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Abstract - This is an applications paper reporting on
the methodological basis and the development of a
production-grade software package for use in the dyn-
amic stability (or "small disturbance") analysis of
large power systems. This package, known as EISEMAN
(ElgenSystem Evaluation - Machine And Network), is
capable of studying a wide range of dynamic stability
phenomena, such as subsynchronous resonance, inter-
machine rotor oscillations, and the effects of excita-
tion and turbine-governor systems on stability. All of
the eigenvalues of the system are calculated, as well
as desired eigenvalue sensitivities. A noteworthy fea-
ture of this eigenvalue-based tool is its capability
of modeling to various degrees of detail the dynamics
of the power system components — the network, synchro-
nous machines and control systems. This tool can also
be used to develop root locus plots and the frequency
response characteristics of the power system. The
present version of EISEMAN can be used for-the analysis
of systems containing up to 250 machines, 1,500 buses,
2,000 lines, and 500 dynamic states. Several test
cases demonstrate the application of this tool.

1. INTRODUCTION

The dynamic stability problem studies the dynamic
behavior of a power system which has been subjected to
small perturbations. As used in this paper, the term
"dynamic" stability is synonymous with the recently
adopted IEEE definition of "small disturbance" stabil-
ity. Typical dynamic stability phenomena are self-
excitation, network-torsional interactions, control
system-related oscillations, inter-machine (rotor
electromechanical) interactions, turbine-governor
related oscillations, and monotonic instabilities as-
sociated with exceeding the (classical) steady-state
power transmission limits of the system. The potential
for the occurrence of dynamic jinstabilities has increa-
sed markedly due to recent trends in the design and
operation of power systems, such as the operation of
power systems closer to their (classical) steady-state
stability limits, and the use of series compensation,
fast-response excitation systems and machines with
smaller H constants.

A strong need exists for analytical tools
capable of studying the wide range of dynamic
stability phenomena. The appropriate level of
detail of models of the power system components -
which include the trapnsmission network, synchronous
generators, and control equipment - is determined
by the type of phenomena judged to be important in
a particular stability study. The information in
Table 1 points out the need for a wide range of
models in general purpose dynamic stability analysis
tools.
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A second modeling issue focuses on the following
question: How much of the system external to the
study area needs to be represented in order to obtain
meaningful results? This question and related ones,
such as what transmission level marks the point below
which network, machine and load dynamics can be
neglected without significant effects, can at present
only be dealt with on a trial and error basis. The
questions themselves underscore the important need
for tools which have the capability of analyzing very
large power networks, and can also evaluate the
sensitivity of stability predictions to the discarded
portions of the power system.
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TABLE 1 - Component Modeling for Dynamic Stability
Studies (R:required; D:desirable)

This paper reviews the statement, component model=-
ing and analytical formulation of the dynamic stability
problem. An efficient and original approach to the
construction of the system matrix is presented.
Significant computational aspects associated with the
study of realistically-sized power systems are discus-
sed. Finally, the application and versatility of
EISEMAN, the production-grade software package devel-
oped at the Pacific Gas and Electric Company, are
demonstrated by several test cases.

II. THE DYNAMIC STABILITY PROBLEM

The dynamic behavior of the power system
operating in a balanced, three-phase mode may be
described by a set of nonlinear differential
equations:

x(t) = £(x()), x(ty) = X, 1



Here, x(t) denotes the p-dimensional state of the
system and X, is the initial system operating point.

A dynamic stability study investigates the
dynamic behavior of the power system in the
"neighborhood" of a point x, which lies on the
trajectory of (1). Typically, the state x, of
interest is the operating state of the power system,
Xo. Because the focus of the study is on the small
excursions of x about X, in response to a small
disturbance, it is only necessary to model the power
system accurately in the neighborhood of xs. In
order to investigate the so-called small-signal
behavior of the power system, the system is "frozen"
in the state x,; and the nonlinear differential
equation (1) is linearized about x,. The dynamic
stability of the state x, is determined from the
stability characteristics of the resulting set of
linear equations

Ax & A Ax (2)

where Ax represents the incremental state vector
~about x,. The Jacobian in (2) is referred to as the
system matrix. A is a function of all system
parameters and the state x, about which (1) is
linearized. The eigenvalues of A (A; = 0; + juy,

i =1,2,...p) completely specify the nature of the
modeled system's response (i.e., frequency and decay
characteristics) to small disturbances. In the time
domain, the components of the incremental state Ax
are expressed as linear combinations of the modes
ehit The oscillatory frequencies of the system
response are given by ¥;/2n, and the o0; define the
decay rates of the corresponding modes. The system
which is modeled by (2) will be stable if all o; are
negative. It will be unstable if any 0; is
positive. If any of the 0; are zero, the system
will either be marginally stable or unstable,
depending on the multiplicity of this eigenvalue.

Knowledge of the eigenvalues alone is not
sufficient, however, for complete characterization
of stability. The many uncertainties in the power
system data, such as inaccuracy of data, variations
in parameter values and variations in initial
conditions, will cause the eigenvalues of A to
differ from those of the actual power system.

It is important to know how the excursions in
parameter values affect the eigenvalues. For this
reason, information about the sensitivity of the
eigenvalues with respect to system parameters, such
as excitation system gains, machine inertias and line
reactances, is of importance. This information is
obtained from the eigenvectors of A and éT using the

relationship
Ay _ T \se/ T (3)
da wl u,

=i =i
where u (gj) are the eigenvectors of A (A7)

associated with Aj, and a is a system parameter of
interest [1].

Eigenvalue sensitivity can be used to ascertain
which power system parameters have a major impact on
the damping of particular modes. Once these
parameters have been identified, the sensitivity
information can also be used to estimate the
changes in the parameters necessary to assure
adequate damping. This approach can be used to
estimate appropriate settings for tunable
parameters, such as stabilizer gains. Moreover,
knowledge of the eigensystem - the eigenvalues and
the eigenvectors - suffices for the calculation of
the frequency domain characteristics - gain and phase
margins, Bode and Nyquist plots, etc. - of the power
system.

Many approaches for dynamical system stability
investigations are based on the determination of the
spectrum (i.e., the set of eigenvalues) of the
system matrix 8 [2] - [7]. A method for the
automatic formulation of the system matrix for
large, arbitrary linear systems was presented in
[2]. The effects of different levels of modeling of
power system components were investigated using a
three machine power system in [3].

An imaginative frequency domain approach based
on the multidimensional Nyquist criterion is
reported in [8]. From the standpoint of computer
resource requirements, this approach is more
efficient than eigenvalue-based analysis techniques.
However, it is difficult to relate the stability
margin information obtained to particular system
parameters when frequency response techniques are
used. Eigensystem-based techniques can provide
eigenvalue sensitivity information for any
parameters of interest [2].

The dynamic stability tool reported in [5]
utilizes a transient stability simulation program to
construct the system matrix via numerical
differentiation. This approach is attractive and
relatively easy to implement; it may, however, be
susceptible to problems of inaccuracy caused by the
numerical instability which is associated in general
with the numerical differentiation process [9].

A characteristic common to eigenvalue-based
approaches is the requirement for large amounts of
computer storage and time for the study of systems
of high dimensionality. To overcome this problem,
approaches that focus on evaluating a subset of the
spectrum have been proposed [6], [7]. These
techniques may, in certain cases, fail to indicate
critical eigenvalues.

Our work in the dynamic stability area was
undertaken with the aim of developing a tool to
handle effectively the analysis of the wide range of
dynamic stability phenomena for power systems of
practical interest. We have implemented into a
production-grade software package an eigenvalue-
based dynamic stability analysis tool possessing
a large degree of modeling flexibility and capable
of studying large-scale systems. The EISEMAN
package can be used to analyze systems with as
many as 250 machines, 1500 buses, 2000 lines, and
500 dynamic states. The package has found practical
application in the study of subsynchronous resonance
problems and the planning of series compensation '
levels; the identification of possible torsional/
water hammer interactions in hydro units; the study
of rotor oscillation damping and inter-machine
oscillations; and the study of the effects of
excitation system and power system stabilizer
parameters on system dynamic stability.

III. POWER SYSTEM MODELS

The constituent components of the power
system - the synchronous machines and associated
equipment, and the transmission network - are
described in this section.

Synchronous Machine Electrical Dynamics

A three-phase two-pole synchronous machine
consists of three identical, symmetrically placed,
lumped armature windings (a,b,c) in the stator, and
up to four lumped rotor windings (F,G,D and Q).

The F coil represents the rotor field winding. The
fictitious G coil, whose flux is in the quadrature
axis, is used to represent the effects of eddy

currents which circulate in the solid steel of the
“rotor. The damper windings are represented by the
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fictitious D and Q coils in the direct and quadrature
axes, respectively [10].

The most detailed machine representation
commonly used for the study of dynamic stability
models the dynamics of the stator direct and
quadrature axis windings plus the dynamics of the
four rotor windings discussed above.

Simpler machine representations are often
desirable or necessary for the following reasons:

(i) For the modeling of salient-pole machines,
the representation of a fictitious "G" coil and
its dynamics is not appropriate.

(ii) For studies in which only low-frequency
phenomena are of interest, the modeling of stator
dynamics may be neglected.

(iii) When modeling machines which are electrically
"distant" from the study region, the detailed
modeling of these machines may not be necessary.
Some or all of the rotor and/or stator dynamics of
these machines may be neglected.

(iv) When approximating the dynamics of "distant"
portions of the power system by dynamic equivalents,
a minimum amount of "equivalent synchronous machine'
data may be available, necessitating the use of
simpler machine representations.

Lower-order representations are derived by
neglecting the dynamics of appropriate rotor and
stator winding fluxes and currents. The number of
dynamical states associated with the different
synchronous machine models are given in Table 2.

Windings State Variables
Machine Model Rotor With Without
Stator| Direct Quadrature | Stator Stator
Axis Axis Dynamics | Dynamics
Round Rotor with
F G
Damper Windings dsq D 0 6 b
Round Rotor - No
Damper Windings d»g F 6 4 2
Salient Pole with
Damper Windings 4,9 F.D Q 3 3
Salient Pole - No
Damper Windings dsq F 3 !
Classical
F
Transient Model d,q coﬁéﬁgn: 2 0
flux

TABLE 2 - Dynamic Modeling of
Synchronous Machines

The effects of magnetic saturation in the
generator may also be of interest in some studies.
These nonlinear effects are typically accounted for
by representing the mutual inductances of the
machine as functions of the air-gap fluxes in the
machine. Saturation of the leakage inductances is
usually neglected [11].

Machine Shaft Dynamics

The machine shaft may be represented by a
multi-mass - spring - dashpot system, using as many
rotating masses as data availability permits [10].
The multi-mass model is typically used when
subsynchronous resonance (SSR) and other torsional
system-related oscillations are to be analyzed. For
other studies, a single-mass mechanical system
description is sufficient. The number of states
associated with shaft dynamics is equal to twice the
number of masses represented.

Auxiliary Equipment

The auxiliary equipment of interest in dynamic
stability studies consists of excitation systems,
power system stabilizers, and turbine-governor
systems. Low frequency models of typical excitation

systems are described in detail in [12]. For dynamic
stability studies, linearized versions of these
models are used. Power system stabilizers are
commonly represented by a signal washout plus two
lead-lag pairs, or by a signal washout plus a pair

of complex poles and zeros. The input to the
stabilizer can be the shaft slip of a machine

mass, the machine terminal frequency deviation, or
the machine accelerating power. Turbine-governor
models are described in detail in [13].

Network Representation

Each transmission line is represented as a
lumped RLC circuit. Lumped parameter representa-
tions are also used for series and shunt capacitors,
shunt inductors, variable-tap transformers and phase-
shifting transformers. When high-frequency dynamics
may be of interest, the dynamics of the network's
inductive and capacitive elements (i.e., the time
derivatives of inductor currents and capacitor
voltages) must be explicitly represented. This level
of modeling is typically used in studies of network-
machine interactions such as SSR and self-excitation.
The dynamics of the elements in the abe coordinate
system are transformed via Park's Transformation
[14] to a synchronously rotating dqo reference frame,
and the zero-sequence dynamics are dropped since
balanced system operation is assumed. Each capacitor
or inductor whose dynamics are explicitly represented
gives rise to two dynamical states.

When the focus of a dynamic stability study is
on the typically low-frequency inter-machine and
inter-area electromechanical oscillations, the
dynamics of the network elements may be neglected
and the synchronous frequency, "steady-state" model
of the network elements may be used. This component
model is valid for oscillations at or near the
synchronous frequency (wg). Since the "low-frequency"
inter-machine modes of interest (wg/2m < 3 Hz) are
referred against a rotating dqo reference frame,
then with respect to the stationary abec reference
frame, these modes appear to be oscillations at
frequencies of (wsg * wg) = wg. Thus, the
approximation that the signals throughout the
network are at the synchronous frequency is a
reasonable one when only the "low-frequency"
inter-machine phenomena are of interest.

Note that in both models of the network,
"infinite buses" may be represented as direct
connections to ground since, by definition, these
buses have no incremental characteristics, and thus,
their small-signal dynamic properties are identical
to those of the ground node.

IV. CONSTRUCTION OF THE SYSTEM MATRIX

While conceptually straightforward, the actual
automatic formulation of the system A matrix is quite
complicated. The approach proposed below accomplishes
the task in a computationally efficient manner. The
network subsystem representation is assembled from the
RLC element representations in one of two different
ways, depending on whether network dynamics are modeled
or neglected. When the dynamics of the network are
represented, the capacitor voltages and inductor
currents chosen as state variables must provide a
minimal complete characterization of the network
dynamics. A linearly independent set of variables 1is
specified by choosing as state variables a set of
capacitor voltages possessing the property that the
associated capacitors form no capacitive looops, and a
set of inductor currents possessing the property that
the associated inductors form no inductive cutsets.
The set of state equations which describe the network



dynamics is then systematically formulated using the
procedure developed by Kuh and Rohrer [15].

When the network dynamics are neglected, the
synchronous steady-state description of the network

is used:

¢

0=T-x

1
j<?

(4)

For a network with b nodes, Y is the 2b x 2b nodal
admittance matrix, and 1 (¥) is the vector of nodal
injections (voltages).

In both network representations, the abe
network variables are transformed to the
synchronously rotating reference frame through
Park's Transformation.

The representations for each machine and its
auxiliary equipment are coupled to the network
representation by the machine stator current and
voltage variables, which are related to the nodal
injection and voltage variables at the machine
buses. Because the machine stator currents and
voltages are referenced against the rotating
quadrature axes of the machines, these currents and
voltages must be transformed to the synchronously
rotating reference frame by a linear transformation
of the form

) cos 6, -sin §,
T = (5)
sind, cos §,

where 6, is the angle between the quadrature axis of
machine h and the systemwide reference axis.

The equations which describe the network,
machine and equipment subsystems are linearized
about the system state x,. When network dynamics
are represented, the linearized stator currents of
machine h (Aig and Aig ) are components of the
machine/equipment state variable (Axy ), and the
lipearized terminal voltages of the machine (Avgqg
and Avq ) are components of the network state vari-
able (QEN)‘

The system representation is:

L]

Ax A 0 0 ... A Ax

Axpy, A mm, 0 90 AmN| |2Xm,

L]

Axy, | O Aum, 9 Amn Axp,

. = . . . (6)
L]

bx Anm, Anm, An,n ] |2%N

The matrix Ay nis usually quite sparse, reflecting
the fact. that a node in a power network is directly
connected to very few other nodes in the network.
Moreover, the coupling matrices Ay n and Anm_ are
extremely sparse because their non-zero elements
reflect the stator voltage and current inputs to the
machine and network subsystems, respectively.
Therefore the system matrix A has an "almost” block
diagonal structure. -

When network dynamics are not represented,
consistency of modeling assumptions demands that the
machine stator dynamics be neglected as well. In this
case, the linearized equations for the machine/auxili-
ary equipment subsystems have the form of (7), in which
the algebraic equations arise from the assumption that
the incremental stator flux dynamics can be neglected.

Dyl | Qv My BmN Swmn]| 22w,
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B
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where A_th = [Aldh , Alqh] and ‘A'!Mh = [A"dh , Avqh] .
For the network, the algebraic system
iyl | Yom Yian|{ BYm

- N (8)
0 Yum Innjfavy

£=]
ft

is used, where

~ ~ ~
Aiy= [&M‘l’ Q.Mz’ s

&
I ~ ~ 7T
Avy = [_‘{M1’ QY.MZ" . "éXMk]

and Avy is the vector of direct and quadrature axis
nodal voltages at the non-machine nodes.

The equations in (7) and (8) are combined
into a linear differential-algebraic system, and the
algebraic equations are eliminated from the
system formulation using sparsity-oriented Gaussian

elimination. This results in the linear differential
system ~ ~ ~ ~
Ax A A A Ax
XM, D2mmy BMM, o0 0 TMM Hm,
Ax Y A A Ax
AT M2 o MM SMEMy t tt EMM L M, 9
at | . . . .
. . .
A& A, & x A
| = M —MM =M M, MM M

The system matrix in (9) is typically of much lower
dimension than the system matrix which represents
the same system with network dynamics (6). This is
so because no dynamical states are associated with
the network elements, and because for each machine,
the number of states is reduced by two. However,
the system matrix (9) is usually much less sparse
than the system matrix (6).

V. EIGENSYSTEM EVALUATION

Once the system matrix A is constructed, the
eigensystem of A may be evaluated. Because A is
non-symmetric and has no special exploitable
structure, a general eigenvalue evaluation scheme,
based on the conversion of the system matrix to
upper Hessenberg form and Francis' QR algorithm, is
used. This algorithm is noted for its great accuracy,
efficiency, and numerical stability |9]. However,
the iterative solution technique which it employs
destroys the sparsity of A in the course of the
solution process. (For this reason, the loss of A
matrix sparsity due to the Gaussian elimination of
the algebraic network equations in the "low-frequency"
formulation (9) is of little consequence.) Since
the algorithm cannot exploit matrix sparsity, it is
necessary to allocate computer storage for all p?
elements of the p-dimensional system matrix A for
the calculation of the eigenvalues.

Constructing the A matrix from the differential
equations on the subsystem-by-subsystem basis discussed
earlier keeps the number of computational operations
associated with this step - matrix inversionms,
multiplications, etc. - small, thereby reducing both
the computational resource requirements and numerical
accuracy problems associated with the A matrix forma-
tion. Because little numerical error 1s introduced
during the construction of the system matrix, the
accuracy of the eigenvalues is limited primarily by
the numerical precision of the eigenvalue evaluation
subroutines. The EISPACK general-purpose eigenanalysis
package is used for the calculation of the eigenvalues.
For systems with as many as 500 state variables, the
eigenvalues calculated have been shown to be
accurate to +107® sec’.
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For sensitivity analysis of the eigenvalues
with respect to system parameters, eigenvectors of A
and AT must be evaluated. Relationship (3) indicates
that only those eigenvectors associated with eigen-
values of interest need be determined. For this
reason, it is most appropriate to calculate the
necessary eigenvectors individually. An effective
technique is the modified inverse iteration
algorithm [16]. Sparsity-oriented techniques can
be employed to great advantage during these
calculations.

VI. THE EISEMAN PACKAGE

The EISEMAN dynamic stability analysis package
is a computer tool which implements the component
modeling features and solution methodology discussed
above. The package automatically formulates the
system A matrix and calculates all of its eigenvalues
and the sensitivity of the eigenvalues to power system
parameters of interest. In addition, EISEMAN can
evaluate the eigenvalues of the machine torsional sub-
systems and the eigenvalues of the network subsystem.
The package can also be used to produce root loci of
eigenvalues with respect to system parameters.

A wide variety of component models have been
incorporated into the EISEMAN package thus far:

o The synchronous machine rotor can be modeled
using from 0 to 4 rotor circuits, as outlined
in Table 2. The dynamics of the stator windings
may be modeled or neglected, at the user's
discretion.

® Detailed models which account for generator
magnetic saturation are provided.

¢ The machine shaft may be modeled using as many
masses as the user desires.

® Ten turbine-governor models, with as many as
eight state variables each; nine excitation
systems models, with as many as seven state
variables each; and power system stabilizer
models have been implemented.

¢ The network model - transmission lines, RLC
shunt elements, and transformers - may be
represented with or without dynamics, depending
on the user's needs.

® Pawer system loads can be represented as having
the dynamics of equivalent shunt impedance
elements, infinite buses, equivalent synchronous
machines, or they can be neglected.

With the exception of the eigenvalue calculation
subroutines, all of the software for the EISEMAN pack-
age was developed at the Pacific Gas and Electric
Company. The package has been implemented in a modular
manner. Consequently, additional component models can
be easily incorporated.

A most significant feature of the EISEMAN package
is its capability of analyzing large dynamic systems.
Power systems with up to 250 machines, 1,500 buses,
2,000 lines, and 500 dynamic states can be studied
using the present version of the program. Insofar as
the authors are aware, no other dynamic stability
analysis tool possesses the capability of providing the
complete spectrum for power systems of this size. This
FORTRAN package has been implemented using variable
dimensioning of arrays, so the capabilities and size of
the program can be easily increased or decreased to
conform to the applications and computer resources at
hand.

An innovative feature of EISEMAN is the implement-
ation of the algorithm discussed. in Section IV for the
construction of the A matrix. EISEMAN's unique
approach to the setup of the network equations and the
A matrix is computationally straightforward, and the
sparsity-oriented techniques used to form both the
system A and 9A/30 matrices are highly beneficial from
the standpoints of preserving accuracy and reducing
computer CPU time requirements. For large systems in
which network dynamics are explicitly represented,
typically fewer than 5% of the elements of the system
matrix are non-zero. Very little numerical error is
introduced in the evaluation of the elements of A
and 9A/da.

The amount of computer memory required by the
package is determined primarily by the dimension p
of the state space of the system to be analyzed.

The double-precision arithmetic and the QR algorithm
employed for the calculation of the eigenvalues
require that the program size be at least 8p? bytes.
The use of overlaying techniques confines the
computer memory requirements to approximately 8p? +
450 K of memory.

the
to be
used

The CPU time used in the calculation of
eigenvalues has been empiricially determined
roughly proportional to p2+83. The CPU time
during the formation of the system matrix is
usually quite small in comparison to the
eigenvalue calculation time requirements.

VII. APPLICATION EXAMPLES

The usefulness of a versatile stability
analysis tool is illustrated in this section by
examples of EISEMAN's application to several power
systems.

Subsynchronous Resonance Benchmark Test System

This test system was developed as a standard
test case for the purpose of facilitating comparisons
of analytical tools capable of studying SSR. The
linearized model of the system consists of a single
machine connected to an infinite bus through a series-
compensated transmission line. The machine is modeled
as a round rotor machine with damper windings in the
direct and quadrature axes. A six-mass model describes
the machine's torsional dynamics. No auxiliary
equipment is represented. Data for this test case can
be found in [18].

In order to analyze the interaction of the
network and the machine torsional subsystems, network
dynamics, stator dynamics, and machine torsional
dynamics must all be explicitly represented. The
eigenvalues of this system and their sensitivities
to the series capacitance are presented in Table 3.

Complete Sensitivity Damper Windings Single-Mass Origin of
Model ©®r/ac) Neglected Model Eigenvalue
RLC mode
~4.62 Y5 593.97 | +0.02 #j 31.1 | -4.41 ¥j 590.16 | -4.62 *§ 593.94 | transformed
-4.51 %5 159.97 | -1.59 +§ 25.6 [ -4.34 *j 163.14 [ -3.40 %5 159.90 [ to dqo
frame
-0 £57 298,18 ~0 -0 T3 298.18
+0.007 *§ 202.82 [ +0.01 35 0.09 | +0.010 *j 202.81 Machine
+1.07 T3 160.44 [ +1.30 +j 5.96 |+0.823 ¥j 161.07 torsional
+0.005 ¥j 127.08 [ -0.01 xj 0.05 |+0.004 *j 127.07 system
40.009 *j 99.46 | -0.02 3j 0.23 [+0.004 tj 99.41
~41.122 +0.194 -41.122 Damper
-25.404 +0.009 ~25.405 windings
-0.948 0 ~1.215 -0.948 "G" winding
Field
~0.710 +0.076 -0.880 -0.710 Vinding
-1.107 *j 10.05[+0.15 3j 0.66 |-1.311 ¥5 9,76 |-1.125 ¥3 10.13 | Swing
Dynamics

TABLE 3 - Eigenvalues for
Test System (in

SSR Benchmark
sec 1)



Although each mode of an eigensystem will appear
to a greater or lesser extent in the response of each
of the state variables of the system (as determined by
the eigenvectors of A), for "weakly coupled” sub-
systems, it is often possible to associate the origin
of certain system modes with one or more subsystems.
The sensitivities of the eigenvalues to various
system parameters reveal these relationships.

Column 5 of Table 3 notes the correspondence between
the system eigenvalues and the various subsystems.
Columns 3 and 4 present the eigenvalues for the
cases in which the damper dynamics and the torsional
dynamics are not modeled.

Figure 1 presents the loci of the real parts of
some of the eigenvalues as a function of the level of
capacitive compensation. Note that as the compensation
increases, the subsynchronous electrical frequency
decreases, and the eigenvalues associated with the
different torsional modes are destabilized in turn.

ateec )
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24 }
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i FIG. 1 - Damping of Eigenvalues as a
Function of Compensation

New England Test System

. The application of EISEMAN to the study of
inter-machine oscillations is illustrated by this
10 machine, 39 bus, 46 line test case. This test
system was developed as one representative of
transmission systems in the Northeastern United
States. The network diagram and data for this case
can be found in {19].

The dynamic stability phenomena of primary
interest in this study are the "low-frequency" 1 Hz ~
2 Hz oscillations which are strongly related to the
machine swing equations. In the base case studied
here, network and machine stator dynamics, rotor
transient dynamics (F and G windings), electro-
mechanical dynamics (single-mass machine models are
used), and excitation system dynamics.are modeled.
Saturation and turbine-governor dynamics are neglected.
Loads throughout the network are modeled dynamically as
equivalent RLC elements.

. The eigenvalues calculated by'EISEMAN for this
case are shown in Table 4.

231

(1) -1860.80 +j 9214.40 .
65,7041 376,00 | 7189050 *3 8459.07 1
-65.79 £3 376. -1506.47 %] .
-34.38 45 376.99 | _1807.80 ] Yasa. 63 | 0 467 8.9
~30.43 % 376.94 | _1506.50 +3 7554.60 | ~O-39> 11 8.81
-28.25 %3 376.93 | _1807.86 +3 7133.68 | 0368 %3 8.6l
-27.59 ¥j 376.91 | _735.03 +3 6600.17 | "0-283 71 7.50
~27.31 %3 376.99 | _1462.08 43 6557.92 | “O-11335  7.09
~24.39 %3 376.97 | _1176.09 5 6557.69 | "O-295 71 6.9
~22.71 1 376.99 | _1810.09 +j 604349 | O-282 %1 6.26
-22.11 %5 376.96 | -735.04 5 5846.1 -0.302 £5 >-80
) . L] .19 _ +3 3.69
-15.37 45 376.99 | -1176.55 3 s804.38 | ~0-280 %3 3.69
~14.51 3 376.87 | _1462.64 +3 5799.79
~12.35 %] 376.93 | _935.82 +j 5489.72 v
-9.07 3 376.94 | _1756.11 *j 5132.2¢4
-6.30 23 376.95 | -579.42 *3 4931.06 6.3
-6.02 %1 376.95 | _941.96 £] 4707.17 .0
-3.75 %3 376.95 | -576.34 +3 4172.11 .30
-2.29%3 376.99 | -195.23 %3 3770.10 -0
-0.76 *j 376.98 ~533.55 +j 3599.51 4-80
-0.46 ¥j 376.99 ~466.34 T3 3284.82 3.3
-0.38 3j 376.99 | -1234.50 +3 3267.69 223
=0.35 %3 376,99 | -194.94 #j 3016.03 :i;g
-g-g?fq 3;2-99 -535.33 3 2846.15 -1.48
Z021 13 376.33 T482.92 43 2531.3¢ Tb-40
2L i1 3699 1-1236.30 15 2486.23 132
Zoo13 1] 376.39 (865,69 23 2134.70 “1-29
Ty 650 [-1037.42 %5 1580.58 -1.08
o 683 ;J 6‘ -864.39 *j 1341.85 ~0.966
70-083 73 376.99 | 1184.93 %5 773.19 -0.958
-0.077 #j 376.99 | 399 95 27 233.99 -0.906
-0.065 +] 376.99 o o0
~0.043 %3 376.99 141 by
~0.036 j 376.99 a1 Cooa%s &1 olao
-0.026 +3 376.99 ~49.35 -0.225 I; 0.831
-0.004 3 376.99 -49.15 —0.412 +] 0.632
-0.002 3 376.99 ~49.13 Z0.295 £ 0.512
) ~48.30 -0.657 +j 0.503
(i1} -?g;? -0.210 *j 0.456
~17. - +4
-2715.21 ] 9819.94 -15.85 _21252 ;; 83‘33
~992.84 +] 9784.04 ~15.80 -0.016 * 0.014
~1114.53 ¥j 9416.02 -15.74

TABLE 4 - Eigenvalues for New England
Test System (in sec™ 1)

The eigenvalues fall into five distinct groups:

(i) Oscillatory modes at or very near the
synchronous frequency. These modes are closely
associated with the R-1 elements of the transmission
network and loads. The purely real eigenvalues asso-
ciated with R-L networks are transformed to oscilla-
tions at the synchronous frequency when viewed from
the rotating reference frame. The neglect of load
dynamics results in the elimination of all of the
eigenvalues in this group for which ¢ > -1, reflecting
the strong association.between those system modes. and
the dynamics of the network elements used to model
the loads.

(ii) Other oscillatory modes at frequencies
greater than 35 Hz. Most of the eigenvalues in this
group are closely associated with the representation
of line~charging capacitors. The interaction of
these capacitors with the inductive components of
the transmission lines results in the creation of
oscillatory modes.. These modes occur at frequencies
of 220 Hz and above, and reflect the relatively
small effects of line-charging in tightly }
interconnected eastern U.S. power systems. The
remaining eigenvalues in this group are associated
with the capacitive elements which are used to
models loads for which reactive power consumption is
negative. . ’

(iii) Non-oscillatory modes with =50 < g < -15.
The eigenvalues in this group are primarily associated
with excitation system dynamics.
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(iv) Oscillatory modes with 1 < w < 10. The
eigenvalues in this group correspond to the modes
observed in the responses of the machine rotors to
small disturbances on the power system. It is this
group of eigenvalues which is the primary focus of
this dynamic stability study.

(v) Lower frequency oscillatory modes and
slowly decaying non-oscillatory modes. The eigenvalues
in this group are related to the transient electrical
dynamics of the machines (the field and "G" windings)
and to excitation system dynamics.

The neglect of load dynamics and network dynamics
has very little effect on the eigenvalues of primary
interest, those in group (iv). It is important,
however, to note the impacts of different degrees
of modeling detail on the computational resources
required for the analysis of system dynamic stability,
as illustrated in Table 5.

Computer CPY Time
Case Dynamic Memory (IBM 3033
States (Bytes) 0S/MVS)
New England 288 1110 K 55.2 sec
Base Case
Line Charging 212 810 K 28.6 sec
Neglected
Load Dynamics 248 940 K 40.4 sec
Neglected
All Network
Dynamics 66 400 K 2.2 sec
Neglected

TABLE 5 - New England Test System - Comparisons
of Computer Resource Requirements

Western United States Test System

This study demonstrates the application of EISEMAN
to the study of potential subsynchronous oscillations
on a realistically-sized power system. The system,
illustrated in figure 2, is representative of those
in the Western United States. The transmission net-
work is composed of a 500 KV transmission system and
an underlying 230 KV system. Series compensation is
uised throughout the 500 KV system in order to increase
the power transmission capability of the transmission
network. . . )

Eight large synchronous machines connected to
the 500 KV.system are represented in this study
using the most detailed synchronous machine model.
Because SSR phenomena are the primary focus of the
study, stator dynamics, network dynamics, and
torsional dynamics must all be explicitly represented.
No excitation systems arée modeled. Four of the units
are modeled with ten-mass torsional systems. The
torsional systems of the four remaining machines
are represented with six-mass models. Fifty-six
oscillatory modes, with frequencies from 6 Hz to

600 Hz, are associated with these torsional subsystems.

As discussed earlier, several questions of major
importance in the modeling of large power systems
revolve around defining the system to be studied.

How much of an interconnected power system should be
modeled in order to obtain accurate results from a
study? How should the portions of the system beyond
the chosen study area be represented? In this case
study, two possible models of the study network are
examined. In the first (System A), only the 500 KV
system is retained and the 230 KV system is modeled

by equivalents at the 8 buses through which the 500 KV
and 230 KV systems are interconnected. In the second
{System B), both the 500 KV and 230 KV systems are

500 KV SYSTEM

MACHINES
8 7

MACHINES MACHINES

6 5§ 4 3 2 1
50 2418

o
A

230 KV SYSTEM

FIG. 2 - Western United States Test System

retained, with equivalents at the 15 buses which tie
the 230 KV network to lower voltage networks and
machines or to portions of the 230 KV system defined
to be beyond the study area. The equivalents used
here are calculated from the short circuit duty at
the '"boundary" buses using a short circuit analysis
package. Each equivalent impedance developed in this
manner is connected between the appropriate boundary
bus and the infinite bus. The System A representation
consists of 79 lines, 68 buses, and 370 state
variables. The System B representation consists of
109 lines, 78 buses, and 428 state variables.

As in the New England test case discussed above,
the eigenvalues of each of these systems can be
classified into groups which are closely associated
with the torsional, network, machine transient,
machine subtransient, or electromechanical (rotor)
dynamics. For either of the two system representa-
tions, all but two of the system modes appear to be
adequately damped. The positive eigenvalues, which
are closely .related to the torsional subsystems of
machines 1 and 2, are shown below:

System A: +0.17 *j 126.9
+0.08 tj 114.9
System B: +40.12 %j 126.8
+0.11 *j 114.9

The sensitivity analysis feature of the EISEMAN
package can be used to determine which series capaci-
tors have the greatest impact on the potential SSR
problems, possibly leading to more appropriate choices
for series compensation. This feature inay also be
used for studying the sensitivities of the eigenvalues
to the system equivalents used. -The sensitivities of
all of the eigenvalues in the region of the two
positively damped modes are presented in Table 6 for
System A.. For this system, the parameters of interest
are the inductances of the equivalents which represent
the 230 KV transmission system. The data in Table 6
shows that the unstable modes are most sensitive to
the equivalent at bus 18.
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Bus at Which . -
Equivalent (l'eq) Eigenvalues. and Sensitivities ( wanaq) (in sec-1)
Is Located +0.17 +3 126.9 | -0.09 +3 127.1] +0.09 +j 114.9 | -0.08 +j 115.1 -8.9 +j 146.5] -9.2 +{ 128.5
7 -0.27 -3 0.20 [ +0.15 -} 0.40 0 -0.01 +§ 0.03 | -2.3 4§ 3.2
13 +0.53 -j 0.14 ] +0.24 -3 0.06 o -0.23 +j 0.26 +5.9 +1 8.3
18 +1.3 +§ 2.3 ] ~0.40 +1 0.47 0 +6.2 +§ 12.2 J+24.6 +1 92.6
22 -0.08 +j 0.10 0 ~-0.07 +1 0.25 0 +17.1 +3 169. +0.09 +j 0.10
24 =-0.02 +j 0.01 0 -0.01 +§ 0.03 0 +11.5 +§ 40.2 ]+0.00 + 0.00
29 0 -3 0.02 0 ®0 0 +5.9 +§ 30.0 |+0.19 +j 0.25
33 -0.01 +3 0.00 0 =0 0 +7.7 +§ 29.5 |+0.02 +] 0.01
39 +0.06 -j 0.00 0 +0.03 +1 0.04 0 +0.67 +j 17.2 [ +0.90 +j 1.2
TABLE 6 - Sensitivities of Eigenvalues to Equivalents - System A
Bus at Which
Equivalent (Leq) ) Eigenvalues and Sensitivities (3A/3Lgq) (in sec~l)
Is Located +.12 +j 126.8 | -.09 +j 127.1 | +.11 +§ 114.9 -.08 +1 115.1 ~9.3 +1 142.8 |-9.6 +j 125.4
69 -.02 +j .07 0 +.06 -3 .05 ] +.01 + .01 +.17 +j .04
79 +.22 +j .06 0 -.01 +j .02 [} +.09 +§ 2.1 +.41 +3 8.8
80 +.19 +1 .06 0 +.01 -1 .04 0 -.37 43 19.7 | +1.80 4] 1.5
TABLE 7 - Sensitivities of Eigenvalues to Equivalents - System B
The sensitivities of the corresponding eigen- ACKNOWLEDGMENT
values are displayed in Table 7 for System B. In
this case, the system parameters of interest are the The authors wish to thank Mr. J. F. Luini of the
equivalents at buses 69, 79 and 80. (These are the Pacific Gas and Electric Company for his many fruitful
"boundary" buses of the 230 kV system which are discussions during the development of the EISEMAN
closest to bus 18, the bus at which the greatest package, and for his assistance in providing some of
sensitivity of the critical eigenvalues to the 230 KV the data used in this paper.
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