
Scientific Programming 11 (2003) 191–198 191
IOS Press

A tool for performance modeling of parallel

programs

J.A. Gonzáleza, C. Rodrı́gueza,∗, G. Rodrı́gueza, F. de Sandea and M. Printistab

aDpto. Estadı́stica, I.O. y Computación, Universidad de La Laguna, La Laguna, 38271, Spain

Tel.: +34 922 318187; Fax: +34 922 318170; E-mail: casiano@ull.es
bUniversidad Nacional de San Luis, Ejército de los Andes 950, San Luis, Argentina

E-mail: mprinti@unsl.edu.ar

Abstract. Current performance prediction analytical models try to characterize the performance behavior of actual machines

through a small set of parameters. In practice, substantial deviations are observed. These differences are due to factors as memory

hierarchies or network latency. A natural approach is to associate a different proportionality constant with each basic block,

and analogously, to associate different latencies and bandwidths with each “communication block”. Unfortunately, to use this

approach implies that the evaluation of parameters must be done for each algorithm. This is a heavy task, implying experiment

design, timing, statistics, pattern recognition and multi-parameter fitting algorithms. Software support is required. We present

a compiler that takes as source a C program annotated with complexity formulas and produces as output an instrumented code.

The trace files obtained from the execution of the resulting code are analyzed with an interactive interpreter, giving us, among

other information, the values of those parameters.

1. Introduction

Most of the approaches to performance analysis and

prediction fall into two categories: Analytical Model-

ing and Performance Profiling. Analytical methods use

models of the architecture and the algorithm to predict

the program runtime. The analysis can be independent

of the target architecture. Among the analytical mod-

els, the Bulk Synchronous Parallel (BSP) model [14] is

one of the most popular. Profiling may be conducted

on a parallel system to recognize current performance

bottlenecks. Performing measurements require spe-

cial purpose hardware and software and, since the tar-

get machine is used, the measurement method can be

highly accurate [4,6,8,11,12]. Although much work

has been developed in Analytical Modeling and in Par-

allel Profiling, sometimes there seems to exist a divorce

between them. Analytical modeling is considered to

be too theoretical to be accurate in practical cases and

profiling analysis is criticized for a lack of generality.

∗Corresponding author.

This work explores a hybrid approach, proposing an
analytical model supported by a profiling tool. The
class of parallel algorithms whose performance behav-
ior can be predicted includes the Bulk Synchronous Par-
allel Algorithm class. The efficient expression of some
common parallel paradigms, like farms and pipelines,
is difficult in the scope of a flat-data-parallel global-
barrier Bulk Synchronous Programming software like
the BSPlib [9]. To overcome these limitations, the
Paderborn University BSP library (PUB [11]) offers
the use of collective operations, processor-partition op-
erations and oblivious synchronization. In addition to
the most common features of BSP, PUB provides the
capacity to partition the current BSP machine into sev-
eral subsets, each of which acts as an autonomous BSP
computer with their own processor numbering and syn-
chronization points. The authors of the BSP Worldwide
Standard Library report claim that an unwanted conse-
quence of group partitioning is a loss of accuracy [7,
p. 18].

Another novel feature of PUB is the oblivious
synchronization. It is implemented through the
bsp oblsync(bsp,n) function, which does not re-

ISSN 1058-9244/03/$8.00 2003 – IOS Press. All rights reserved

192 J.A. González et al. / A tool for performance modeling of parallel programs

P1P0

ti
m

e

w

w

2w

2w

Lb

Lb

g*h

g*h

Fig. 1. BSP prediction accuracy.

turn until nmessages have been received. Although its

use mitigates the synchronization overhead, it implies

that different processors can be in different supersteps

at the same time. The BSP semantic is preserved in

PUB by numbering the supersteps and by ensuring that

the receiver thread buffers messages that arrive out of

order until the correct superstep is reached.

Figure 1 illustrates the impact of the second im-

provement, oblivious synchronizations, in prediction

accuracy. The diagram corresponds to an applica-

tion running on a 2-processor machine in 2 supersteps.

White areas correspond to computation while black ar-

eas stand for communication. During the first super-

step, processor P1 performs a task heavier (2w) than

that performed by processorP0 (w). After an exchange

operation (w) and an oblivious synchronization, the sit-

uation is inverted and processor P0 does the lighter

part compensating the former imbalance. Finally, there

is another oblivious exchange between processors P0
and P1 (w). While the actual time is 5w, the BSP pre-

diction corresponding to a global synchronous barrier

is 6w.

There are other sources of inaccuracy. One comes

from characterizing the computing time W through a

single parameter s, considering that all the elementary

local operations take the same quantity of time (called

time step). Significant differences are observed in prac-

tice, partly due to the separate nature of the operations

(number of floating point arithmetic operations, num-

ber of memory transfers, etc.) involved [15, p. 123].

Another comes from characterizing the communication

time through two single parameters g and L, consider-

ing that any h-relation takes the same amount of time,

independently of the particular communication pattern

involved [10]. In [13] we studied the impact of such

patterns on the h-relation time.

A more realistic (but more difficult) alternative is to

associate a different proportionality constant with each

basic block (maximal segment of code without jumps),

and analogously, to associate different latencies and

bandwidths with the same h-relation, depending on the

pattern. Still this approach does not suffice to have ac-

curate predictions. Most modern microprocessors have

at least two levels of cache. Furthermore, operating

systems use main memory as a cache for a larger virtual

address space for each process and translate between

virtual addresses used by a program and the physical

addresses required by the hardware. Memory is di-

vided into blocks called pages. To keep the overhead

of address translation low, the most recently used page

addresses are cached in a translation lookaside buffer

(TLB). While an L1 cache hit typically takes 2 or 3
cycles, a TLB miss requiring only reload of the TLB
can take of the order of 2000 cycles [2, p. 3]. The

assumption that a constant number of machine instruc-

tions takes constant time is an oversimplification. To

suppress such simplification implies the introduction

of a finite (but perhaps large) number of parameters.

These parameters are not only architecture dependent,

but also reflect algorithm characteristics. Such param-

eter evaluation is a heavy task, implying experiment

design, timing, statistics and multi-parameter fitting al-

gorithms. It does not seem reasonable to ask the algo-

rithm designer to carry out by hand such tasks for every

program developed.

We address the problem of how to relax the num-

ber of parameters without introducing an unbearable

complexity. The resulting model, called OBSP* is in-

troduced in the following section. The third section

presents CALL, a prototype of a software tool for the

modeling, analysis and prediction of parallel and se-

quential programs. The tool consists of a “pragma”

language extending C, its associated compiler and a

profiler/analyzer interpreter of the trace files generated

by the instrumented target. The analyzer provides the

values of the communication and computation con-

stants, establishes the segments where the values of the

constants are valid and facilitates the prediction of the

performance of the algorithm for any input values.

2. The OBSP* Model

As in ordinary BSP, the execution of a PUB program

on a BSP machineX = 0, . . . , P − 1 consists of super-

J.A. González et al. / A tool for performance modeling of parallel programs 193

steps. However, as a consequence of the oblivious syn-

chronization, processors may be in different supersteps

at a given time. Still it is true that:

– Supersteps can be numbered starting at 1.

– The total number of supersteps R, performed by

all the P processors is the same.

– Although messages sent by a processor in super-

step s may arrive to another processor executing

an earlier superstep r < s, communications are

made effective only when the receiver processor

reaches the end of superstep s.

Let us assume in first instance that no processor par-

titioning is performed in the analyzed task T . If the

superstep s ends in an oblivious synchronization, we

define the set Ωs,i for a given processor i and superstep

s as the set:

Ωs,i = {j ∈ X | processor j sends a message
(1)

to processor i in superstep s} ∪ {i}

while Ωs,i = X when the superstep ends in a global

barrier synchronization. Processors in the set Ωs,i are

called “the incoming partners of processor i in step s”.

Usually it is accepted that all the processors start the

computation at the same time. The presence of partition

functions forces us to consider the most general case in

which each processor i joins the computation at a differ-

ent initial time ξi. Denoting by ξ = (ξ0, . . . , ξP−1) the

vector for all processors, the OBSP* time Φs,i(T,X, ξ)
taken by processor i ∈ X executing task T to finish its

superstep s is recursively defined by the formulas:

Φ1,i(T,X, ξ)

= max{W1,j + ξj | j ∈ Ω1,i}

+(g ∗ h1,i + L), i = 0, . . . , P − 1,

Φs,i(T,X, ξ) (2)

= max{Φs−1,j(T,X, ξ) +Ws,j | j ∈ Ωs,i}

+(g ∗ hs,i + L),

s = 2, . . . , R, i = 0, . . . , P − 1

where constant R denotes the total number of super-

steps andWs,j denotes the time spent in computing by

processor j in step s. The value hs,i is defined as the

number of bytes communicated by processor i in step

s, that is:

hs,i = max{ins,j @ outs,j | j ∈ Ωs,i},
(3)

s = 1, . . . , R, i = 0, . . . , P − 1

Table 1

Sets ΥAi
, i = 0, 1, 2

A0 basically refers to the setup of the outer loop

A1 corresponds to statements j<N;j++ and i=0

A2 stands for i<N;i++ and a[i][j] = 0

and ins,j and outs,j respectively denote the number

of incoming/outgoing bytes to/from processor j in the

superstep s. The @ operation is defined as max or

+ depending on the input/output capabilities of the

network interface.

2.1. Parameter evaluation

Notice that, in general, what the “algorithm design-

er” provides is a formula fs,j(N,M, . . .) that gives the

total number of operations performed by processor j in

superstep s in terms of the input parametersN,M,
As an example, the analysis of the sequential code in

Fig. 3, give us f1,0(N) = A0 +A1 ×N +A2 ×N
2.

What is the meaning of the constantsA0, A1, . . . An?.

Assuming that the processors have an instruction set

{I1, . . . , It} of size t, where the i-th instruction Ii takes

time pi, an approximation of the timeWs,j is given by

the formula:

Ws,j ≃
∑

i=1,t

ws,i,j ∗ pi

where ws,i,j is the number of Ii instructions executed

by processor j in step s.
The actual situation is more complex than this, since

the time pi is a random variable that takes a small

number of different values. If, for instance, I i is a

memory access, we may have two or three different

values of pi according to the number of misses and

hits. The same statement applies for communication

constants g and L.

Each constant Ai is associated with the cost of a set

ΥAi
of statements (see Table 1). Of the three “con-

stants” in the example of Fig. 3, only A2 manifestly

“varies” with the size of the input N . The other two

do not change so noticeably, since their instructions are

related with scalar accesses and only exploit tempo-

ral locality. Therefore, we will have that the formula

f1,0(N) predicts the behavior with acceptable accuracy

if we use two or three different values forA2: one cor-

responding to small values of N (large percentage of

cache hits) and the others to larger values of N .

The idea proposed here is to have a tool that, having

the formula f1,0(N) = A0 + A1 × N + A2 × N2

as input, automatically finds the sets ℵAi
of different

194 J.A. González et al. / A tool for performance modeling of parallel programs

Fig. 2. The CALL environment. The ? stand for optionality.

1. for(j=0;j<N;j++)

2. for(i=0;i<N;i++)

3. a[i][j] = 0;

Fig. 3. Matrix initialization.

Table 2

Sets ℵAi

ℵA0
= {(A0, N ∈ [2,∞)}

ℵA1
= {(A1, N ∈ [2,∞)}

ℵA2
= {(A0

2
, N ∈ [2, C0]), (A1

2
, N ∈ (C0,∞])}

values and intervals of the input variableN where each

of these values apply (see Table 2).

Once these sets ℵAi
have been evaluated, they can

be used for prediction.

The tool will use a “machine database” that extends

the well-known BSP table with entries (s, g, L). This

database contains a vectorial detailed description of the

architecture, including the costs of different memory

access times, the costs of different floating point op-

erations, etc. This database can be generated by an

“architecture analyzer” program working much in the

same way as the bsp probe program included with

the BSPlib library.

From this database and the knowledge of the sets

ΥAi
the tool, through the analysis of the statements,

can guess the values of the sets ℵAi
in the architectures

included in the database.

Observe that the formula f1,0(N) = A0 +A1×N+
A2 ×N

2 will still be valid if we exchange the loops in

lines 1 and 2 in Fig. 3. But, since the current access to

a[i][j] at line 3 will change its “stride” from N to

1, the gain in locality will produce much lower values

for A2 and a higher value of C0. The number of oper-

ations in both algorithms are the same, the instructions

involved are the same, but the two constants A2 are

significantly different.

This example illustrates that, to predict the perfor-

mance in other architectures it is not enough to have the

knowledge of ΥAi
and the database: the instrumenta-

tion also has to collect run time information about the

percentage of cache misses.

Locality and the order of memory accesses affects

the values of the sets ℵAi
. Roughly speaking, and as a

previous step, the programmer has to be aware of choos-

ing among the several semantically equivalent orders,

one that minimizes the Ai parameters with strongest

impact on the “complexity” formula.

2.2. Processor sets in PUB

At any time, processors are organized in a hierarchy

of processor sets. A processor set in PUB (also called

a BSP object) is implemented through a data structure

named t bsp.

Let Q ⊆ X be a set of processors (i.e. a BSP ob-

ject) executing task T . When processors in Q exe-

cute functionbsp partition(t bsp *Q, t bsp

*S, int r, int *Y), the set Q is divided in r
disjoint subsets Si such that,

Q = ∪0�i�r−1 Si,

S0 = {0, . . . , Y [0] − 1},

Si = {Y [i− 1], . . . , Y [i] − 1},

1 � i � r − 1

After the partition step, each subgroup S i acts as

an autonomous BSP computer with its own processor

numbering, message queue and synchronization mech-

anism. The time that processor j ∈ Si takes to finish

its work in task Ti executed by the BSP object Si is

given by

J.A. González et al. / A tool for performance modeling of parallel programs 195

ΦRi,j(Ti, Si,Φs−1,j + w∗

s,j)

such that j ∈ Si,

i = 0, . . . , r − 1,

whereRi is the number of supersteps performed in task

Ti and w∗

s,j is the computing time executed by proces-

sor j before its call to the bsp partition function

in the s-th superstep of original set Q. Observe that

subgroups are created in a stack-like order. Functions

bsp partition and bsp done produce no com-

munication. This implies that different processors in

a given subset can arrive at the partition process (and

leave it) at a different time. From the point of view

of the parent machine, the code executed between the

call to bsp partition and bsp done behaves as

computation (i.e. like a call to a subroutine).

3. An OBSP* environment for performance

prediction

The CALL system consists of a translator (called

call), a run time library (cll.h) and an analyzer in-

terpreter (llac). Although it can be used for the anal-

ysis of sequential programs, it gives also support for

the prediction of PUB, OpenMP and MPI parallel pro-

grams. More than a prediction tool, it is a performance

measurement and modeling tool. It can be used to con-

firm or reject the predictive accuracy of a given per-

formance model, not just OBSP*. The OBSP* model

needs the CALL tool to be feasible, but the tool itself

is independent of the performance model.

The run time library makes use, if installed, of the

PAPI library [2]. Figure 2 shows the execution sys-

tem of CALL. From a sequential or parallel C pro-

gram annotated with call pragmas, the call com-

piler produces two files containing the necessary code

(*.cll.c) and structures (*.cll.h) to save variable

values, to time the corresponding code and to produce

the reports required by the llac analyzer. Once the

program has been compiled and executed, the llac in-

terpreter allows the programmer to play with the result-

ing data, considering subsets, transformations of them

or merging them with other data coming from other

experiments. The llac analyzer deduces the values of

the parameters involved, the segments where they are

valid, the variation of these parameters with the input

values, predicts the behavior of the different experi-

ments under study and allows their graphic visualiza-

tion. It also warns the user when the lack of accuracy

1. #pragma cll parallel PUB gbsp\

procs = 1:32:2

...

2. #pragma cll for(N=1024; N<262144; N*=2)

3. initialize(N, a);

4. Roots(N/2, W);

5. #pragma cll sync f f[0]+f[1]*log(P)+\

f[2]*(N/P)*log(N/P)+f[3]*N*(P-1)/P

6. parDandCFFT(A, a, W, N, 1, D, gbsp);

7. #pragma cll end f

8. #pragma cll end for

...

9. #pragma cll report all

Fig. 4. The fft experiment.

is due to possible errors in the proposed model (errors

in the proposed formula).

To exemplify the combined use of the OBSP* model

and the CALL tool to predict the time spent by PUB

programs we have chosen the Fast Fourier Transform

(FFT) algorithm. The Fourier Transform (FT) decom-

poses a function into its different-frequency sinusoidal

components. In 1965, Tukey and Cooley [3] proposed

a Discrete Fourier Transform algorithm with a number

of computations of orderO(N× log(N)). It is a divide

and conquer algorithm based on the fact that the trans-

formation of a digital signal can be obtained by com-

bining the transforms of its even and odd components.

Although it is not a requirement, the expression of the

algorithm is simplified using a signal size, N that is a

power of two. Line 1 in Fig. 4 warns the call com-

piler that this is a BSP parallel program using PUB. The

optional argument gbsp points to the t bsp object

describing the BSP machine. This information will be

used by the report clause in line 9. When executed, the

code generated from this line will collect all the statis-

tics sampled in the different processors, routing them

to processor 0, where they will be dumped on the cor-

responding output file fft.cll.0.dat. The sec-

ond clause procs = 1:32:2 makes the compiler

generate a batch script to run the program for different

numbers of processors.

Lines 2 and 8 produce a loop to sample the algo-

rithm behavior for different values of N . Since CALL

pragmas are identified by a defined prefix, they are ig-

nored by a C compiler. One of the goals of CALL is to

allow developers to use the same source code base for

building their application and the instrumented code.

Lines 5 to 7 in Fig. 4 define a “call experiment”.

The optional clause sync at the beginning of the ex-

periment definition (line 5) indicates the need to syn-

chronize the processors before starting the experiment.

196 J.A. González et al. / A tool for performance modeling of parallel programs

1.void parDandCFFT(Complex *A, Complex *a, Complex *W,int N,int stride,t_bsp *gbsp) {

2. /* variable declarations */

3. if (bsp_nprocs(gbsp) > 1) {

4. if (N==1) {A[0].re = a[0].re; A[0].im = a[0].im;}

5. else {

6. #pragma cll A A[0]

7. n = N/2; size = n * sizeof(Complex); B = A; C = A + n;

8. #pragma cll end A

9. #pragma cll B B[0]

10. subgroup[1] = bsp_nprocs(gbsp);

11. subgroup[0] = (bsp_nprocs(gbsp)/2);

12. bsp_partition(gbsp, &bsp_new, 2, subgroup);

13. #pragma cll end B

14. if(bsp_pid(gbsp)<subgroup[0]) {

15. parDandCFFT(B, a, W, n, stride * 2, &bsp_new);

16. #pragma cll C C[0]

17. partner = bsp_pid(&bsp_new) + subgroup[0];

18. bsp_done(&bsp_new);

19. #pragma cll end C

20. #pragma cll D D[0] + D[1] * size

21. bsp_hpsend(gbsp, partner, B, size);

22. bsp_oblsync(gbsp, 1);

23. #pragma cll end D

24. #pragma cll E E[0] + E[1] * n

25. C = (Complex *)bspmsg_data(bsp_getmsg(gbsp, 0));

26. #pragma cll end E

27. } else {

28. parDandCFFT(C, a + stride, W, n, stride * 2, &bsp_new);

29. #pragma cll C C[0]

30. partner = bsp_pid(&bsp_new);
31. bsp_done(&bsp_new);
32. #pragma cll end C
33. #pragma cll D D[0] + D[1] * size
34. bsp_hpsend(gbsp, partner, C, size);
35. bsp_oblsync(gbsp, 1);

36.

37. #pragma cll E E[0] + E[1] * n

38. B = (Complex *)bspmsg_data(bsp_getmsg(gbsp, 0));

39. #pragma cll end E

40. }

41. #pragma cll F F[0] + F[1] * n

42. combine(A, B, C, W, n);

43. #pragma cll end F

44. }

45. } else

46. #pragma cll G G[0] + G[1] * N * log(N)

47. seqDandCFFT(A, a, W, N, stride);

48. #pragma cll end G

49. }

#pragma ll end D

Fig. 5. Parallel Fast Fourier Transform.

The CALL compiler will insert a barrier in the gen-

erated code. The following identifier is the name of

the experiment. Thus, the name of the experiment

defined in line 5 is f. Then follows the complexity

formula for Φ2,i(FFT,X, 0). Any call complexity

formula must be in canonical form, i.e. has to be a

sum of terms made of complexity constants multiplied

by expressions. More general, the experimental con-

stant must be the only multiplicative constant in each

term. This constraint is due to singularities appearing

in the multidimensional fit algorithm [5] used by the

interpreter.

For each experiment, the front end call compiler

generates the code to time it and to save its state for

later report and treatment.

Starting from the trace files generated during the

execution, the back end llac analyzer determines the

values ofℵf [0], ℵf [1], ℵf [2] andℵf [3]. For this example,

the input variables are N and P . Generally speaking,

usually there will be values of f [0], f [1], f [2] and

f [3] for small values of N and P , different values for

medium sizes and may be a third for larger values.

When predicting the time for a concrete value (say

N = 1024, P = 32) the programmer does not need

J.A. González et al. / A tool for performance modeling of parallel programs 197

Table 3

Real and predicted times for the FFT on the CRAY T3E (2 Mega-

Complex)

PROCS. TIME OBSP* ERROR %

1 11.7748 11.8096 −0.30

2 6.0036 5.8943 1.82

4 3.2120 3.0908 3.77

8 1.8939 1.7735 6.36
16 1.2750 1.1644 8.68

32 0.9664 0.8919 7.71

to be concerned with the exact parameter values. The
llac system will choose the appropriate parameter
values of f [0], f [1], f [2] and f [3] (the one for the small
range of N and P = 32 for the example) to obtain a
more precise prediction. However, a large number of
intervals (more than 3) on a given variable (N , P , . . .)
may possibly imply an error in the complexity formula.
In such case, llac issues a warning message.

The recognition of the intervals ofℵf [i] of the param-
eters f [i] implies the use of heuristic statistical tech-
niques. An ordinary multidimensional linear fit is per-
formed over the preprocessed sample. If the errors
are larger than a fixed “error threshold”, the variable
space is divided in two. The point that maximizes the
variation of the error is chosen as splitting point. This
process is repeated until the errors obtained are under
the error threshold or the number of intervals exceed a
“number of intervals threshold”.

The user can participate, influencing any of the
phases, including the preprocessing. Although most
of the information can be reported through CALL
pragmas, the llac user can complement and include
any additional information. For example, to specify
through a graphical interface the sets of statements ΥAi

associated with the experiment parameters Ai.
The code in Fig. 5 is a PUB implementation of the

FFT algorithm annotated with CALL pragmas. It has
as input a vector of complex numbers a, the vector
W containing the N -th pre-computed roots of unity,
the number N of elements, the stride determining a
subproblem of the original problem and the pointer
to the data structure, gbsp defining the current BSP
machine. We assume that both the input data and the
result vector A are replicated in each processor.

Let’s denote by FFT the code presented in Fig. 5.
At each level d − 1 of the recursion, there is a PUB
machine Xd−1 that executes two OBSP* supersteps.
The time spent by a processor i ∈ X d−1 to perform
the first superstep, Φ1,i(FFT,X

d−1, ξd−1), consists
of four computational blocks and one communication:

1. Input signal division into its even and odd com-
ponents (line 7). Since the input data is repli-

cated on each processor, this operation can be
implemented over the same vector a. Variable
stride indicates the separation between logical
consecutive elements in the input vector. This
computation takes constant time A[0].

2. The BSP machineXd−1 is partitioned in two sub-
machines Xd

j with j = 0, 1 (lines 10-12). Un-
der the assumption that the number of processors
in Xd−1 is a power of 2, each submachine has
the same number of processors. A PUB machine
partition operation takes constant time B[0].

3. While one of the submachines computes the
transformation of the even components, the other
does the same with the odd terms. These compu-
tations correspond to the recursive calls in lines
15 and 28 respectively. The times required by
each of these submachines to perform their com-
putations are given by Φ2,i(FFT,X

d
j , ξ

d−1
i +

A[0]+B[0]). Here d is the recursion depth,X d
j is

the set of processors in the current BSP machine,
ξd−1
i is the time when the calling FFT started and
w∗

1,i = A[0]+B[0] denotes the computation per-

formed by the machine X d
j in the current super-

step before the submachine begins its computa-
tion.

4. When a submachine finishes its task, each pro-
cessor determines its communication partner and
then rejoins to the father group (lines 17–18 and
30–31 respectively). This operation is performed
in constant time C[0].

5. A communication bounds the superstep. Partial
results are exchanged between partner processors
(lines 21–22 and 34–35). Each processor has to
wait only for a message from its partner. Under
the assumption that the input signal size is a power
of 2, the h-relation is the same for all the proces-
sors. We work with the h-relation definition as
the sum of incoming and outgoing message sizes.

h1,i = size = N ∗ sizeof(Complex),
(4)

Ωs,i = {i, partneri}

Therefore, the time for the first superstep is:

Φ1,i(FFT,X
d−1, ξd−1)

= max{Φ2,k(FFT,Xd, ξd−1
k

(5)
+A[0] +B[0]) + C[0]

| k ∈ Ω1,i} +D[1] ∗ size+D[0]}

The second superstep deals with the combination
phase. It consists of two computational blocks and no
communication is required.

198 J.A. González et al. / A tool for performance modeling of parallel programs

– In the first block (lines 25 and 38), the message re-

ceived from the partner is retrieved from the com-

munication library buffer to the process memory.

This requires time E[0] +E[1] × n.

– The combination itself is performed by the call to

routine combine in line 42. This computation

takes time proportional to the signal size, that is

F [0] + F [1] × n.

Thus, the formulas for the second superstep are:

Ωs,i = {i}

Φ2,i(FFT,X
d−1, ξd−1

i)
(6)

= Φ1,i(FFT,X
d−1, ξd−1

i)

+E[0] + F [0] + (E[1] + F [1])n

This recursive process follows until only one pro-

cessor remains in theBSP submachine. These single-

processor machines only perform one superstep. No

communication is needed and the computations consist

of the call to seqDandCFFT in line 47, which trans-

forms a signal with sizeN/P using a sequential version

of the same algorithm. The computational complex-

ity is O(N
P

log N
P

), and is approximated by the linear

expression:

Φ1,i(FFT, S
0, ξ0)

(7)

=G[0] +G[1]
N

P
log

(

N

P

)

Since all processors start the computation at the same

instant ξ
log(P)
i = 0. Using successively Eqs (5), (6)

and (7), leads to expression:

Φ2,i(FFT,X, ξ)

= log(P)(A[0] +B[0] + C[0] +E[0])

+G[0] +G[1](N/P) log(N/P)
(8)

+ log(P)F [0] + F [1]((P − 1)/P) ∗N

+D[1]((P − 1)/P) size + log(P)D[0]

4. Results

Table 3 presents the results for a 2 mega complex

FFT. The sizes used to obtain the ℵf [i] sets are the

ones shown in line 2 of Fig. 4. The curious decreasing

observed when going from 16 to 32 processors, is likely

due to the addition of two compensating errors, that is,

an over-estimation of one term and the under-estimation

of another.

Acknowledgments

We would like to thank Centro de Investiga-

ciones Energéticas, Medioambientales y Tecnológicas

(CIEMAT). This research has been partially supported

by Comisión Interministerial de Ciencia y Tecnologı́a

under project TIC1999-0754-C03.

References

[1] O. Bonorden, B. Juurlink, I. von Otte and I. Rieping,
The paderborn university BSP (PUB) library-design, imple-

mentation and performance, in International Parallel Process-

ing Symposium & Symposium on Parallel and Distributed Pro-

cessing (IPPS/SPDP), 1999.

[2] S. Browne, J. Dongarra, N. Garner, G. Ho and P. Mucci, A

portable programming interface for performance evaluation

on modern processors, The International Journal of High Per-

formance Computing Applications (2000), 189–204.
[3] J.W. Cooley and J.W. Tukey, An algorithm for the machine

calculation of complex fourier series, Mathematics of Compu-

tation 19 (1965), 297–301.

[4] A. Espinosa, T. Margalef and E. Luque, Automatic perfor-

mance evaluation of parallel programs, in Proc. Of the 6th

Euromicro Workshop on PDP, IEEE CS, 1998, pp. 43–49.

[5] D.E. Groom et al., Statistics, The European Physical Journal

C15 (2000), http://pdg.lbl.gov/2000/statrppbook.pdf.

[6] T. Fahringer and H. Zima, Static parameter based performance

prediction tool for parallel programs, in: International Con-

ference on Supercomputing, ACM Press, 1993, pp. 207–219.

[7] M. Goudreau, J. Hill, K. Lang, B. McColl, S. Rao, D.

Stephanescu, T. Suel and T.A. Tsantilas, Proposal for the

BSP worldwide standard library, http://www.bsp-worldwide.

org/standard/stand2.htm, 1996.
[8] M. Heath and J. Etheridge, Visualizing the performance of

parallel programs, IEEE Software 8(5) (1991), 29–39.

[9] J. Hill, W. McColl, D. Stefanescu, M. Goudreau, K. Lang, S.

Rao, T. Suel, T.A. Tsantilas and R.H. Bisseling, BSPlib: The

BSP programming library, Parallel Computing 24(14) (1998),

1947–1980.

[10] B.H.H. Juurlink and A.G. Wijshoff, The E-BSP model: In-

corporating general locality and unbalanced communication
into the BSP model, in International Euro-Par’96 Conference,

(Vol. II), Springer-Verlag, 1996, pp. 339–347.

[11] J. Labarta, S. Girona, V. Pillet, T. Cortes and L. Gregoris, Dip:

A parallel program development environment, in: Euro-Par,

(Vol. II), 1996, pp. 665–674.

[12] W.E. Nagel, A. Arnold, M. Weber, H.C. Hoppe and K.

Solchenbach, VAMPIR: Visualization and analysis of MPI

resources, Supercomputer 12(1) (1996), 69–80.
[13] C. Rodriguez, J.L. Roda, D.G. Morales and F. Almeida, h-

relation models for current standard parallel platforms, in 4th

International Euro-Par Conference, Springer-Verlag, 1998,

pp. 234–243.

[14] L.G. Valiant, A bridging model for parallel computation, Com-

munications of the ACM 33(8) (1990), 103–111.

[15] A. Zavanella and A. Milazzo, Predictability of bulk syn-
chronous programs using mpi, in 8th Euromicro PDP, 2000.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

