
A Tool for Prioritizing DAGMan Jobs and Its Evaluation ∗

Grzegorz Malewicz (malewicz@google.com)

Department of Engineering, Google, Inc., Mountain View, CA 94043, USA

Ian Foster (foster@mcs.anl.gov)

Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

and Division of Mathematics and Computer Science, Argonne National

Laboratory, Argonne, IL 60439, USA

Arnold L. Rosenberg (rsnbrg@cs.umass.edu)

Department of Computer Science, University of Massachusetts Amherst, Amherst,

MA 01003, USA

Michael Wilde (wilde@mcs.anl.gov)

Division of Mathematics and Computer Science, Argonne National Laboratory,

Argonne, IL 60439, USA

2000/04/29

Abstract. It is often difficult to perform efficiently a collection of jobs with complex

job dependencies due to temporal unpredictability of the grid. One way to miti-

gate the unpredictability is to schedule job execution in a manner that constantly

maximizes the number of jobs that can be sent to workers. A recently developed

scheduling theory provides a basis to meet that optimization goal. Intuitively, when

the number of such jobs is always large, high parallelism can be maintained, even if

the number of workers changes over time in an unpredictable manner. In this paper

we present the design, implementation, and evaluation of a practical scheduling tool

inspired by the theory. Given a DAGMan input file with interdependent jobs, the

tool prioritizes the jobs. The resulting schedule significantly outperforms currently

used schedules under a wide range of system parameters, as shown by simulation

studies. For example, a scientific data analysis application, AIRSN, was executed at

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

jogc_03.tex; 23/08/2006; 8:37; p.1

2 Malewicz et al.

least 13% faster with 95% confidence. An implementation of the tool was integrated

with the Condor high-throughput computing system.

Keywords: scheduling, dags, unpredictability, systems, grid, Condor, applications

of theory

1. Introduction

Advances in technology have made collections of Internet-connected

computers a viable computational platform [10]. Thus, we see many

efforts aimed at using multiple distributed computers to solve a single

computational problem. Perhaps the major impediment to scheduling

complex computations efficiently in this new environment is temporal

unpredictability:

− Communication takes place over the Internet, and thus may expe-

rience unpredictable delays.

− Remote computing workers may not be dedicated to performing

the work they receive remotely, and thus may execute that work

at an unpredictable rate.
∗ The research of G. Malewicz was supported in part by NSF Grant ITR-800864.

The research of I. Foster and M. Wilde was supported in part by the NSF GriPhyN

project and by the Mathematical, Information, and Computational Sciences Division

subprogram of the Office of Advanced Scientific Computing Research, U.S. Depart-

ment of Energy, under Contract W-31-109-Eng-38. The research of A.L. Rosenberg

was supported in part by NSF Grant CCF-0342417.

jogc_03.tex; 23/08/2006; 8:37; p.2

Prioritizing DAGMan Jobs 3

This uncertainty in timing virtually precludes accurate identification

of critical paths in complex computations, and hence demands a new

scheduling paradigm that acknowledges the strengths and weaknesses

of the Internet as a computational medium.

A series of recent papers [17, 18, 16] have identified a new goal

when scheduling computations that consist of multiple jobs with inter-

job dependencies. The goal is to schedule the jobs of a complex com-

putation in a manner that always maximizes the number of jobs that

are eligible for assignment to remote workers. In particular algorithms

have been developed [16] that can optimally schedule a large family of

complex computations. One hopes that this goal has the dual advantage

of:

− maximally exploiting available remote workers, by minimizing the

likelihood that there is no job for a remote worker; and

− minimizing the likelihood of the “gridlock” that can occur when

no new jobs can be assigned pending the completion of already

assigned jobs.

The scheduling theory aims to develop a theoretical basis for schedul-

ing complex Internet-based computations, rather than a practical schedul-

ing tool. Indeed, the theory’s demands are so great that some computa-

tions provably preclude optimal scheduling! The first goal of the current

paper is to develop a practical scheduling tool that is inspired by the

theory but that transcends the theory’s limitations—most essentially

by being able to handle all computations.

jogc_03.tex; 23/08/2006; 8:37; p.3

4 Malewicz et al.

The theory proceeded with an intuitive hope that keeping the

number of eligible jobs high increases the utilization of workers and

reduces the chances of “gridlock.” The second goal of the current paper

is to determine to what extent this hope can be realized in practical

grid scenarios.

We structure this article as follows. First, we outline the schedul-

ing theory [16] in Section 2, emphasizing the scheduling algorithm. In

Section 3.1, we extend that scheduling algorithm to obtain a heuris-

tic that agrees with the theory’s algorithm when it works, but that

provides a schedule for every computation. In Section 3.2, we describe

an implementation of our heuristic as a scheduling tool called prio,

which we have integrated into the Condor high-throughput computing

system [21]. In essence, prio prioritizes the interdependent jobs of a

given computation encouraging Condor to assign the jobs to workers

according to the priorities. Finally, in Section 4, we use simulation

studies to evaluate the performance gains achievable from the use of

the prio tool. We find that for a broad range of situations that one

might expect to encounter in Internet-based computing environments,

prio achieves significant performance improvements.

jogc_03.tex; 23/08/2006; 8:37; p.4

Prioritizing DAGMan Jobs 5

2. Theoretical foundations

2.1. An Overview

Within the theory [16], a computation is composed of jobs with depen-

dencies, modeled as a directed acyclic graph (dag, for short) G. Each

node of G represents a component job of the computation. Each arc

(u → v) of G represents an inter-job dependency: the execution of job

v cannot begin until the execution of job u has completed. We call u

a parent of v and v a child of u. When all parents of an unexecuted

job v have been executed, then v becomes eligible. The (eligible) jobs

of a computation G are assigned one at a time by a centralized server.

Each job is assigned to a worker who executes the job and returns its

results. Upon the return, the job stops being eligible. Time is measured

in an event-driven fashion, in which we call the processing of a single

job—its assignment, execution, and result-returning—a step.

Our goal is to determine a schedule Σ for a given G—i.e., an order

for assigning jobs to workers—that maximizes the number of eligible

jobs at every step of the computation. Thus, in a snapshot of the com-

putation wherein t steps have been taken we want the number EΣ(t)

of eligible jobs to be maximized, where the maximum is taken over

all sets of t executed jobs that honor the job-precedence constraints

represented by G’s arcs. Such a schedule is called Internet-Computing

optimal (IC optimal, for short). It is shown [17, 18] that a large class of

uniformly structured dags admit IC-optimal schedules. The scheduling

algorithm [16] significantly expands this class to a much broader class

jogc_03.tex; 23/08/2006; 8:37; p.5

6 Malewicz et al.

of dags, which are “assembled” in a uniform way, but whose structures

may be far from uniform. However, there do exist even some simple

dags whose structures preclude any IC-optimal schedule.

The framework of the preceding three sources idealizes the schedul-

ing problem in a fundamental way. There is the viewpoint that in any

snapshot of a computation, at most one remote worker must be served.

This idealization allows one to study the scheduling problem formally,

with proofs rather than simulations. But the ultimate value of the the-

ory requires that it lead to a practical scheduling regimen that reduces

execution times in realistic scenarios. Among other requirements, these

scenarios must allow unpredictable numbers of workers to arrive and

request jobs at unpredictable times, and it must allow for unpredictable

job-execution times.

2.2. The Algorithm

We formulate our scheduling algorithm by adapting the idealized schedul-

ing algorithm [16]. We now outline the structure of the idealized algo-

rithm, which schedules a given dag G in three phases—divide, recurse,

and compose—that match the illustration of Fig. 1. In this article the

arcs of the dags depicted are oriented upward. We assume reader’s

familiarity with the embedded standard algorithmic notions [8].

The Divide Phase

Step 1. We remove from G every shortcut arc, i.e., every arc

(u → v) such that v can be reached from u without using the arc.

Shortcuts do not affect job eligibility status, but they hamper the

jogc_03.tex; 23/08/2006; 8:37; p.6

Prioritizing DAGMan Jobs 7

Figure 1. Illustrating the six steps of the algorithm.

process of decomposing a dag into its “building blocks.” Let G ′ be

the dag obtained by removing all shortcuts from G.

Step 2. We decompose G ′ into simpler dags, using a decomposition

strategy that reflects our hope that G ′ can be composed from maximal

connected bipartite dags (building blocks, for short).

jogc_03.tex; 23/08/2006; 8:37; p.7

8 Malewicz et al.

A dag H is bipartite if its node-set can be partitioned into nonempty

sets U and V , in such a way that each arc leads from a node in U to a

node in V . H is connected if, when arc orientations are ignored, there

is a path connecting every pair of nodes in the resulting undirected

graph. H is a maximal connected bipartite dag if adding any node

of G ′ to H creates a dag that is not bipartite and connected.

We iterate the following process to decompose G′. (1) We identify

a building-block subdag B of G ′ all whose sources are also sources of

G′. (2) We detach B by removing from G ′ all sources of B and all sinks

of B that are also sinks in G ′. Now, the decomposition process may

“fail,” because at some point when G ′ is not yet empty, the surviving

remnant of G ′ may not have a bipartite subdag all whose sources are

sources of G ′. If the process succeeds, though, then the decomposition

yields a superdag of G′ whose nodes are the building blocks {Bi} that

have iteratively been detached from G′, and whose arcs show how the

dags need to be composed to yield G ′.

The Recurse Phase

Step 3. We attempt to find an IC-optimal schedule Σi for each

building block Bi. This can often be done because the Bi often have

quite simple structure, certainly much simpler than G ′’s. There ex-

ist [16, 7] explicit IC-optimal schedules for large families of bipartite

dags; Fig. 2 illustrates a representative sample. We simplify the quest

for IC-optimal schedules by noting [16] that such schedules can always

execute all non-sinks of a dag before any sink. As stated earlier, our

quest for IC-optimal schedules may fail for some building blocks.

jogc_03.tex; 23/08/2006; 8:37; p.8

Prioritizing DAGMan Jobs 9

The Combine Phase

Step 4. We investigate possible “priorities” among the building

blocks. Informally, we say that building block Bi “has priority over”

building block Bj if the schedule that executes all sources of Bi before

any of Bj renders sinks eligible at least as fast as does any schedule

for executing both building blocks. We formalize this notion via the

following formal relation. We say that Bi � Bj whenever:

− Bi admits an IC-optimal schedule Σi, and Bj admits an IC-optimal

schedule Σj;

− the total number of eligible jobs in both dags is always kept max-

imum if we first execute all sources of Bi according to schedule

Σi, then execute all sources of Bj according to schedule Σj , then

execute all sinks of Bi and Bj in any arbitrary order.

Phrased mathematically, if Bi has si sources, and Bj has sj sources,

then:

(∀x ∈ [0, si]) (∀y ∈ [0, sj]) :

EΣi(x) + EΣj (y) ≤
EΣi(min{si, x + y}) + EΣj ((x + y) − min{si, x + y}),

(1)

We hope that, for all distinct indices i and j, either Bi �Bj or Bj �Bi.

If the desired priorities do hold, and if the priorities do not conflict

with the inter-building-block dependencies induced by the topological

placement of the Bi’s in the composite dag G′, then by ordering the

execution of the Bi’s from one with the highest priority to one with the

lowest priority (because � is transitive [16]; � is not reflexive neither

jogc_03.tex; 23/08/2006; 8:37; p.9

10 Malewicz et al.

antisymmetric) we obtain an IC-optimal schedule for G ′—and, thereby,

for G.

Step 5. Motivated by the preceding sentence, we check if the

superdag respects the inter-building-block priorities. Specifically, we

check if, within the superdag, for every node Bi, and every child Bj

of Bi, we have Bi � Bj . If this holds, then there is hope that the

dependencies created by composition do not prevent us from executing

a job when we would like.

Step 6. By the time we reach this step, we know that G admits

an IC-optimal schedule. We can produce one such schedule as follows.

We take any topological sort of the superdag, and sort its components

stably1 with respect to the priority relation �. We thereby obtain

a sequence Bπ(1),Bπ(2), . . . ,Bπ(n), of G′’s component building blocks,

where π is a permutation on {1, . . . , n}. One then obtains an IC-optimal

schedule for G by first executing all jobs that are the sources of Bπ(1),

then all jobs that are the sources of Bπ(2), and so on, according to the

respective IC-optimal schedules for the Bi, and finally executing all sink

jobs of G.

Henceforth, we call the scheduling algorithm of this section the

theoretical algorithm.

1 That is, if Bi � Bj and Bj � Bi, then the sort maintains the original relative

order of Bi and Bj .

jogc_03.tex; 23/08/2006; 8:37; p.10

Prioritizing DAGMan Jobs 11

(1,2)−W: (2,2)−W: (1,5)−M:

(2,5)−M: 3−Clique:

4−Cycle:

4−N:

Figure 2. Sample bipartite dags with IC-optimal schedules that execute sources from

left to right, then all sinks in arbitrary order.

3. A Heuristic Scheduling Algorithm and Tool

The key idea that emerges from the theoretical study [16] is that

one can sometimes derive an IC-optimal schedule for a complex dag

by decomposing it into simple components, scheduling each compo-

nent independently, and then combining the resulting schedules. The

theoretical algorithm, however, has two key shortcomings:

− The algorithm fails to find a schedule for G that does not have any

IC-optimal schedule.

− Even for some dags that admit IC-optimal schedules, the theoret-

ical scheduling algorithm may fail.2

We address these shortcomings by developing a heuristic scheduling

algorithm that produces a valid schedule for every dag. The heuristic is

“graceful,” in that it produces an IC-optimal schedule for every dag for

which the theoretical algorithm works. And, by gracefully extending
2 Ongoing work [7, 6] is broadening the range of dags that the algorithm can

schedule successfully.

jogc_03.tex; 23/08/2006; 8:37; p.11

12 Malewicz et al.

the approach of the theoretical algorithm, the heuristic takes steps to

enhance the production rate of eligible jobs for every dag. We then

describe how we have implemented this heuristic and integrated it

with the Condor system [21]. Next we list possible applications of the

implementation—four scientific dags—and discuss the improvements in

the rate of producing eligible jobs achieved by the implementation. We

close the section by giving our algorithm engineering approaches, and

sample running times of the implementation on the scientific dags.

3.1. The Scheduling Heuristic

We describe how the steps of the theoretical algorithm were modified

to yield a heuristic algorithm that produces a schedule for any dag.

The Divide Phase

Step 1. This step is identical to that of the theoretical algorithm.

We remove all shortcuts using an existing algorithm [13, 1].

Step 2. We generalize the decomposition process so that it never

fails, i.e., so that it decomposes every dag. We accomplish this by

admitting connected components that are not necessarily bipartite, at

each step when no bipartite component exists.

For any source s of (the current remnant of) G′, we let C(s) be the

smallest subgraph of G ′ with the following properties.

1. It contains job s.

2. If C(s) contains a source of G′, then it contains every child of that

source.

jogc_03.tex; 23/08/2006; 8:37; p.12

Prioritizing DAGMan Jobs 13

3. If C(s) contains a job, then it contains every parent of the job.

C(s) can be constructed using a BFS-like algorithm. We start with the

sets S = {s} and T = ∅, and we iterate the following process until

neither S nor T changes.

1. Add to T the children of every job in S.

2. Add to T the parents of every job in T .

3. Add to S every source of G ′ that is in T .

We decompose G ′ into dags C1, . . . , Cn by iterating the following

process until G ′ becomes empty. Let s1, . . . , sk be the sources of the

current remnant of G′.

1. Select a subgraph C(si) of G′ that is minimal with respect to con-

tainment; i.e., choose i so that there is no j such that C(sj) is a

strict subgraph of C(si). One can show that any two minimal such

subgraphs are either equal or disjoint.

2. Detach the selected C(si) from G′ by removing all nonsinks of C(si)

and all sinks of C(si) that are sinks of G ′.

This process produces a sequence of components C1, . . . , Cn and a su-

perdag describing how to compose the components to yield G ′.

This generalized decomposition process is equivalent to the original

decomposition whenever G′ is composed of bipartite dags. Moreover,

one can show that when each component has an IC-optimal schedule,

and the components can be linearly prioritized, C1 � · · · � Cn, then G

jogc_03.tex; 23/08/2006; 8:37; p.13

14 Malewicz et al.

admits an IC-optimal schedule. This motivates the subsequent steps of

the heuristic.

The Recurse Phase

Step 3. We extend step 3 of the theoretical algorithm. We check

if each component Ci is (isomorphic to) a bipartite dag with a known

IC-optimal schedule. If so, we use an explicit IC-optimal schedule. If

not, then we produce a schedule using a heuristic that executes jobs in

the order of job-outdegree (and that thus executes sinks last), breaking

ties arbitrarily. As a result, we produce a schedule for every component,

and whenever a component is known to have an IC-optimal schedule,

the produced schedule is IC optimal. Let each component Ci thereby

be assigned the schedule Σi.

The Combine Phase

Steps 4 and 5. The verification of �-priorities of the theoretical

algorithm is not relevant in the context of our heuristic, since we wish

to provide a schedule for every dag, not just those that are assembled in

a convenient way. However, we do not want to abandon the role of the

�-priority relation as a scheduling guide, so we generalize the relation

and use it in a more general way.

Let us be given dags Ci and Cj, with associated schedules Σi and

Σj, respectively. Say that these schedules execute sinks only after hav-

ing executed all non-sinks. We say that Ci has �r-priority over Cj ,

denoted Ci �r Cj , where 0 ≤ r ≤ 1, when the following holds at every

step t of the computation of dags Ci and Cj. The number of eligible jobs

produced by the schedule that executes all non-sinks of Ci according to

jogc_03.tex; 23/08/2006; 8:37; p.14

Prioritizing DAGMan Jobs 15

schedule Σi, then executes all non-sinks of Cj according to schedule Σj,

then executes all sinks in arbitrary order, is at least the fraction r of

the largest number of eligible jobs that could be produced at step t by

any schedule that executes both Ci and Cj. Phrased mathematically, if

Ci and Cj have si and sj non-sinks, respectively, then:

(∀x ∈ [0, si]) (∀y ∈ [0, sj]) :

r ·
(
EΣi(x) + EΣj (y)

)
≤

EΣi(min{si, x + y}) + EΣj ((x + y) − min{si, x + y}),

Compare this system of inequalities with (1): when Ci and Cj are bipar-

tite dags, and Σi and Σj are IC-optimal schedules, the �1-priority rela-

tion is exactly the �-priority relation. For brevity, we omit mentioning

schedules Σi and Σj when they are clear from context.

The priority of Ci over Cj is the largest r such that Ci �r Cj. Note

that this quantity always lies between 0 and 1 inclusive.

Step 6. We produce a “best-efforts” schedule for G by greedily

selecting a source of the superdag that maximizes priority. Specifically,

let S be the superdag resulting from the decomposition of G′. We repeat

the following process until S is empty. Let C′
1, . . . , C ′

k be the sources of

S. Each C′
i has a certain priority over any other source C′

j . Let pi be the

smallest such priority: pi = min
1≤j≤k, j �=i

(priority of C ′
i over C ′

j). This says,

intuitively, that, were we to execute supernode C ′
i now, we could “lose”

at most the factor 1/pi of the maximum possible number of eligible jobs,

over any decision. We select the next supernode to execute “greedily,”

by choosing a supernode C ′
i that maximizes pi. We schedule the non-

sinks of C′
i according the schedule for C′

i constructed in step 3, and

jogc_03.tex; 23/08/2006; 8:37; p.15

16 Malewicz et al.

we remove C′
i from S. Once having executed all non-sinks of G in this

manner, we execute all of its sinks, in arbitrary order.

It can be shown that, when steps 4 and 5 of the theoretical algo-

rithm succeed, the just-described greedy execution regimen achieves the

same effect as does the stable sorting of a topological sort of superdag

S mandated by step 6 of the theoretical algorithm.

3.2. The prio Tool and Condor

We implemented the scheduling heuristic of Section 3.1 and integrated

it with the DAGMan (DAG Manager) component of the Condor high

throughput computing system to produce a tool, called prio, that

schedules any dag according to our heuristic.

Condor offers a condor submit dag command line tool for ex-

ecuting a dag. The tool takes a DAGMan input file as a parameter

that specifies jobs and their dependencies. Each job has a name and

an associated job-submit description file (JSDF, for short) determining

the file that must be executed. Fig. 3 depicts an example DAGMan

input file and a JSDF.

There is a mechanism to prioritize jobs in Condor. The con-

dor submit dag tool has an internal queue of eligible jobs, called the

DAGMan queue. Under certain conditions, jobs within this queue are

forwarded to the Condor queue. The latter queue stores jobs of different

users. Any user can specify the order in which her queue-resident jobs

are assigned to workers, by specifying the priority attribute of the job

specified via its JSDF. When priorities are not specified, then jobs are

jogc_03.tex; 23/08/2006; 8:37; p.16

Prioritizing DAGMan Jobs 17

assigned in “FIFO order”—the order determined by the sequence in

which the jobs become eligible.

The prio tool utilizes this mechanism. The tool:

1. takes a DAGMan input file,

2. parses the file to extract the dag of job dependencies,

3. applies the scheduling heuristic to the dag, thereby producing a

schedule, called PRIO, and

4. instruments the DAGMan input file and JSDFs to assign a priority

to each job.

Within the DAGMan input file, the jobpriority macro is defined

for each job using the Vars keyword. The value of the macro reflects

job’s order in the PRIO schedule. Within each job’s JSDF, the value

of the jobpriority macro is assigned to the priority attribute.

Fig. 3 presents an example of invoking the prio tool on a DAGMan

input file. The file specifies a dag composed of five jobs: a, b, c, d, and

e, with dependencies a → b, c → d, and c → e. The PRIO schedule is

c,a,b,d,e. This schedule is IC optimal. The file is instrumented with five

lines defining the jobpriority macro for each job; e.g., the value of

the macro for job c is 5, which means that the job will have the highest

priority. Each JSDF is instrumented with a single line that assigns the

value of the macro to the priority attribute. Only one JSDF is depicted

for simplicity. Jobs a and c are initially eligible. If they are forwarded

to the Condor queue in a “FIFO” order, then job a is forwarded there

jogc_03.tex; 23/08/2006; 8:37; p.17

18 Malewicz et al.

before job c. However, the priority of job c is higher, and so Condor

will then assign that job to a worker before it assigns job a.

Figure 3. An invocation of prio on a file IV.dag results in changes (bold) to the

file, and also changes to the submit description files.

We could have hard coded the value of priority in each JSDF,

without resorting to the indirection provided by the macro, but this

could lead to inconveniences, since a single JSDF may be associated

with jobs of more than one DAGMan input file, and these jobs may

require different priorities.

The current integration has a shortcoming. In order to enforce the

order of job assignment to workers, all eligible jobs must be forwarded

to the Condor queue, without keeping them in the DAGMan queue.

If some jobs with high priorities were to be kept inside the DAGMan

queue while low-priority jobs were already forwarded to the Condor

queue, then Condor could assign low-priority jobs to workers, unaware

that high-priority jobs are eligible. Hence, the -maxjobs parameter of

the condor submit dag command that throttles the forwarding from

the DAGMan queue to the Condor queue should not be used. However,

Condor builds a staging file for the jobs in the Condor queue. As a

result, an unacceptably large staging file may be created. That short-

jogc_03.tex; 23/08/2006; 8:37; p.18

Prioritizing DAGMan Jobs 19

coming may be alleviated by modifying Condor to enable prioritizing

jobs in the DAGMan queue.

3.3. Applications

There are several computations to which prio could be applied. As

examples, we collected four dags each representing a scientific data

analysis computation comprised of many jobs:

1. AIRSN [12] of width 250 implements a functional Magnetic Res-

onance Imaging (fMRI) computation. The dag has 773 jobs.

2. Inspiral [9] implements a search for gravitational waves. The dag

has 2,988 jobs.

3. Montage [3] implements an assembling of a collection of images

to produce a single image of a part of the sky. The dag has 7,881

jobs.

4. SDSS [2] implements a search for clusters of galaxies. The dag has

48,013 jobs.

Each dag has complex job dependencies. For example, the AIRSN

has a structure of a “double umbrella with fringes” (see Figure 5). There

are about twenty jobs (the “handle”) that proceed a fork of width 250

(the first “cover”), followed by a join, followed by another fork of width

250 (the second “cover”), followed by the final join; each parallel job of

the first fork also depends on a dedicated job (a “fringe”). The dag is

actually a member of a family of AIRSN dags parameterized by width.

jogc_03.tex; 23/08/2006; 8:37; p.19

20 Malewicz et al.

The other three dags also have complex structures: the Inspiral includes

a non-bipartite component with over 1000 jobs, the Montage includes

a bipartite component with over 1000 jobs each of whose source has

from a few to about ten children some of which are shared among the

sources, the SDSS includes a bipartite component with over 1,500 jobs

whose each source has three children some of which are shared among

the sources.

3.4. Differences in Eligibility

We exemplify the differences in the number of eligible jobs produced

by the PRIO and FIFO schedules. For a given dag, let ΣPRIO be

the schedule produced by the prio tool for the dag, and ΣFIFO be

a schedule resulting from executing eligible jobs in the order in which

they become eligible. Each schedule determines a sequence in which

the jobs of the dag can be executed. Recall that EΣ(t) is the number

of eligible jobs when exactly the first t jobs of the schedule Σ have

been executed. We then compute, at every step t, the difference in the

number of eligible jobs, EΣPRIO
(t)−EΣF IF O

(t) at that step. The plots of

the difference for the four dags are depicted in Fig. 4. Typically, at every

step, the number of eligible jobs produced by the PRIO schedule is at

least that produced by the FIFO schedule; the number is sometimes

significantly higher. This suggests that the prio tool has the potential

of generating schedules for “real” dags that keep the number of eligible

jobs high.

jogc_03.tex; 23/08/2006; 8:37; p.20

Prioritizing DAGMan Jobs 21

AIRSN Inspiral

Montage SDSS

Figure 4. The differences in the numbers of eligible jobs between PRIO and FIFO

schedules as a function of the number of executed jobs, normalized (left) by the

number of jobs in the respective dag and absolute (right).

We can explain why the difference is so high for the AIRSN dag.

Fig. 5 shows the PRIO schedule for the dag. We note that the job with

priority 753 (in a black frame) has many children jobs (highlighted

with a dark shade). Each of these children jobs has another parent

(highlighted with a light shade). None of these (dark) children can

become eligible until the (black-framed) job with priority 753 gets

jogc_03.tex; 23/08/2006; 8:37; p.21

22 Malewicz et al.

executed. Hence the job is in a way a bottleneck of the computation.

Note that PRIO assigns high priority to that (black-framed) job and

its ancestors, higher than the priority of the other (light) parents of the

(dark) children. Hence when the other (light) parents get executed one

by one, their (dark) children become eligible one by one, too, since the

(black-framed) job with priority 753 is already executed by then. On

the contrary, FIFO starts by executing the (light) parents since they

are immediately eligible, before it executes the (black-framed) job with

priority 753. But then when these (light) parents get executed one by

one, their (dark) children do not become eligible pending the execution

of the (black-framed) job.

Figure 5. The AIRSN dag of width 250 with jobs prioritized by the prio tool; some

parts of the dag are omitted. See text for details.

3.5. Improvements due to Engineering

We significantly decreased the running time of our implementation

by engineering our scheduling heuristic. We note that the four sci-

entific dags are composed almost exclusively of bipartite dags. Since

jogc_03.tex; 23/08/2006; 8:37; p.22

Prioritizing DAGMan Jobs 23

containment-minimality is automatic in bipartite dags, we could ac-

celerate our decomposition algorithm by having it first try to identify

a bipartite subgraph whose sources are the sources of G ′, invoking a

more general (and time-consuming) search for a containment-minimal

subgraph C(s) only if there is no bipartite subgraph. This pragmatic

change reduced the time to decompose the SDSS dag with 48,013 jobs

from over 2 days to a few minutes. The second bottleneck in our heuris-

tic was the processing of the superdag. There, we repeatedly select a

source of the remnant superdag that has the highest minimum priority.

We initially employed a naive quadratic-time algorithm, but we later

replaced that with a B-Tree-based priority queue [8], which reduced

the running time by a substantial factor. Our final implementation has

over 8,000 LOC, or 208KB, in C++ with 11 classes. The code has been

submitted for release to the Condor team.

3.6. Overhead

We report the running time and the memory consumption of the prio

tool invoked on the four scientific dags. We compiled the tool in Mi-

crosoft Visual C++ .NET environment in release configuration and ran

it on a Windows machine with 3.4GHz Pentium 4 processor and 4GB

RAM. The tool was used to instrument the DAGMan input files but

not the JSDFs, since the latter were not available to us. The running

time and the memory consumption were:

− AIRSN with 773 jobs took under 1 second using at most 2MB of

memory,

jogc_03.tex; 23/08/2006; 8:37; p.23

24 Malewicz et al.

− Inspiral with 2,988 jobs took 16 seconds using at most 21MB of

memory,

− Montage with 7,881 jobs took 8 seconds using at most 104MB of

memory,

− SDSS with 48,013 jobs took 845 seconds using at most 1.3GB of

memory.

4. Performance Gains from the prio Tool

We run a suite of simulations to obtain insights into the performance

gains one might hope to achieve from using the prio tool to prioritize

jobs of a given dag. As a first cut at such evaluation, we perform our

simulations under the assumption that all jobs have roughly the same

execution time. One might expect this assumption to be approachable

in Internet-based computing environments, if the server benchmarks

jobs, monitors workers’ past performance and present resources (cf. [4,

14, 20]), and then matches jobs to workers accordingly. However, the

assumption is certainly an idealization, since a given dag could contain

a very fast job and a very slow job, and then it may be difficult to match

the slow job to so fast a worker to yield the execution time similar to

that of the very fast job. We nonetheless believe that the results of our

simulations give insight into the potential benefits of our scheduling

algorithms within real Internet-based computing environments, such

as grid systems.

jogc_03.tex; 23/08/2006; 8:37; p.24

Prioritizing DAGMan Jobs 25

4.1. The System Model

We model a grid as a stochastic system. We are given a dag G rep-

resenting a DAGMan input file with jobs and their interdependencies.

We focus on executing the jobs of the dag G (no other dag is executed

together with G). Workers arrive at the server in batches, each worker

requesting one job. The number of workers in a batch is the size of

the batch. The size of a batch is exponentially distributed with mean

μ
BS

. The first batch arrives at time 0, and batch interarrival time is

exponentially distributed with mean μ
BIT

. The running time of a job on

a worker has normal distribution with mean 1 and standard deviation

0.1.

We decided to adopt the batched model for two reasons. We explic-

itly batch requests allowing more than one request for jobs to arrive at

a given time. The batch size follows a distribution, so as to model

variability in the number of idle workers available in the grid over

time. Variability exists in real grid deployments. Moreover, variabil-

ity changes: sometimes variability is low, sometimes it is high. In our

model, the extent of variability is parameterized by μBS . The fact that

we can capture and control the extent of variability through such a sim-

ple model enables the study the influence of variability in “isolation”. A

more comprehensive model that explicitly models a worker temporarily

quitting the computation, job prefetching, and other features of existing

grid deployments is beyond the scope of this paper. Another reason for

conceptually batching request is more pragmatic. One way to design a

server is to make it periodically check for requests. When it checks for

jogc_03.tex; 23/08/2006; 8:37; p.25

26 Malewicz et al.

the kth time, many requests may have accumulated since the (k− 1)th

check. These accumulated requests correspond to a batch.

We consider two scheduling regimens. (a) An oblivious scheduling

algorithm is specified by a total order P on G’s jobs, that is used to

prioritize eligible jobs. When a batch of size b arrives at the server, there

is a certain number e of eligible jobs that have not yet been assigned

to workers. The server selects the min {b, e} jobs that are the smallest

under order P , and assigns those jobs to the requesting workers. When

an oblivious algorithm is instantiated with the order prescribed by the

PRIO schedule (produced by the prio tool), we call the algorithm

PRIO. (b) In contrast, a FIFO scheduling algorithm maintains a FIFO

queue of eligible jobs. When a batch of requests arrives, jobs from

the front of the queue are assigned to the requesting workers; a newly

eligible job is put at the end of the queue.

A basic feature of our simulations is that workers whose requests

are not filled are not rolled over to the next batch arrival. Our ratio-

nale is that these workers may meanwhile be “intercepted” by other

computations.

We consider the PRIO and FIFO scheduling algorithms because

they enable a comparison of two scheduling regimens. Currently, a

widely used dag scheduler for grids, DAGMan [21], follows a FIFO

order when assigning jobs of a dag to workers. The alternative method

studied in this paper sequences jobs using prio, in an attempt to always

keep the number of eligible jobs as large as possible.

jogc_03.tex; 23/08/2006; 8:37; p.26

Prioritizing DAGMan Jobs 27

We use three (related) metrics to measure the performance of an

algorithm.

(1) The expected execution time is the mean time until all jobs of G
have been executed. We can informally approximate this expectation

by simulating the execution of G under our stochastic model so as to

measure an execution time, and then compute the average of several

measurements.

(2) The probability of stalling is the probability that, when a batch of

requests arrives, given that there is at least one job that is unexecuted

and unassigned, all eligible jobs have already been assigned. This means

that the server has no new job to assign to any worker at that time, even

though a job will still have to be assigned to a worker. We can informally

approximate this probability in a given simulation by: (a) computing

the number of batches that have arrived until the batch when the last

job was assigned, (b) computing the number of these batches such that

when the batch arrived, every eligible job was already assigned, and

(c) computing the ratio of the latter number to the former number. We

then average the ratios across several simulations.

(3) The expected utilization is the mean of the ratio of the number of

jobs in G, divided by the total number of requests that have arrived

until the batch when the last job was assigned. In other words we

measure the expectation of the quantity “satisfied/requested.” We can

informally approximate the expectation by: (a) computing the total

number of requests in batches that have arrived in a given simulation

until the batch when the last job was assigned, and (b) divide the

jogc_03.tex; 23/08/2006; 8:37; p.27

28 Malewicz et al.

number of jobs in the dag by the total. We then average the result

across several simulations.

We compare PRIO and FIFO using these metrics. Specifically, we

compute the ratio of the expected execution time of a dag G under

the PRIO algorithm over its expected execution time under the FIFO

algorithm. We compute analogous ratios for the probability of stalling

and for the expected utilization.

4.2. Simulation Setup

Recall our assumption that each job runs for 1 unit of time on average.

We select the mean batch interarrival time μBIT as a power of 10

in the range 10−3 ↔ 103, thereby modeling both scenarios wherein

workers arrive relatively frequently compared to the running time of a

job (μBIT = 10−3) and scenarios wherein workers arrive rarely (μBIT =

103). The mean batch size μBS is a power of two in the range 1 ↔ 216,

thereby encompassing the size of a large grid deployment [11, 21]. Our

parameter ranges capture a wide spectrum of load conditions that grid

may encounter.

Given a pair (μBIT , μBS), we compute ratios of metrics as follow.

We first consider execution time. Let μ
F IF O

and μ
PRIO

be the true mean

execution times of the dag G, under, respectively, the FIFO and the

PRIO scheduling algorithms. Since we are unable to compute the ratio

μPRIO/μF IF O exactly, we determine a 95% confidence interval for the ra-

tio. To that end, we compute an empirical sampling distribution s
PRIO

of μ
PRIO

, by taking p samples of the simulated execution time of G, each

jogc_03.tex; 23/08/2006; 8:37; p.28

Prioritizing DAGMan Jobs 29

being the average of q measurements. It is recommended [5] that p be

chosen around 300 and q around 50 for hypothesis testing. We actually

increased q to 300, in order to narrow our confidence intervals. Similarly,

we compute an empirical sampling distribution s
F IF O

of μ
F IF O

. We use

these two distributions to compute an empirical sampling distribution

of the ratio μ
PRIO

/μ
F IF O

. Specifically, we consider every pair (x, y) of

samples from s
PRIO

and s
F IF O

and calculate x/y, thus computing p2

values. Whenever we encounter y = 0, we do not report any confidence

interval. In other cases, we remove the 2.5% smallest and largest values.

The resulting range of values defines a 95% confidence interval for

the ratio. We also compute the mean and the standard deviation of

the empirical sampling distribution of μ
PRIO

/μ
F IF O

. Statistics for the

ratio of expected utilization and the ratio of probability of stalling are

computed in a similar fashion.

4.3. Our Results and Their Explanation

We compare the PRIO and the FIFO algorithms on the four scientific

dags: AIRSN of width 250, Inspiral, SDSS and Montage.

The ratios of performance metrics for the four dags are depicted in

Fig. 6, 7, 8, and 9. Each figure contains three plots depicting ratios of

the three performance metrics; each plot has seven sections separated

by vertical lines; a section shares the same value of μ
BIT

. Within each

section, μBS increases from 20 to 216, left to right. Vertical segments

depict 95% confidence intervals for the ratios of performance metrics;

bold dots denote medians.

jogc_03.tex; 23/08/2006; 8:37; p.29

30 Malewicz et al.

We describe the general trends in our results. When requests arrive

quite frequently (μ
BIT

= 10−3), the algorithms have about the same

performance on all the dags except for SDSS. However, when the arrival

is less frequent (μ
BIT

≥ 10−1), PRIO has some advantage over FIFO

for a certain range of batch size μBS . For a given μ
BIT

, the advantage is

maximized for a certain value of μ
BS

. For AIRSN, that value is about

25; for Inspiral, about 29; for Montage, about 27; for SDSS, about 213.

In particular, for AIRSN when μ
BIT

= 1 and μ
BS

= 24, the median

of the ratio of expected execution time is below 0.85; using PRIO we

obtain a gain of at least 13% in the expected execution time with 95%

confidence. The gains are different for different dags—the strongest are

for AIRSN and the weakest for Montage.

Intuitively, PRIO can perform better than FIFO because of in-

creased parallelism. When there is a large number of eligible jobs, then

upon arrival of a sufficiently large batch of requests, many jobs can be

assigned. As a result, worker utilization can be higher and the chances

that there is no work to assign at all can be lower, compared to the

case when the number of eligible jobs is small. These opportunities are

realized under certain conditions, however. First the dag must have a

shape that allows to keep the number of eligible jobs high. For example,

the AIRSN dag had a shape of an “umbrella with fringes” that enabled

PRIO to keep the number of eligible jobs higher than FIFO across

many steps. Second, batches should not be too big. When every batch

is rather big compared to the size of the dag, then the execution time is

trivially related to the length of a critical path—simply then execution

jogc_03.tex; 23/08/2006; 8:37; p.30

Prioritizing DAGMan Jobs 31

a. Ratio of expected execution time

0.8
0.85
0.9
0.95
1

1.05
1.1

b. Ratio of probability of stalling

0

0.5

1

1.5

2

c. Ratio of expected utilization

0.9

1

1.1

1.2

1.3

µ
BIT

= 10−3 10−2 10−1 100 101 102 103

Figure 6. Performance gains for PRIO compared to FIFO for AIRSN of width 250.

Line segments represent 95% confidence intervals; bold dots medians. Missing when

the probability was zero.

proceeds step-by-step like a BFS traversal of the dag—irrespective of

a schedule used. This is manifested by the ratios being close to 1

when μBS is close to 216. Third, an equivalent scenario occurs when

batches arrive rather fast compared to how long it takes to execute a

job. This is manifested by ratios being close to 1 when μBIT is 10−2

and 10−3. Fourth, batches cannot be too small, because if they are,

then the execution time is trivially related to the number of jobs in

the dag—simply then execution is similar to a sequential execution on

jogc_03.tex; 23/08/2006; 8:37; p.31

32 Malewicz et al.

a. Ratio of expected execution time

0.8
0.85
0.9
0.95
1

1.05
1.1

b. Ratio of probability of stalling

0

1

2

3

4

5

c. Ratio of expected utilization

0.8

0.9

1

1.1

1.2

µ
BIT

= 10−3 10−2 10−1 100 101 102 103

Figure 7. Performance gains for Inspiral.

one worker—irrespective of a schedule used. This is manifested by the

ratios being lose to 1 when μBS is.

5. Conclusions

We have presented the design, implementation and integration with

Condor of a scheduling heuristic that prioritizes jobs of any DAGMan

input file. The heuristic attempts to sequence job execution so as to

always keep the number of eligible jobs high, building on earlier the-

jogc_03.tex; 23/08/2006; 8:37; p.32

Prioritizing DAGMan Jobs 33

a. Ratio of expected execution time

0.85

0.9

0.95

1

1.05

b. Ratio of probability of stalling

0

1

2

3

4

c. Ratio of expected utilization

0.9

0.95

1

1.05

1.1

1.15

µ
BIT

= 10−3 10−2 10−1 100 101 102 103

Figure 8. Performance gains for SDSS.

oretical work. We compared the heuristic with the FIFO algorithm

currently used by the DAGMan component of Condor on four scien-

tific dags. We demonstrated through a simulation that under a wide

range of system parameters, with high confidence, our tool improves

performance.

Our experimental results suggest that scheduling computations

to maximize the number of eligible jobs is a promising optimization

objective for Internet-based computing, at least when compared to

FIFO scheduling. It appears from our simulations that when batches

jogc_03.tex; 23/08/2006; 8:37; p.33

34 Malewicz et al.

a. Ratio of expected execution time

0.94
0.96
0.98
1

1.02
1.04
1.06

b. Ratio of probability of stalling

0

0.5

1

1.5

2

c. Ratio of expected utilization

0.94
0.96
0.98
1

1.02
1.04
1.06

µ
BIT

= 10−3 10−2 10−1 100 101 102 103

Figure 9. Performance gains for Montage.

of requests arrive rather often, or when batch sizes are either small or

large, there is little difference in performance between prio-scheduled

computations and FIFO-scheduled computations. However, when batch

sizes are in the medium range, and batches arrive not quite so often—

which is perhaps the more natural scenario in many Internet-based

computing environments, such as grids—our simulations suggest that

prio-scheduled computations exhibit significant performance improve-

ments over FIFO-scheduled computations, for a wide range of system

parameters. This suggests that when the relevant parameters are dif-

jogc_03.tex; 23/08/2006; 8:37; p.34

Prioritizing DAGMan Jobs 35

ficult to estimate, it may be advantageous to prioritize jobs using the

prio tool.

More experimentation is needed to evaluate prio and verify the

extent to which the algorithmic techniques of the underlying theory

are practical. In addition to further simulations along the lines of those

reported here, on a broad repertoire of other dags, it is important to test

our ideas within real Internet-based computing environments. Work has

already begun in both directions.

Acknowledgements

We thank James Annis (Fermi Lab), Gaurang Mehta (ISI), and Douglas

A. Scheftner (U. Chicago) for the opportunity to examine scientific

dags; members of the Condor team, Peter F. Couvares, Miron Livny,

and R. Kent Wenger, for suggesting a method of integrating prio

with Condor and for code review; and Argonne National Laboratory

and the University of Chicago for providing access to the Jazz and

Teraport clusters where simulations were performed. We are happy to

acknowledge our intellectual debt to Gennaro Cordasco of U. Salerno

and Matthew Yurkewych of U. Massachusetts, both collaborators in

developing the theoretical underpinnings of this work. G. Malewicz

wishes to thank Frederica Darema (NSF) for support that facilitated his

visit to Argonne. His work was performed in part while at U. Alabama.

jogc_03.tex; 23/08/2006; 8:37; p.35

36 Malewicz et al.

References

1. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed

graph. SIAM J. Comput. 1 (1972) 131–137.

2. Annis, J., Zhao, Y., Voeckler, J., Wilde, M., Kent, S., Foster, I.: Applying

Chimera Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey.

ACM/IEEE Conference on Supercomputing (2002) 1–14.

3. Berriman, B., Bergou, A., Deelman, E., Good, J., Jacob, J., Katz, D.,

Kesselman, C., Laity, A., Singh, G., Su, M.-H., Williams, R.: Montage: A

Grid-Enabled Image Mosaic Service for the NVO. Astronomical Data Analysis

Software & Systems (2003).

4. Buyya, R., Abramson, A., Giddy, J.: A case for economy Grid architec-

ture for service oriented Grid computing. 10th Heterogeneous Computing

Wkshp. (2001).

5. Cohen, P.R.: Empirical Methods for Artificial Intelligence. MIT Press, Cam-

bridge, MA (1995).

6. Cordasco, G., Malewicz, G., Rosenberg, A.L.: Advances in a dag-scheduling

theory for Internet-based computing. Typescript, Univ. Massachusetts (2006).

7. Cordasco, G., Malewicz, G., Rosenberg, A.L.: On scheduling expansive and

reductive dags for Internet-based computing. 26th International Conference

on Distributed Computing Systems, to appear (2006).

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algo-

rithms (2nd ed.). MIT Press, Cambridge, MA. (2001).

9. Deelman, E., Kesselman, C., Mehta, G., Meshkat, L., Pearlman, L., Blackburn,

K., Ehrens, P., Lazzarini, A., Williams, R., Koranda, S.: GriPhyN and LIGO,

building a virtual data grid for gravitational wave scientists. High Performance

Distributed Computing (HPDC’02) (2002) 225–234.

10. Foster, I. and Kesselman, C. [eds.]: The Grid: Blueprint for a New Computing

Infrastructure (2nd Edition). Morgan-Kaufmann, San Francisco (2004).

jogc_03.tex; 23/08/2006; 8:37; p.36

Prioritizing DAGMan Jobs 37

11. Foster, I. et al. : The Grid2003 Production Grid: Principles and Practice. 13th

IEEE International Symposium on High Performance Distributed Computing

(HPDC’04) (2004) 236–245.

12. Horn, J.V., Dobson, J., Woodward, J., Wilde, M., Zhao, Y., Voeckler, J., Fos-

ter, I.: Grid-Based Computing and the Future of Neuroscience Computation.

Methods in Mind, MIT Press, (2005).

13. Hsu, H.T.: An algorithm for finding a minimal equivalent graph of a digraph.

J. ACM 22 (1975) 11–16.

14. Kondo, D., Casanova, H., Wing, E., Berman, F.: Models and scheduling mech-

anisms for global computing applications. 16th Intl. Parallel and Distributed

Processing Symp. (2002).

15. Malewicz, G. and Rosenberg, A.L.: On batch-scheduling dags for Internet-based

computing. 11th European Conf. on Parallel Processing (Euro-Par’05) (2005)

262–271.

16. Malewicz, G., Rosenberg, A.L., Yurkewych, M.: Toward a scheduling the-

ory for Internet-based computing. IEEE Trans. Comput., to appear (2006).

(Preliminary: IPDPS’05.)

17. Rosenberg, A.L.: On scheduling mesh-structured computations for Internet-

based computing. IEEE Trans. Comput. 53 (2004) 1176–1186.

18. Rosenberg A.L. and Yurkewych, M.: Guidelines for scheduling some common

computation-dags for Internet-based computing. IEEE Trans. Comput. 54

(2005) 428–438.

19. Szalay, A.S., Kunszt, P.Z., Thakar, A., Gray, J., Slutz, D., Brunner, R.J. De-

signing and Mining Multi-Terabyte Astronomy Archives: The Sloan Digital

Sky Survey. ACM SIGMOD International Conference on Management of Data

(2000) 451–462.

20. Sun, X.-H. and Wu, M.: Grid Harvest Service: a system for long-term,

application-level task scheduling. IEEE Intl. Parallel and Distributed Process-

ing Symp. (2003).

jogc_03.tex; 23/08/2006; 8:37; p.37

38 Malewicz et al.

21. Thain D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the

Condor experience. Concurrency and Computation: Practice and Experience

17 (2005) 323–356.

Address for Offprints:

KLUWER ACADEMIC PUBLISHERS PrePress Department,

P.O. Box 17, 3300 AA Dordrecht, The Netherlands

e-mail: TEXHELP@WKAP.NL

Fax: +31 78 6392500

jogc_03.tex; 23/08/2006; 8:37; p.38

