRADES, which are graphically represented by rectangles. The component
type attributes are shown in italic letters. The key attribute of each component
type is underlined by a solid line, whereas the attribute of a uniqueness
constraint is underlined by a dashed line. Allowed operations for both
component types are shown in small rectangles in the upper-right corners.

Fig. 1. A representation of the form type Student Records.

STUDENT

GRADE

StudentId, Year

CourseId, Date, Grade

Student Records r

r, i, u, d

Ivan Lukovi , Aleksandar Popovi , Jovo Mosti , and Sonja Risti

ComSIS Vol. 7, No. 2, Special Issue, April 2010 370

A check expression for the GRADES component type is given:
(Year IN {1, 2, 3} => Grade IN {1, 2, 3, 4})

AND (Year IN {4, 5} => Grade IN {4, 5}).

It constrains the possible combinations of values for Year and Grade. If
Year is 1, 2, or 3, Grade must be 1, 2, 3, or 4, and if Year is 4 or 5, Grade
must be 4 or 5.

4. Check Expression Editor

Check Expression Editor, or Expression Editor for short, is a tool that we
developed and embedded into IIS*Case. It is aimed at specification and
validation of check expressions. It may be called from the

 Domain specification form of IIS*Case, if a domain check constraint need to
be defined;

 Attribute specification form of IIS*Case, if an attribute check constraint need
to be defined; or

 Component type specification form of IIS*Case, if a component type check
constraint need to be defined.

By this, Expression Editor will support the appropriate check expression
grammar, in a context-sensitive way.

Expression Editor provides two options for specification of check
expressions: (i) guided, by means of a Visual Editor, and (ii) "free form", by
means of a Text Editor. The first option is more suitable for less experienced
users, not knowing the precise grammar rules and therefore needing a guide
in specifying check expressions. The second one is more suitable for more
experienced users, well knowing the precise grammar rules, and wishing to
be as fast as possible in specifying check expressions. The main screen form
of Check Expression Editor is presented in Fig. 2. Visual Editor is positioned
in the center, while Text Editor is positioned in the bottom of the main form of
Expression Editor.

Text Editor provides direct writing check expressions in a free form way.
Besides, it supports context-sensitive syntax highlighting, as well as standard
text processing commands such as: cut, copy, undo, etc. These commands
are included in the Edit submenu of the main menu, and also in the toolbar
positioned on the left hand side of the main form. Also, the toolbar comprises
a command for performing expression validation.

By means of Visual Editor, check expressions are modeled by building the
expression trees. Expression tree navigator, as a part of Visual Editor, is
positioned on the left hand side of the main form from Fig. 2. Each node of an
expression tree represents a subexpression, while the root node represents
the main expression. Non-leaf nodes are named complex nodes, because
they represent complex expressions, for example the expressions enclosed
by parentheses, or operator inclusions. Leaf nodes are named simple nodes,

A Tool for Modeling Form Type Check Constraints and Complex Functionalities of
Business Applications

ComSIS Vol. 7, No. 2, Special Issue, April 2010 371

because they correspond to simple, i.e. primary expressions, like constants,
variables (such as VALUE or attribute names), or function calls.

Fig. 2. Main screen form of Expression Editor

Visual Editor provides all common functions for editing an expression tree.
These are: inserting, deleting, moving, and editing a node. The last function is
available only for leaf nodes, representing simple expressions.

When a user wants to insert a complex node, he or she has to select a
language operator or the parentheses symbol from the main toolbar. Each
operator of the language is represented by an appropriate iconic button in the
main toolbar.

Inserting a simple node into the expression tree is performed by selecting
the exp command from the main toolbar. After selecting the exp command, a
node is inserted and a textbox for specifying the simple expression appears
within the node. According to grammar rules, simple expressions may be
constants from a domain, variables, or function calls. A combo box positioned
on the upper-right corner is aimed to assist a user to select an appropriate
attribute, or a function from the IIS*Case repository.

Example 7. Suppose the following domain complex expression has to be
specified by means of Visual Editor:

VALUE >= 5 AND VALUE <= 10.

A user needs first to insert a complex node for AND operator, and then two
descendant complex nodes, one for ">=" and the other for "<=" operators.

Ivan Lukovi , Aleksandar Popovi , Jovo Mosti , and Sonja Risti

ComSIS Vol. 7, No. 2, Special Issue, April 2010 372

Below the ">=" complex node, he or she needs to insert two simple nodes,
one for variable VALUE, and the other for a constant 5. In a similar way, two
simple nodes are to be defined below the "<=" complex node, one for VALUE,
and the other for 10.

Expression Editor always keeps Visual Editor and Text Editor
synchronized. When a user creates and validates an expression by means of
Visual Editor, the expression will be also shown in its full syntax in Text Editor.
Also, when a user creates and validates an expression by means of Text
Editor, the corresponding expression tree will be shown in Visual Editor
automatically.

5. Validation of Check Expressions

Expression Editor provides validation of check expressions. Parser is created
by means of the ANTRL 4.0 tool. ANTRL enables a user to formally specify
grammar. Furthermore, it supports transformation of grammar specifications
into the program code of a parser for target programming environment. As a
result, it is obtained a recursive-descent parser expressed in a program code
that is human-readable and easily customizable. [18].

According to the specified language definition presented in Section 3,
ANTLR is used to generate Java program code of a parser that checks
whether sentences created by Expression Editor conform to the language
specification.

ANTLR generally provides amending grammar rules by adding source
program code, i.e. code snippets to the grammar definition. Then, such code
snippets are inserted into the program code of a generated parser, "as is". In
our case, grammar rules for check expressions are amended by inserting
code snippets that translate input sentences into an XML specification, and
perform some semantic analysis, at the same time. In this way, apart from
syntax validation, Expression Editor provides some semantic analysis. For
example, check constraints may contain variables that reference members of
a tuple or choice domain. The semantic analyzer verifies if reference to a
tuple or choice member is valid, by seeking the appropriate domain
specifications from the IIS*Case repository. Currently, type checking is not
supported, at all. It is because the domain specification in our repository
model still does not provide specification of allowed operators over a domain.

Example 8. In Table 4 two grammar rules for domain check expressions are
presented. These rules contain code snippets that provide performing
semantic analysis and creating a node in the appropriate XML specification.
The grammar rules are specified in ANTLR notation.

A Tool for Modeling Form Type Check Constraints and Complex Functionalities of
Business Applications

ComSIS Vol. 7, No. 2, Special Issue, April 2010 373

Table 4. Grammar rules for domain check expressions containing code snippets

sentence returns [String val]

@init{ tmp = "";}

:

tmp = expression

{val="<block name=\"Expression\" group=\"1\">"+ tmp+"</block>";

val = val.replaceAll("><",">\n<") + "\n\n";}

;

domain_ref

@init{ tmp = "";}

: value ('.' tmp = memberName)?

{checkMember(tmp);}

;

A code snippet that provides creating a node in the XML specification of a
check expression is included in the sentence grammar rule in Table 4. It is
given as follows:
{val = "<block name=\"Expression\" group=\"-1\">" + tmp +

"</block>";

val = val.replaceAll("><",">\n<") + "\n\n";}

A code snippet that provides performing semantic analysis is included in
the domain_ref grammar rule in Table 4. It is given as follows:

{checkMember(tmp);}

When member name is identified, the snippet verifies if a reference to a
tuple or choice member is valid, by seeking the appropriate tuple or choice
domain specifications from the IIS*Case repository.

Apart from being used for a semantic analysis, XML specifications of check
expressions may also be used to provide further necessary transformations of
check constraints. Our future research work is oriented towards providing a
chain of transformations that result in PSM specifications of check constraints,
expressed as the SQL/DDL program code.

The main idea how to design the transformation process from check
expressions specified at the level of PIMs to the SQL/DDL program code is as
follows. The process should be generally organized in two phases. By our
methodology ([10], [13]), in the first phase, a set of form types representing a
PIM model of a conceptual database schema is transformed into a relational
database schema. Accordingly, all the constraints specified at the conceptual
PIM level should be transformed into the equivalent relational database
schema constraints. Therefore, each component type check expression
specified at the level of a PIM, should be transformed into the one or more
appropriate check or extended check expressions ([12]) defined at the level of
the corresponding relation schemes. It is an issue how to create and
implement an algorithm that will (i) provide inference problem solving for
check expressions and (ii) preserve logical equivalency during

Ivan Lukovi , Aleksandar Popovi , Jovo Mosti , and Sonja Risti

ComSIS Vol. 7, No. 2, Special Issue, April 2010 374

transformations of component type check constraints. In this phase, domain
and attribute check expressions remain unchanged.

A relational database schema generated in the first phase is still technology
independent of any particular DBMS. Therefore, in the second phase, it is
transformed into the SQL/DDL specification justified to the syntax of a chosen
DBMS or ANSI SQL standard ([1]). Accordingly, each check expression
defined at the level of a sole domain, attribute or a relation scheme, should be
transformed into a corresponding SQL/DDL check constraint. Such a transfor-
mation is easily possible because of using a syntax for our check expressions
that is very similar to the syntax for expressions in SQL check constraints. It is
an issue here how to transform check expressions that contain references to
the members of tuple or choice domains if a target DBMS does not support
necessary object-relational concepts. On the other hand, with respect to the
current level of supporting ANSI SQL standard by commercial DBMSs,
extended check constraints in a relational database schema may only be
transformed into the SQL code of a target DBMS that includes triggers and
stored procedures.

6. Modeling Complex Functionalities in IIS*Case

Software development in IIS*Case is organized through projects. Each project
in IIS*Case is further organized trough application systems and represented
by a project tree. A set of fundamental specifications, comprising domains,
attributes, inclusion dependencies, and program units is associated to each
project. Fundamental specifications are independent of any application
system given in a project. IIS*Case provides the following program unit
concepts from the class of fundamental concepts necessary to express
complex application functionalities at the level of PIMs: (i) Function; (ii)
Package; and (iii) Event. A part of IIS*Case project tree representing these
concepts is presented in Fig. 3.

A concept of a function is used to specify complex functionalities. Functions
in IIS*Case are defined at the level of a project, and may be referenced from
various IIS*Case specifications. A concept of a function is presented in the
following text in more details.

A package is a collection of arbitrary selected functions defined in IIS*Case
repository. Usually, packages are organized in a "thematic" way. Depending
on a selected layer for the package deployment in multi-tier distributed
software architecture, at the level of PIMs, we differentiate between database
server, application server and client packages. Database server packages are
to be deployed at the database server layer. The analogous is for application
server and client packages.

A Tool for Modeling Form Type Check Constraints and Complex Functionalities of
Business Applications

ComSIS Vol. 7, No. 2, Special Issue, April 2010 375

Fig. 3. A part of IIS*Case Project Tree.

A concept of event is used at the level of PIMs, to represent any software
event that may trigger some action under a specified condition. We also
differentiate between database server, application server and client events.
Database server events may be database triggers or exceptions. Application
server and client events may be: keyboard events, mouse events, or
exceptions. Each event should be associated to a PIM specification. For
example, a database trigger should be associated to a relation scheme. A
keyboard event may be associated to a form type, component type, or an
attribute of a component type. A concept of event is not fully implemented in
IIS*Case yet. Its full implementation is a matter of further research.

A formal specification of a function in IIS*Case includes the following:

 Function name that is unique in the IIS*Case project;
 List of formal parameters (i.e. arguments);
 Return value type; and
 Function body.

In Fig. 4 it is presented the IIS*Case screen form for specifying a function with
the list of formal parameters and the return value type. The "Specification"
button invokes the Function Editor tool aimed at formal specification of the
function body. Function Editor is presented in the next section.

For each function, an arbitrary number of formal parameters may be
defined. Each formal parameter is specified by the following properties: (i)
sequence number defining a position of the parameter in the list; (ii) name; (iii)
reference to IIS*Case domain defining a data type of a parameter; (iv) default
value; and (v) type, where possible parameter types are: input (In), output
(Out) and input/output (InOut), with a usual meaning inherited from various

Ivan Lukovi , Aleksandar Popovi , Jovo Mosti , and Sonja Risti

ComSIS Vol. 7, No. 2, Special Issue, April 2010 376

programming languages. Return value type is a reference to the domain
previously defined in IIS*Case repository.

Fig. 4. A screen form for specification of a function, its formal parameters and a return
type.

Function body is specified by means of PIM concepts that are mostly
inherited from the third generation languages, particularly database
procedural languages, and structural programming paradigm. Function body
is a tree structure comprising blocks, declarations, statements, and
comments. We differentiate between execution blocks and declaration blocks.
Execution blocks may include nested declaration and execution blocks. In this
way, multi-level nesting of blocks is provided. The following concepts are
provided for specifying a function body:

 Sequential structures defining sequences of statements, declarations or
comments;

 Declaration blocks that represent sequences of various declarations and
comments;

 Declarations of local types, variables, constants, functions, cursors and
exceptions;

 Execution blocks that represent sequences of embedded blocks, various
statements and comments;

 Iteration structures with FOR, DO-WHILE, and WHILE-DO statements;
 Selection structures with IF-THEN-ELSE and ELSEIF-THEN-ELSE

statements;
 Exception handler structure with TRY, CATCH, and FINALLY statements;
 Simple statements, like various kind of expressions and assignment

statements; and
 Single-line comments denoted as /* */.

A Tool for Modeling Form Type Check Constraints and Complex Functionalities of
Business Applications

ComSIS Vol. 7, No. 2, Special Issue, April 2010 377

Despite that these concepts are mostly inherited from the third generation
languages, they are syntactically independent of any particular programming
language. Therefore, function specifications in IIS*Case are platform
independent.

A specified function may be referenced many times in the same IIS*Case
project. Currently, a function may be referenced in:

 Declarations and expressions of other IIS*Case functions;
 Packages, to express an inclusion of the function into a package;
 Events, to express the activity of an event associated to a PIM

specification;
 Logical expressions of domain check constraints, attribute check

constraints and component type check constraints; or
 Specifications of derived attributes.

7. The Function Editor Tool

Function Editor is the IIS*Case tool that provides repository based
specification of a function body in a visually oriented way. The main screen
form of Function Editor is presented in Fig. 5.

Fig. 5. The main screen form of Function Specification Editor.

Ivan Lukovi , Aleksandar Popovi , Jovo Mosti , and Sonja Risti

ComSIS Vol. 7, No. 2, Special Issue, April 2010 378

By means of Function Editor, a function body is represented as a tree,
whose nodes represent blocks, declarations, statements, or comments. Tree
Structure Navigator is placed on the left hand side of the Function Editor
screen form from Fig. 5, while the complete specification of a function body is
represented in a panel placed in the central part of the screen form from Fig.
5. At the bottom of the screen form a message panel is placed.

Function Editor provides common tree operations, like creating a new node,
removing an existing node, or reconnecting (cut & paste) a node in the tree. A
notion of a current node in Tree Structure Navigator is recognized and all the
tree operations are performed in the context of the current node. The current
node is marked by a different color. Tree operations are available from the
main menu, horizontal and vertical toolbars, as well as from the right-mouse-
click context menu.

Creating a new node is a context sensitive operation. It is performed by
selecting an appropriate toolbar option or "Blocks & Statements" menu option.
A designer may select only one of the options that are available in the context
of the current node. In this way, he or she specifies the type of the node being
created. A list of all possible node types with their descriptions is given in
Table 5 included in Section 10, Appendix.

By a context sensitive selection of options for node types that are available
in the context of current node, Function Editor assists a designer in creating
valid function specifications. For example, if the current node represents a
FOR statement, a creation of ELSE descendant node is unavailable.
According to common structural programming rules imposed by general
purpose procedural languages, Function Editor only allows the combinations
of node types that make sense in specifying a function body. In this way,
Function Editor just allows building valid structures of a function body.

Besides, Function Editor also provides a syntax and semantic analysis tool.
A designer may use the tool during the whole process of creating function
specifications, just by selecting an appropriate toolbar option. The syntax
analysis also checks validity of the structure of function body specification. As
it concerns semantic analysis, currently Function Editor only checks variable
and constant declarations, if specified data type is a reference to a domain
specification from the IIS*Case repository. Type checking is not supported, at
all. It is because the domain specification in our repository model still does not
provide specification of allowed operators over a domain.

8. Conclusion

Commercial CASE tools that provide modeling conceptual database schema
specifications by means of ER data model and their transforming into a re-
lational data model either provide only partial specifications of check
constraints at the conceptual level, and/or provide a usage of standard SQL
syntax for that purposes. Therefore, check constraints are usually fully defined
at the level of an implementation database schema. On the contrary, in our

A Tool for Modeling Form Type Check Constraints and Complex Functionalities of
Business Applications

ComSIS Vol. 7, No. 2, Special Issue, April 2010 379

approach, check constraints in the IIS*Case tool are defined at the level of a
conceptual database schema as a PIM model. For these purposes, we
developed a DSL and the Check Expression Editor tool to create and parse
check expressions defined in a platform independent way. In this way, a
designer may specify check constraints using problem domain concepts, in a
visually oriented way.

Besides, by our approach, function specifications, which may be referenced
from check constraint expressions as well as from the other IIS*Case
specifications, are defined at the level of a conceptual specification of an IS,
as a PIM model. For these purposes, we developed a specialized tool, named
Function Editor, by means of it is possible to create and analyze function
specifications defined in a platform independent way. In this way, a designer
may specify functions using not only programming concepts, but also problem
domain concepts, in a visually oriented way.

Among all, our current or future research and development efforts are
oriented towards the following:

 Development of the algorithms providing transformations of check
constraint specifications created at the level of form types as PIMs, to the
equivalent specifications at the level of an implementation database
schema (usually expressed by the relational data model), and then to the
executable PSM specifications expressed as the SQL/DDL program code;

 Development of a DSL for an equivalent representation of the current
repository based function specifications at the level of PIMs;

 Extensions of the IIS*Case repository definition and the appropriate
specifications (like event specifications) by new concepts, so as to make
better foundation for (i) semantic analysis of check constraint expressions;
and (ii) using function specifications in specifying business application logic,
as well as their syntax and semantic analysis;

 Development of the algorithms providing transformations of function
specifications created at the level of PIMs, to the equivalent executable
PSM specifications expressed in a target programming environment and in
the context of generated business applications; and

 Using the Meta-Object Facility Specification (MOF) in order to raise our
repository based DSL specifications at meta-meta abstraction level.

Acknowledgment

A part of the research presented in this paper was supported by Ministry of
Science and Technological Development of Republic of Serbia, Grant TR-
13029, Title: A Development of an Intelligent Environment for the Design and
Implementation of Information Systems.

Ivan Lukovi , Aleksandar Popovi , Jovo Mosti , and Sonja Risti

ComSIS Vol. 7, No. 2, Special Issue, April 2010 380

References

1. Aleksi , S., Lukovi , I., Mogin, P., Govedarica, M.: A Generator of SQL Schema
Specifications. Computer Science and Information Systems (ComSIS),
Consortium of Faculties of Serbia and Montenegro, Novi Sad, Serbia, ISSN:1820-
0214, Vol.4, No. 2, 79-98. (2007)

2. ARTech. DeKlarit
TM (TheModel-Driven Tool for Microsoft Visual Studio 2005).

Chicago, USA (June, 2009). [Online]. Available: http://www.deklarit.com.
3. Berti, S., Paterno, F., Santoro, C.: Natural Development of Ubiquitous Interfaces.

Communications of the ACM (CACM), Association for Computing Machinery,
USA, Vol. 47, No. 9, 63-64. (2004)

4. Burnett, M., Cook, C., Rothermel, G.: End-User Software Engineering.
Communications of the ACM (CACM), Association for Computing Machinery,
USA, Vol. 47, No. 9, 53-58. (2004)

5. Choobinch, J., Mannio, V. M., Nunamaker, F. J., Konsynski, R. B.: An Expert
Database Design System Based on Analysis of Forms. IEEE Transactions on
Software Engineering, Vol.14, No 2, 242-253. (1988)

6. Deursen van, A., Klint, P. Visser, J.: Domain-Specific Languages: An Annotated
Bibliography. ACM SIGPLAN Notices, Association for Computing Machinery, USA,
Vol. 35, No. 6, 26-36. (2000)

7. Diet, J., Lochovsky, F.: Interactive Specification and Integration of User Views
Using Forms. In: Proceedings of the Eight International Conference on Entity-
Relationship Approach, Toronto, Canada, 171-185. (1989)

8. João Pereira, M., Mernik, M., Cruz, D., Rangel Henriques, P.: Program
Comprehension for Domain-Specific Languages. Computer Science and
Information Systems (ComSIS), Vol. 5, No. 2, 1-17. (2008)

9. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture:
Practice and Promise, Addison Wesley. (2003)

10. Lukovi , I., Mogin, P., Pavi evi , J., Risti , S.: An Approach to Developing
Complex Database Schemas Using Form Types. Software: Practice and
Experience, John Wiley & Sons Inc, Hoboken, USA, DOI: 10.1002/spe.820, Vol.
37, No. 15, 1621-1656. (2007)

11. Lukovi , I., Risti , S., Aleksic, S., Popovi , A.: An Application of the MDSE
Principles in IIS*Case. In: Proceedings of III Workshop on Model Driven Software
Engineering (MDSE 2008), Berlin, Germany, TFH, University of Applied Sciences
Berlin, 53-62. (2008)

12. Lukovi , I., Risti , S., Mogin, P.: On The Formal Specification of Database
Schema Constraints. In: Proceedings of I Serbian – Hungarian Joint Symposium
on Intelligent Systems, Subotica, Serbia, 125-136. (2003)

13. Lukovi , I., Risti , S., Mogin, P., Pavicevi , J.: Database Schema Integration
Process – A Methodology and Aspects of Its Applying. Novi Sad Journal of
Mathematics (Formerly Review of Research, Faculty of Science, Mathematic
Series), Serbia, Vol. 36, No. 1, 115-150. (2006)

14. Mernik, M., Heering, J., Sloane, M. A.: When and How to Develop Domain-
Specific Languages. ACM Computing Surveys (CSUR), Association for Computing
Machinery, USA, Vol. 37, No. 4, 316-344. (2005)

15. Mogin, P., Lukovi , I., Karadži , Z.: Relational Database Schema Design and
Application Generating using IIS*CASE Tool. In: Proceedings of International
Conference on Technical Informatics, Timisoara, Romania, Vol. 5, 49-58. (1994)

16. Object Management Group: MDA Guide. Version 1.0.1, Volume 1, document
omg/03-06-01. (2003)

A Tool for Modeling Form Type Check Constraints and Complex Functionalities of
Business Applications

ComSIS Vol. 7, No. 2, Special Issue, April 2010 381

17. Object Management Group: Unified Modeling Language Specification. Version
1.4.2, document formal/05-05-01. (2005)

18. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.
The Pragmatic Programmers, USA. (2007).

19. Pavi evi , J., Lukovi , I., Mogin, P., Govedarica, M.: Information System Design
and Prototyping Using Form Types. In: Proceedings of INSTICC I International
Conference on Software and Data Technologies (ICSOFT), Setubal, Portugal, Vol.
2, 157-160. (2006)

20. Reppening, A., Ioannidou, A.: Agent Based End-User Development.
Communications of the ACM (CACM), Association for Computing Machinery,
USA, Vol. 47, No. 9, 43-46. (2004)

21. Rumbaugh, J., Jacobson, I.: The Unified Modeling Language Reference Manual.
Addison-Wesley, USA. (1999)

22. Schmidt, D. C.: Model-driven engineering. IEEE Computer, Vol.39, No.2, 25-31.
(2006)

23. Seidewitz, E.: What models mean. IEEE Software, Vol. 20, No. 5, 26-32. (2003)
24. Stanley, E., Mogin, P., Andreae, P.: S.E.A.L.-A Query Language for Entity-

Association Queries. In Proceedings of the 20th Australasian Database
Conference (ADC 2009), Wellington, New Zealand, Vol 92, 67-76. (2009)

25. Sutcliffe, A., Mehandjiev, N.: End-User Development. Communications of the ACM
(CACM), Association for Computing Machinery, USA, Vol. 47, No. 9, 31-32.
(2004)

Appendix

In Table 5 it is presented a list of all possible Function Editor node types with
their descriptions.

Table 5. A list of node types available when creating a new node.

Node Type Description

Execution Block

A new execution block as a sequence of statements,
blocks and comments is created. The node is named
EXECUTION_BLOCK. In its context, it is possible to
create new subordinated nodes, and therefore such a
node is called the complex node.

FOR structure

A new node named FOR and representing the
counting FOR structure is created. Four new
subordinated nodes are automatically created,
denoted as: (i) Begin, (ii) Condition, (iii) Step, and (iv)
FOR_BODY. The first three are text items that define:
start value, end value and the step of a FOR program
counter. These are the simple nodes, because they
cannot have any subordinated nodes. FOR_BODY is
a complex node. It represents a sequence of state-
ments and blocks defining the body of a FOR
structure.

Ivan Lukovi , Aleksandar Popovi , Jovo Mosti , and Sonja Risti

ComSIS Vol. 7, No. 2, Special Issue, April 2010 382

WHILE-DO structure

A new node named WHILE and representing the
WHILE-DO structure is created. Two new
subordinated nodes are automatically created,
denoted as: (i) Condition and (ii) WHILE_BODY.
Condition is a text item that defines "pre-while" test
condition. It is a simple node. WHILE_BODY is a
complex node. It represents a sequence of statements
and blocks defining the body of a WHILE-DO
structure.

DO-WHILE structure

A new node named DO_WHILE and representing the
DO-WHILE structure is created. Two new
subordinated nodes are automatically created,
denoted as: (i) DO_WHILE_BODY and (ii) Condition.
Condition is a text item that defines "post-while" test
condition. It is a simple node. DO_WHILE_BODY is a
complex node. It represents a sequence of statements
and blocks defining the body of a DO-WHILE
structure.

IF-THEN-ELSE
structure

A new node named IF and representing the IF
selection structure is created. Three new subordinated
nodes are automatically created, denoted as: (i)
Condition, (ii) THEN, and (iii) ELSE, as an optional
node. Condition is a text item that defines IF test
condition. It is a simple node. THEN and ELSE are
complex nodes. They represent sequences of
statements and blocks defining the main body and the
alternative body of an IF structure.

ELSE clause A new node named ELSE in the context of an IF
selection structure is created, with the same role as it
would be created initially trough an IF-THEN-ELSE
structure.

ELSEIF structure

A new node named ELSEIF in the context of an IF
selection structure is created with a usual meaning.
Three new subordinated nodes are automatically
created, denoted as: (i) Condition, (ii) THEN, and (iii)
ELSE, as an optional node. Condition is a text item that
defines ELSEIF test condition. It is a simple node. THEN
and ELSE are complex nodes. They represent
sequences of statements and blocks defining the main
body and the alternative body of an ELSEIF structure.

A Tool for Modeling Form Type Check Constraints and Complex Functionalities of
Business Applications

ComSIS Vol. 7, No. 2, Special Issue, April 2010 383

TRY-CATCH-
FINALLY
structure

Three complex nodes named TRY, CATCH and FINAL-
LY are automatically created to specify an exception
handler structure. CATCH and FINALLY nodes are the
optional ones. They represent sequences of statements
and blocks defining the exception handler. In the scope
of CATCH, two new subordinated nodes are
automatically created, denoted as: (i) Exception and (ii)
CATCH_BLOCK. Exception is a simple node. It is a text
item that references a previously declared exception.
CATCH_BLOCK is a complex node. It represents a
sequence of statements and blocks aimed to handle a
raised exception. Multiple nesting of TRY nodes is
allowed. In the scope of a current TRY node it is possible
to create many CATCH or FINALLY nodes.

Statement A new node representing a simple statement is
created in the context of a block. It is a simple node
structured as a text item. Currently, there are two
types of simple statements: assignments and
expressions. In the future research, we also plan to
embed SQL statements.

Declaration Block

A new declaration block as a sequence of
declarations and comments is created. The node is
named DECLARATION. It is a complex node. In its
context, it is possible to create new declarations of
types, variables, constants, cursors, exceptions, and
local functions.

Declaration
A new declaration is created in the context of a
declaration block. A declaration is a simple node. It
represents a text item that defines particular
declaration of a type, variable, constant, cursor,
exception or function inclusion.

LOCAL_FUNCTION
declaration

A new node named LOCAL_FUNCTION is created in
the scope of a declaration block. It represents a
declaration of a local function. Three new subordinated
nodes are automatically created, denoted as: (i) Function
Name, (ii) ARGUMENTS, and (iii)
LOCAL_FUNCTION_BODY. Function Name is a simple
node. It is a text item that defines local function name.
ARGUMENTS is a complex node. It comprises
declarations of local function arguments only. LOCAL_-
FUNCTION_BODY is a complex node. It represents a
whole function body of a local function being declared.

Ivan Lukovi , Aleksandar Popovi , Jovo Mosti , and Sonja Risti

ComSIS Vol. 7, No. 2, Special Issue, April 2010 384

Local Function
Argument

A new node in the context of an ARGUMENTS node
in a LOCAL_FUNCTION declaration is created. It is a
simple node structured as a text item. It represents a
formal argument of a local function given with the
name and an association to a domain from the
repository.

Comment
A new node in the context of a block is created. It is a
simple node structured as a text item. It represents a
single-line comment.

Ivan Lukovi received his M.Sc. (5 year, former Diploma) degree in
Informatics from the Faculty of Military and Technical Sciences in Zagreb in
1990. He completed his Mr (2 year) degree at the University of Belgrade,
Faculty of Electrical Engineering in 1993, and his Ph.D. at the University of
Novi Sad, Faculty of Technical Sciences in 1996. Currently, he works as a
Full Professor at the Faculty of Technical Sciences at the University of Novi
Sad, where he lectures in several Computer Science and Informatics courses.
His research interests are related to Database Systems and Software
Engineering. He is the author or coauthor of over 70 papers, 4 books, and 30
industry projects and software solutions in the area.

Aleksandar Popovi graduated from Faculty of Science at the University of
Montenegro. He completed his Mr (2 year) degree at the University of Novi
Sad, Faculty of Technical Sciences. Currently, he is a Ph.D. student and
teaching assistant at the University of Montenegro, Faculty of Science. He
assists in teaching several Computer Science and Informatics courses. His
research interests include Software Engineering, Database Systems and
Domain Specific Languages.

Jovo Mosti received his M.Sc. (4 year, former Diploma) degree from the
University of Montenegro, Faculty of Science in Podgorica. He completed his
Mr (2 year) degree at the University of Novi Sad, Faculty of Technical
Sciences. Currently, he works as an IT project manager in Erste &
Steiermärkische Bank in Podgorica. His research interests are related to
Information Systems, Database Systems and Software Engineering.

A Tool for Modeling Form Type Check Constraints and Complex Functionalities of
Business Applications

ComSIS Vol. 7, No. 2, Special Issue, April 2010 385

Sonja Risti is holding a position of an associate professor at the University
of Novi Sad, Faculty of Technical Sciences, Serbia. She received two
bachelor degrees (4 year, former Diploma) from University of Novi Sad, one in
Mathematics, Faculty of Science in 1983, and the other in Economics from
Faculty of Economics, in 1989. She also received her Mr (2 year) and Ph.D.
degrees in Informatics, both from Faculty of Economics, in 1994 and 2003,
respectively. From 1984 till 1990 she worked with the Novi Sad Cable
Company "NOVKABEL" – Factory of Electronic Computers. From 1990 till
2006 she was with High School of Professional Business Studies -Novi Sad,
and since 2006 she has been with the Faculty of Technical Sciences,
University of Novi Sad. Her research interests are related to Database
Systems and Software Engineering. She is the author or coauthor of over 40
papers in the area.

Received: November 12, 2009; Accepted: January 27, 2010.

