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Abstract

Purpose The objective is to demonstrate an operational tool for dynamic LCA, based on the model by Tiruta-Barna et al.

(J Clean Prod 116:198-206, Tiruta-Barna et al. 2016). The main innovation lies in the combination of full

temporalization of the background inventory and a graph search algorithm leading to full dynamic LCI, further coupled

to dynamic LCIA. The following objectives were addressed: (1) development of a database with temporal parameters for

all processes of ecoinvent 3.2, (2) implementation of the model and the database in integrated software, and (3)

demonstration on a case study comparing a conventional internal combustion engine car to an electric one.

Methods Calculation of dynamic LCA (including temporalization of background and foreground system) implies (i) a

dynamic LCI model, (ii) a temporal database including temporal characterization of ecoinvent 3.2, (iii) a graph search

algorithm, and (iv) dynamic LCIA models, in this specific case for climate change. The dynamic LCI model relies on a

supply chain modeling perspective, instead of an accounting one. Unit processes are operations showing a specific

functioning over time. Mass and energy exchanges depend on specific supply models. Production and supply are

described by temporal parameters and functions. The graph search algorithm implements the dynamic LCI model, using

the temporal database, to derive the life cycle environmental interventions scaled to the functional unit and distributed

over time. The interventions are further combined with the dynamic LCIA models to obtain the temporally differentiated

LCA results.

Results and discussion Aweb-based tool for dynamic LCA calculations (DyPLCA) implementing the dynamic LCI model

and temporal database was developed. The tool is operational and available for testing (http://dyplca.univ-lehavre.fr/).

The case study showed that temporal characterization of background LCI can change significantly the LCA results. It is

fair to say that temporally differentiated LCI in the background offers little interest for activities with high downstream

emissions. It can provide insightful results when applied to life cycle systems where significant environmental

interventions occur upstream. Those systems concern, for example, renewable electricity generation, for which most

emissions are embodied in an infrastructure upstream. It is also observed that a higher degree of infrastructure

contribution leads to higher spreading of impacts over time. Finally, a potential impact of the time window choice

and discounting was observed in the case study, for comparison and decision-making. Time differentiation as a whole

may thus influence the conclusions of a study.
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Conclusions The feasibility of dynamic LCA, including full temporalization of background system, was demonstrated through

the development of a web-based tool and temporal database. It was showed that considering temporal differentiation across the

complete life cycle, especially in the background system, can significantly change the LCA results. This is particularly relevant

for product systems showing significant environmental interventions and material exchanges over long time periods upstream to

the functional unit. A number of inherent limitations were discussed and shall be considered as opportunities for further research.

This requires a collegial effort, involving industrial experts from different sectors.

Keywords Dynamic LCA . Dynamic modeling . Graph search . LCI . LCIA . Temporal database . Temporally differentiated

1 Introduction

In the quest to assess the environmental impacts of a

production-consumption system, life cycle assessment

(LCA) is usually performed without adequate consideration

of temporal differentiation (ISO 14 040 and 14 044). In con-

ventional LCA, Life Cycle Inventory (LCI) and intermediary

flows are assumed to occur simultaneously. Life Cycle Impact

Assessment (LCIA) is mostly based on steady-state modeling

and time-integrated indicators. Nonetheless, time differentia-

tion along the framework could have a significant impact on

the LCA results and on decision support, as is conceptually

explained in Fig. 1 through a simple example.

Consider an instantaneous emission of 1 kg of methane to

air as an LCI result. This generates a climate change impact of

28 kg of CO2 equivalents using GWP100 as an LCIA charac-

terization factor (IPCC- 2013, Table 8.A.1.). Consider now

two emission profiles (A and B) for the same emission

content. These two impact results provide quite different in-

formation than the other case.

Extrapolating this exercise to all LCIs, the effects of tem-

poral differentiation can propagate exponentially. At the LCI

level, such an extrapolation shall result from knowing when

each process of the life cycle actually occurs. At the LCIA

level, impacts are also dependent on the timing of emissions.

For example, volatile organic compound emissions have a

higher inf luence on ozone and smog format ion

(Cheremisinoff 2002) during NOx peak levels. A temporal

differentiation of impacts over time is also relevant as, from

an ethical perspective, future impacts could be regarded as less

relevant (Levasseur et al. 2011; Schaubroeck and Rugani

2017). The common cut-off for climate change at 100 years

is not only interpretable from a convenience perspective but

also from an ethical perspective, in the sense that the impact

on the globe after 100 years is completely discarded. A more

gradual decrease in the importance of future effects could also

Example : Emission of 1kg CH4 by a system
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Fig. 1 Importance of time dependence in the calculation of the climate change impact of 1 kg methane emission (from Shimako et al. 2018)
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be achieved using a discount factor as done by Levasseur et al.

(2010) for global warming.

In principle, time-differentiated LCA results can be bene-

ficial for different decision contexts. For example, bio-

products could contribute to lowering radiative forcing thanks

to the carbon stored (Røyne et al. 2016) on condition that the

end of life of these products is consciously designed and

scheduled in time. This is a concern not only when a bio-

product is the object of a study, but also when it is used in

the background of a product system. A more detailed discus-

sion and literature examples of the ins and outs of a dynamic

approach in LCA and of the main developments was provided

by Beloin-Saint-Pierre et al. (2014) and Cardellini et al.

(2018).

The methods and tools employed to perform dynamic

LCA (DLCA) strongly evolved during the last decade, from

a simplified spreadsheet-based temporalization of LCA re-

sults to a conceptualization accompanied by models and

software development. However, operational tools capable

of calculating time-differentiated inventories and impacts

are still lacking, and this issue is therefore the subject of

the present work.

At the LCI level, we distinguish between two kinds of

temporalization. The first one concerns the changes in an in-

ventory during the lifetime of a system, which can be de-

scribed by defining several scenarios with distinct LCIs, oc-

curring at distinct points in time. Some examples, not exhaus-

tive, are the works of Hellweg et al. (2005), Penth (2006), or

Collinge et al. (2013a, 2013b), with case studies from different

fields of activity. In these works, the system’s inventory was

built up at moments in time when significant modifications of

the material and energy flows occurred, as for example the

increasing energy demand during the lifetime of a building.

Practitioners need to Bmanually^ build many inventories;

they have to trace back which process and/or environmental

intervention occurs at which time. As a result, this approach

could be interpreted as repeating static inventories for several

scenarios, each one representative of a given time period; it

does not actually provide a dynamic model for LCA. In prac-

tical terms, it is also more feasible for the foreground system

of an inventory than for the background system. Changes in

background processes are excluded because of the complexity

of the network, which cannot be processed manually.

The second type of temporalization aims to distribute

the processes, flows, and LCI of a system over time,

based on the evidence that the linked processes of the life

cycle are time-deferred. Combined with appropriate im-

pact calculation methods, the time-differentiated LCI is

the first requirement for a consistent DLCA approach.

The first attempts at temporalized inventories were pro-

posed for the foreground part of the life cycle in order to

calculate climate change impacts as a function of GHG-

emission timing and to understand the role of biogenic

CO2 on the impact (Levasseur et al. 2010; Cherubini

et al. 2011; Kendall (2012); Ericsson et al. 2013;

Levasseur et al. 2012; Laratte et al. 2014, Laratte and

Guillaume 2014; Lecompte et al. 2017). All these works

focused on the impact generated by a few emissions re-

lated to foreground processes and did not propose a struc-

tured model for dynamic LCI. The emissions were

Bmanually^ distributed in time thanks to a precise knowl-

edge of the studied foreground system.

In this vein, Beloin-Saint-Pierre et al. (2014) proposed a

framework centered on the temporal characterization of pro-

cesses and elementary (resource and emission) flows. The

timeline of the LCI is then automatically derived through the

interlinkages between inventory processes. The convolution

operation is used to this end. A case study was done on do-

mestic hot water production (Beloin-Saint-Pierre et al. 2016),

applying a temporal differentiation for the foreground system

only (energy production/consumption). The authors acknowl-

edged that a huge effort was necessary to provide the neces-

sary information for the background system.

Pinsonnault et al. (2014) applied this same framework to

22% of the processes of the ecoinvent 2.2 database, for which

the authors defined temporal characteristics by sector of activ-

ity (e.g., infrastructure, forestry). The analysis was performed

for the climate change impact category, also considered as a

criterion for selecting significant intermediary and elementary

flows for calculation. However, this first model for dynamic

LCI calculation lacks a structured definition of the temporal

characteristics needed for processes, flows, and supply chain

representation (i.e., what is the physical meaning of the distri-

bution functions?). From a theoretical point of view, using the

convolution operation will introduce an intrinsic dependence

of the processes in the network, that is to say, a producer

process will adapt its temporal characteristics (e.g., not only

the timing but also the emission profile) following the con-

sumer process, which is not the case in a real-life scenario (for

more information, see Tiruta-Barna et al. (2016)—supplemen-

tary information document). A clear definition of the neces-

sary temporal characteristics and an associated database are

lacking for a framework operationalization.

Tiruta-Barna et al. (2016) presented a modeling approach

akin to supply chain modeling practices, by considering tem-

poral characteristics of processes and supply chains, which

can be leaned back against LCA databases (e.g., ecoinvent).

In this approach, a limited set of temporal parameters have to

be defined for each process and its exchanges with directly

linked processes. A time-distributed LCI is calculated by com-

bining the model with a graph search algorithm. The capabil-

ity to link the temporalized LCI to dynamically calculated

impacts was also demonstrated (Shimako et al. 2016, 2017,

2018).

More recently, Cardellini et al. (2018) proposed a tool

for performing dynamic LCA based on a graph search
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algorithm combined with the convolution operation be-

tween emissions of the producer process and production

of the consumer process, like in Beloin-Saint-Pierre et al.

(2014). To do so, temporal distributions for emissions

must be defined. As a demonstration, the dynamic LCI

was coupled with GWP characterization factors for cli-

mate change. However, the approach lacks a parameter-

ized model with a clear reference to process and supply

chain functioning, as well as a proper temporal database

linked to the background LCI, as is the case for the pre-

vious methods.

As our present work focuses on dynamic LCI calculation,

the temporal aspects in LCIA are not presented extensively.

Instead, the main realizations in this field are only briefly

introduced hereafter, for comprehension of the developed

framework.

Global warming is the impact category most considered in

DLCA. Levasseur et al. (2010) proposed an approach based

on the calculation of characterization factors (CF) for discrete

time steps (1 year). This dynamic model uses radiative forcing

as a physical parameter, but contrary to the classical approach,

no fixed time horizon is needed. Similarly, this line of reason-

ing was applied to derive CFs (pre-calculated for fixed 1-year

intervals) for the freshwater ecotoxicity of metals by Lebailly

et al. (2014).

An alternative to pre-calculated CF is proposed in Shimako

et al. (2016, 2017, 2018). Here, a flexible LCIA modeling

approach was proposed to be directly coupled with the tem-

poral differentiated LCI results obtained using the model of

Tiruta-Barna et al. (2016). Coupling was done for climate

change and toxicity/ecotoxicity impacts. Dynamic impact in-

dicators and their cumulative values are calculated in function

of time, taking advantage of a temporalized LCI with a time

resolution going from hours to years.

The objective of the present work is to develop an op-

erational tool for dynamic LCI calculation, based on the

modeling approach presented by Tiruta-Barna et al. (2016).

To this extent, we aim to provide an improved artifact that

can better address a research problem and achieve a fully

temporally differentiated LCA, in line with the design and

development-centered approach of Peffers et al. (2007). In

particular, the following issues are addressed in our work:

(1) development of a database with temporal parameters

for all processes in ecoinvent 3.2, in order to completely

consider the background processes in DLCA; (2) imple-

mentation of the model and database in an integrated soft-

ware; and (3) demonstration with a case study (comparing

a fossil driven and an electric car) of the feasibility of a

complete DLCA, in particular by considering the back-

ground LCI.

The novelty of the approach adopted here lies especially in

points 1 and 2; therefore, this work aims to demonstrate the

feasibility of such an approach for complete DLCA.

2 Methods

In the following, the principles of the dynamic LCI model are

briefly recalled. Then, the development of the new database

for the temporal parameters of the ecoinvent processes is pre-

sented, followed by the method of integration of the LCI

model, database, and LCIA dynamic models into the global

framework. Besides the case study, a more simplified and

didactic example to understand the framework behind the tool

can be found in the work of Tiruta-Barna et al. (2016).

2.1 Principles of the dynamic LCI model

The dynamic LCI model was initially developed by Tiruta-

Barna et al. (2016). The reader is invited to refer to this and to

the SI1 for a detailed presentation. Here, we recall the main

features of the model that are important to understand the

following steps. The model relies on the classical LCI struc-

ture (technology A and environmental intervention B matri-

ces). It introduced a fundamental novelty with the adoption of

a process/supply chain modeling perspective instead of an

accounting point of view. The unit processes composing the

life cycle inventory (foreground and background) are consid-

ered as operations having a proper functioning over time. The

reference unit and the material/energy interventions of each

have a distinct temporal profile. Furthermore, the intermediary

exchanges among unit processes are positioned over a time-

line depending on specific supply models, e.g., continuous,

intermittent, and single punctual supply. As a result, mass

and energy quantities listed in the dataset of a specific activity

are no longer considered average quantities for a reference

flow in a representative time period. Instead, the model allows

the following to be calculated, the quantity requested by an

activity, when and for how long it will be supplied to that

activity, when and for how long it is stored before or after

delivery, and when and for how long it was produced by the

supplier.

Production and supply are described by temporal parame-

ters and functions (also shown in Table S1 and Fig. S1 in

SI1—Electronic Supplementary Material). All processes are

characterized by (i) a production function α(t) for the refer-

ence flow and an emission profile β(t), which can be discrete

values or functions of time; (ii) parameters r, the duration of an

activity between the rawmaterial input and the product output,

T, the lifetime of the infrastructure supporting an activity, and

t0, the starting time of an activity. The supply is defined

through parameters: δ, a no-activity period, and τ, the frequen-

cy of a product supply. These temporal parameters can be

manually defined for the foreground processes, but a database

must be developed for background processes, and this is pre-

sented in the following section. The model was implemented

in DyPLCA, a web-based tool, which was then used in the

works of Shimako et al. (2016, 2017, 2018). This tool is a very
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first version, modified and adapted in the present work for

integrating the ecoinvent database with a temporal database

of all processes, and coupling it with LCIA dynamic models.

2.2 Temporal database development

The temporal database was developed in an ecospold format

for the Default, Consequential and Recyc system models of

ecoinvent 3.2 from SimaPro. A representative sample of the

database is provided in SI2. The rules and simplifications

below apply.

2.2.1 Rules for the choice of the time parameters

(i) Functions α(t) (for production flows) and β(t) (for environ-

mental interventions) are defined for the period r. Period T is a

multiple of r. Functions can be constant or variable over time;

they are replicated identically for all periods r covering the T

lifetime. In the current version of the database, for the sake of

simplification, α and β are defined once for each activity, i.e.,

they apply to all inputs and outputs of that activity, although

the framework supports a specific definition for each individ-

ual flow.

(ii) Production functions that are calendar-dependent are

defined over 1 year, starting in January, regardless of whether

the activity starts at another moment. For example, if a product

whose production takes a year (r = 1 year) is requested in

October, the production process starts in October of the pre-

vious year. In this case, the specific activity intensity at that

moment in time is considered. A potential issue is that a pro-

cess often involves a series of consecutive steps. For example,

in agricultural processes, sowing occurs before maintaining,

which precedes harvesting. Applying the calendar depen-

dence, sowing would start after harvesting, which does not

make sense. This issue does not apply, however, as long as

α is the same for all material and energy inputs/outputs of a

process, which is the case in the current version of the

database.

(iii) Supply scheduling and frequency is defined by δ (delay

period) and τ (interval between supplies). These parameters

shall be defined per material/energy flow, per product type,

and combination of processes (supply and demand), as pre-

sented in Tiruta-Barna et al. (2016). These relationships are

complex as they depend on supply and demand in the real

market. For the sake of simplification, in the temporal data-

base, those parameters were attributed to each supplier (or

producer) process. Three types of supply profiles were de-

fined: (1) Continuous, the product is supplied without inter-

ruption; for example, this is the case with an electricity supply.

Here, τ is set equal to r meaning that the interval between

production batches is the same as the production time. (2)

Intermittent, when products are supplied in series of equal

intermittent batches. τ specifies the duration of these time

intervals. In general, τ is set equal to Tof the consumer process

if it is supplied once per lifetime (e.g., an infrastructure). It is

set equal to δ for consumables that are frequently supplied but

can be stored. It can also be set equal to either r of the pro-

ducing process if production, and thus supply, are seasonal; or

r of the consuming process, for example, in the case of fre-

quently supplied consumables that are directly consumed at

each production cycle of the consumer process. (3) Services,

whenever the activity starts at the same time or later than the

activity of the consumer process (t0). This is the case of ser-

vices occurring during the consumer process, e.g.,

BFertilising, by broadcaster {RoW}| processing | Alloc Def,

BU^ for agriculture.^ Services occurring at different moments

(but with equal periods) are also considered, for example,

mowing may occur at different moments during agricultural

processes. In general, two types of processes are considered as

services: (a) waste treatment processes (assuming that waste is

generated and treated while the process is running) and (b) the

majority of the processes that end with Bprocessing^ in their

names. Services processes hold an ID (BS^) in the database.

Exceptions to the general rule are:

– Processes used by other processes, e.g., BBeverage carton

converting {GLO}| processing,^ BWood preservation ser-

vice, logs, pressure vessel, preservative not included

{RER}| processing,^ and Brock crushing.^

– Services not occurring simultaneously with other pro-

cesses; namely all the vehicle and machinery mainte-

nance processes, e.g., BMaintenance, barge {RER}|

processing.^

– Services encompassing the complete production period,

e.g., BPolystyrene foam slab for perimeter insulation

{CH}| processing,^ BRouter, internet {CH}| processing^

and BWire drawing, copper {RER}| processing.^

– Transport processes, e.g., BTransport, freight train {AT}|

processing.^

– Services that are performed afterwards, e.g., BVenting of

argon, crude, liquid {GLO}| processing.^

– Waste treatment (including out of order equipment, ma-

chinery), e.g., BUsed lorry, 16 metric ton {CH}| treatment

of^

– BSowing {CA-QC}| sowing,^ which is considered as a

service (for plant cultivation) even though Bprocessing^

is not mentioned in its title.

Further specific rules adopted for some of the ecoinvent

processes are given in SI1, Section 2.5.

2.2.2 Processes without temporal profile

In ecoinvent 3.2, several processes do not reflect actual phys-

ical activities. For example, Bmarket^ processes gather several

products without any physical transformation, i.e., there are no

Int J Life Cycle Assess (2020) 25:267–279 271



emissions, waste generation, and consumed resources or prod-

ucts. These processes are considered to occur instantaneously

and hold an ID in the database (BM^); no temporal character-

istics are needed for these.

Market processes (and exceptions) These include market

mixes and/or transport. For example, a process where different

alternative production processes are given as inputs with their

relative share as quantity. Sometimes, Bmarket for^ is not

specified in the process name; for example, BCement, unspec-

ified {CH}| production.^ Exceptions to the rule are (i) elec-

tricity markets including the activity of electricity transmis-

sion, for which temporal characterization is required. This

means that this transportation activity is not covered by anoth-

er process. The specific case of processes transforming high

voltage to medium voltage is an exception of the exception.

Temporal characterization is not needed; the material for the

activity is already included in the medium voltage market

processes containing the activity of transmission. (ii) a few

fossil fuel markets, such as natural gas markets or imports;

these include natural gas transportation, which must be char-

acterized. Diesel markets (e.g., BDiesel {RoW}| market for^

and BDiesel {CH}| market for^) also include the transporta-

tion of the diesel.

Processes only linking with other processes/markets Two

families of processes are considered (i) obsolete processes,

without any function and link to other processes. The descrip-

tion often contains the following statement: BThis process is

no longer part of the ecoinvent 3 database and will not be

updated. Please, choose another process.^ An example is

BHard coal ash (waste treatment) {RoW}| cement production,

pozzolana and fly ash 11–35%, non-US.^ Waste treatment

processes are also concerned. (ii) Non-obsolete processes,

linking other processes together without any activity involved

(1) processes substituting another process in the consequential

version, e.g., BSodium hydroxide, without water, in 50% so-

lution state {GLO}| sodium hydroxide to generic market for

neutralising agent.^ The latter translates an extra demand of

sodium hydroxide in an extra demand of neutralizing agent

(e.g., sodium carbonate); consequently, it makes a link with its

production dataset, which requires characterization. (2) Import

processes, e.g., BAluminium, primary, ingot {IAI Area, EU27

& EFTA}| aluminium, ingot, primary, import from Africa.^

(3) Processes linking with one or several processes under one

name, e.g., BHeat and power co-generation unit, 50 kW elec-

trical, common components for heat+electricity {RER}|

construction.^ Another example is BHeat pump, 30 kW

{RER}| production.^

Empty processes This is the case, for example, for waste treat-

ment products in the Recyc version of the database, to which

cut-off is applied. Examples are BDigester sludge {GLO}|

digester sludge, Recycled Content cut-off^ or BInert waste

{CH}| clinker production | Alloc Def, U.^

2.3 Development of the integrated framework

2.3.1 Principles of computation of temporally differentiated

LCI results

The objective is to obtain the life cycle environmental inter-

ventions (β functions) scaled to the functional unit (FU) and

distributed over time. Further integration of the functions over

time shall yield the static LCI results. This is achieved by

combining (i) the conventional LCI inventory datasets from

ecoinvent, (ii) the temporal parameters and functions associ-

ated with these datasets, and (iii) implementing an efficient

graph search algorithm.

The combination was achieved practically in the web-

based tool named DyPLCA, as a new, extended version of

the initial tool cited by Tiruta-Barna et al. (2016) and

Shimako et al. (2016, 2017, 2018). The algorithm works on

a network of processes created based on the topology of ma-

trix A, starting from the FU. A backward timeline is first

defined, starting with the delivery of the FU. Then, the graph

search implementation of the dynamic LCI model provides

the amount of reference units for each process as well as its

position along the timeline. Practically, a case study is first

modeled in LCA software (SimaPro or OpenLCA) in a static

manner. Then, matrices A and B are exported and further

imported into DyPLCA in order to retrieve the values of in-

termediary and elementary flows. The temporal database is

used to associate the temporal parameters to all the back-

ground processes used. In the foreground, the links between

activities and the temporal parameters associated are directly

added by the practitioner through the DyPLCAweb interface

(more details are given in SI1 – Electronic Supplementary

Material).

The algorithm is computationally intensive; therefore, cal-

culation time is critical. Memory usage during the computa-

tion and the size of the datasets has to be carefully addressed to

avoid disruptive latencies. To this end, the search algorithm

uses thresholds and stop conditions. Discretization steps are

considered in order to accommodate the continuous dynamic

LCI model to discrete time-series.

In the following, the functioning of the algorithm is

detailed.

2.3.2 Implementation of the graph search algorithm

Once a project is properly configured (as described in SI1 -

Electronic SupplementaryMaterial), it can be computed. First,

the Bsearch^ step resolves the start date and material quantity

for each activity in the project. Then, the Bdistribution^ step

computes the distribution over time for the interventions for
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each activity. The distribution step is computed right after each

activity gets resolved during the search step.

Search step Life cycle processes are linked together by a pro-

ducer/supplier-consumer/user relationship, based on matrix

A. This is formally the adjacency matrix to a network where

processes are nodes and producer-consumer relations are

links. Although possibly large (15000 processes for ecoinvent

3.2), this material network remains a compact graph. Each

link represents all the possible activities between a producer

and a consumer. In order to obtain the complete list of activ-

ities concerned by one specific case study, one needs to obtain

the complete activity network. This is an extended graph in-

cluding, for each activity, its start date and material quantity

over the timeline. In order to produce the activity network, a

search is performed in thematerial network.The links indicate

the flow of material or service between a producer and a con-

sumer. This search starts from the final consumer (the FU),

follows incoming links backwards to the producer, and finally,

computes the start time and material quantities. The main is-

sue to address here is that the network of processes involves

loops that require a no-end graph and search algorithm.

Indeed, the algorithm goes from one process to another in

the loops without end, as the quantities exchanged by the

processes (over time) are smaller and smaller but not null.

This effect is not seen when the time dimension is ignored,

as the quantities are calculated by matrix inversion to obtain

the solution directly. A similarity can be drawn with the reso-

lution of an integral by power series expansion. The solution

can only be approximated as the expansion goes to infinity

without reaching it.

In order to resolve this issue, the search algorithm uses

boundary parameters. Once reached, these stop the search.

The time limit parameter defines the maximum number of

years the search algorithm can go back. This corresponds to

an end time date of the timeline that was set in the past.

Activities starting earlier than this date are excluded from

the search. The threshold parameter defines a cut-off ratio on

the quantities of the reference unit requested for each activity.

Whenever the requested quantity is below the cut-off, that part

of the network is discarded from the search (Table S2 in SI1 -

Electronic Supplementary Material).

Distribution step As long as the search algorithm proceeds,

environmental interventions associated with each activity are

computed. They are further associated to a given moment in

the timeline with a specific discrete resolution. This generates

large data tables containing the time series of the different

environmental intervention types over the timeline. This step

is controlled by two parameters. The step size parameter

(Table S2 in SI1 - Electronic Supplementary Material) defines

the interval of time between each data point of the time series.

The smaller the step size, the bigger the size of the resulting

time series. There is virtually no limit to how small the step

size can be. However, the tool sets a threshold on the step size

based on the available memory during the calculation. The

numerical precision parameter (Table S2 in SI1 - Electronic

Supplementary Material) is used during the computation of

mathematical integrals for the α functions. This precision de-

fines the step used for the numerical integrations. Integrals are

computed over an interval equal to r (Table S3 in SI1 -

Electronic Supplementary Material). Therefore, the precision

should be orders of magnitude lower than r in order to render

realistic values.

2.3.3 Linking temporally differentiated LCI results to dynamic

LCIA models

Temporally differentiated LCI results are obtained as:

- βk, i, j functions per substance k and intermediary flow (i,j)

between processes i and j;

- γk functions, representing the emission profile of a sub-

stance k over the life cycle.

Results are obtained in the form of discrete values over

time and can be used with dynamic LCIA models. Final out-

puts are impact indicators calculated at each time step along

the timeline, which results from the combination of the dy-

namic LCI and LCIA models. These results can be obtained

individually per process and substance, per substance on the

life cycle, aggregated per impact category, etc.

Climate change, human toxicity, and ecotoxicity models

have been implemented, based on Shimako et al. (2016,

2017, and 2018). As these methods were presented in the cited

articles, they are not described extensively here.

Climate change impact is assessed by two indicators (based

on IPCC models, 2007, 2013): (1) radiative forcing, which is

instantaneous and cumulated in time—it replaces the conven-

tional global warming potential GWP; (2) global mean tem-

perature change as a function of time—it replaces the global

temperature potential GTP.

Toxicity and ecotoxicity models are based on USEtox

(Rosenbaum et al. 2008; Mackay 2002). Human toxicity

(cancer and non-cancer) and ecotoxicity indicators are calcu-

lated as instantaneous and cumulated indicators, both as a

function of time.

The main differences with respect to temporal climate

change and toxicity from literature (Levasseur et al. 2010;

Lebailly et al. 2014) are (1) the impact models are implement-

ed in their initial dynamic form in order to directly obtain

indicators in function of time and in order to avoid the use

of characterization factors (otherwise a huge number of CF

values would have to be calculated). The models were re-

solved in full dynamic conditions with the emission function

βk, i, j and γk as input data. (2) The approach is flexible,

allowing the use of different time steps and adaptation to the

granulometry of LCI.
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The use of dynamic LCIA models allows us to exploit the

full potential of the full temporally differentiated LCI results.

The resolution of LCI results can be as high as permitted by

the calculation time or can be chosen in accordance with the

impact category (e.g., higher resolution for toxicity, lesser for

climate change, Shimako et al. 2018).

Moreover, conventional LCIA indicators and dynamic CF

can also be used over limited time intervals.

At this stage, the outcomes only present curves of impacts

over time. Being able to provide single values would charac-

terize the overall impact over time and allow for comparison

and possibly decision support. To this end, the integration of

these results over a given time period should be undertaken, as

it has been done for the GWP100 over 100 years. As already

mentioned in the introduction, additionally, a discounting of

impact over time can be considered, implying the lesser valu-

ing of impacts later over time. This is commonly done using a

constant annual periodic factor of x%, in which the impact

diminishes over time with a factor 1/(1+year)x. Such an ap-

proach was applied by Levasseur et al. (2010) and will be

exemplified with the case study.

3 Case study: battery electric vehicle (EV) vs.
internal combustion engine vehicle (ICEV)

A case study was performed to demonstrate the DyPLCA tool

and the feasibility of a full dynamic LCA. In particular, the

effect of implementing time differentiation in the background

LCI is evaluated. To this end, a battery electric vehicle (EV)

and an internal combustion engine vehicle (ICEV, EURO5

diesel) were compared. The two processes from ecoinvent

3.2 (the cut-off version) BTransport, passenger car, electric

{GLO}| processing^ and BTransport, passenger car, medium

size, diesel, EURO 5 {RoW}| transport, passenger car, medi-

um size, diesel, EURO 5^ were considered.

Three different approaches to calculating the instant radia-

tive forcing and dynamic global temperature were compared.

The fully dynamic approach harnesses the full capabilities of

DyPLCA. All foreground and background processes are given

temporal parameters. The fully static approach is the opposite

approach. It assumes that all emissions occur at the time the

FU was provided. This is the most common situation adopted

in LCA case studies and that can be obtained using standard

LCA software tools. The dynamic foreground only relies on

the assumption that the demand for passenger vehicle trans-

portation occurs over 10 years for the given system.

Therefore, only the foreground system is given a temporal

profile. All first-tier activities, i.e., direct inputs to the func-

tional unit, are accounted for in a static manner.

Figure 2 and Fig. 3 report on (i) the emission profile of

fossil carbon dioxide, (ii) the instant radiative forcing, and

(iii) the dynamic increase in global temperature that the profile

generates, for all three modeling approaches. The fully static

causes are a pulse emission, an instant peak in radiative forc-

ing, and a fast increase of the dynamic global temperature

potential at the exact time of fulfillment of the final demand.

Both the fully static and dynamic foreground only lead to

accounting for practically the same amount of emissions. A

sensible difference in terms of the total amount of carbon

dioxide emitted occurs in the fully dynamic, especially for

the EV. The explanation is straightforward: static background

inventories are compiled using the Leontief inverse. This ac-

counts for the entirety of the (infinitely long) chain of activi-

ties. However, the search algorithm cannot cover 100% of

biosphere intervention, for computational reasons.

Truncation occurs in the fully dynamic approach, in which

not all the carbon dioxide emitted can be accounted for.

The earliest significant emissions tracked by the search

algorithm start 20 years before the final demand is fulfilled.

In particular, the process BPetroleum combustion, in drilling

tests {GLO}^ is identified. It is used as an input for onshore

well construction and petroleum extraction. This is a precursor

to many energy carriers pervading the system through, e.g.,

heavy fuel oil demand in shipping, diesel demand in road

freight, and indirectly in electricity production.

Fig. 2 Carbon dioxide emission

profile, instant radiative forcing,

and dynamic temperature increase

for the internal combustion

engine vehicle system
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It was observed that a higher degree of infrastructure con-

tribution leads to a higher spreading of impacts over time.

Systems showing more direct emissions in the foreground

are significantly affected by time differentiation. However,

the more upstream emissions occur, the higher the difference

between fully dynamic and fully static results. Delays and

production functions indeed compound along the supply

chain. This contributes to flattening the emission profile and

the radiative forcing effect.

As a result, it is fair to say that temporally differentiated

LCI in the background offers little interest for activities

with high downstream emissions. It can provide insightful

results when applied to life cycle systems where significant

environmental interventions occur upstream. Those sys-

tems concern, for example, renewable electricity genera-

tion, for which most emissions are embodied in an infra-

structure upstream.

The graph search algorithm considers two conditions to

stop the search: (1) if an intervention occurs prior to the time

cut-off (using the time limit introduced in Section 2.3.2) and

(2) if a product exchange is lower than a given threshold

(using the threshold variable of Section 2.3.2). The first

condition keeps the results in a reasonable period.

However, it might lead to processes with very long lifetimes

being neglected, for example, carbon sequestration in hard-

wood trees with production functions being defined over

140 years. Regarding the second condition, a scaling vector

is calculated for each product exchange in the inventory.

The vector contains the static LCI results, which represent

the total emission values. A value between 0 and 1 is set as

the threshold. The graph will then stop the search if a prod-

uct exchange between two processes is lower than the prod-

uct of the threshold and the process total output from the

scaling vector (ai,j sj).

The trade-off between accuracy and computational time

is investigated in Fig. 4. Carbon dioxide flows are consid-

ered, with a threshold of 10−4 leading to a coverage of

79%. It is estimated that 90% coverage would require more

than 5 h of computation and 95% almost nine full days.

Further optimization is needed to improve the coverage of

emissions and to close the gap between numerical and an-

alytical results.

Fig. 4 Time-differentiated flows

of carbon dioxide, cumulated, and

broken down by origin and sub-

compartment, for the functional

unit 1 pkm of Btransport,

passenger car, electric {GLO}^ of

ecoinvent 3.2 with a threshold of

10-4

Fig. 3 Carbon dioxide emission

profile, instant radiative forcing,

and dynamic temperature increase

for the electric vehicle system
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4 Results and discussion

The integrated framework for the dynamic LCA developed

here is a flexible tool:

– A reduced number of temporal parameters can describe

generic supply chains and can be evaluated for a huge

number of processes; a temporal database can be built

up for any other LCA database;

– LCA case studies can be performed as usual, with, e.g.,

Simapro software, completed by a simulation with

DyPLCA tool;

– LCA case studies can also be defined directly on the web

application if the number of processes is not huge or via

an Excel file template to be filled in with temporal

information;

– The dynamic LCI is obtained as discrete values in time,

with time steps defined by the user. The time steps are not

imposed and any dynamic LCIA can be coupled with

these LCI results.

– Impact calculation can be done with dynamic LCIA

models resulting in temporalized indicators, or with dy-

namic CFs, or static CF with or without flow integration

over time.

4.1 Discussion of results from the case study

The results of the case study were integrated over time, or

more precisely, summed over time. This has been done using

a time window of 100 years, as this is a commonly considered

time horizon, and a discount factor of 3%, which is the largest

considered by Levasseur et al. (2010). See Table 1 for an

overview of the results.

These single scores point out that the life cycle of the diesel

car is characterized by a higher environmental impact than that

of the electric car in all considered combinations. Since the

distribution of environmental impacts do not differ much (see

curves depicted in Figs. 2 and 3), the effect of time integration

on the comparison is limited. However, the ratios between

electric and diesel car impact differ when considering time

differentiation for the foreground system and even more so

for the fully dynamic system. Concerning the influence of

discounting, the ratios alter more considerably. This exem-

plifies the potential impact of the time window and

discounting on comparison and decision-making. Time differ-

entiation as a whole may thus influence the conclusions of a

study.

4.2 Limitations and further research on the temporal
database

In the current version of the database, data consistency primes

on accuracy. Possible improvements are detailed below.

The temporal database should ideally include a specific

temporal profile for product exchange and environmental in-

tervention. Currently, supply-demand parameters are provided

per producer process; the same temporal profile (β function) is

considered for all environmental interventions of a process.

These simplifications can be alleviated by manually inputting

the desired functions into the web interface of the tool, which

is feasible for processes with significant contributions.

In ecoinvent, some types of processes are highly aggregate,

hampering a sequentialization of the incoming flows in a pro-

cess. In transportation processes, the lack of sequentialization

is striking as the transported goods and the goods themselves

are both inputs. In ecoinvent, transportation is an input in the

consumer process in the same way as the production process

of the transported goods. In reality, the production of the

goods precedes their transport. Another example is the con-

sideration of storage processes, which are often integrated into

the production process, e.g., crop storage is considered a 1-

year process, till the next harvesting.

The subdivision of the process into several sub-processes

can be a pragmatic solution for the foreground system.

However, it is not a feasible systematic solution for the com-

plete database.

As shown in the results of the case study, the outcomes may

easily span several decades. However, the process inventories

differ over time. For example, the electricity mix has changed

over time. Ideally, database inventories should be developed over

time or following given socio-economic/technology evolution

scenarioswhen it comes to future predictions. Although this issue

is outside the scope of this work, the developed tool allows

scenarios to be defined with different processes in the inventory

(as mentioned in Section 1), and for example, to consider a

different electricity mix by periods. However, scenarios can be

defined in a reduced number and for a few processes.

Another limitation concerns the lack of information on

freight transport distances, thus on the duration of transport

processes. The functional unit of freight transportation is

expressed as the product of weight and distance (tkm). The

duration of transportation depends on the distance covered.

Table 1 Cumulated global dynamic radiative forcing (dynamic

AGWP) in 10-16W/m2year for 1 vkm is shown at a 100-year time horizon

with a discount factor (r) of or 3%

Cumulated global dynamic

radiative forcing (dynamic

AGWP) [10-16 W/m2year]

Fully

static

Foreground

only

Fully

dynamic

r =

0%

r =

3%

r =

0%

r =

3%

r =

0%

r =

3%

Electric vehicle 3.76 1.42 3.63 1.23 2.90 1.18

Diesel vehicle 4.93 1.85 5.01 1.81 4.89 1.81

ratio 0.76 0.76 0.73 0.68 0.59 0.65
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This cannot be inferred from such an aggregated indicator. For

example, 100 tkm could imply that 1 t is transported over 100

km; or that 100 t are transported over 1 km. The time it takes to

transport these quantities differs significantly. To mitigate this

issue, average r values were assigned to freight transportation

processes. These represent the average transportation duration

derived from literature. This issue does not apply to passenger

transportation: it is assumed that only one person is

transported and therefore the amount reflects the distance.

In future versions of LCI databases, it would be helpful to

integrate temporal information right from the start of the de-

velopment, as was already done for spatial information

(Wernet et al. 2016). The structure of the database itself should

be revised, based on the considerations above, to accommo-

date temporal information.

4.3 Further research on tool development

The specific developments of the tool could consist of the

following:

– Including the option to fix the temporal profile of process-

es to specific calendar timing. For example, to fix the start

of agricultural production at the right time of the season.

– To model supply-demand, only an intermittent, regular

supply pattern has been considered so far for the sake of

simplification. A non-constant intermittent period (τ -

bridging the gap between supply and demand) should

also be included. For example, in the seasonal agricultural

products, delays between supply and demand should be

higher in the period of the year that is furthest from the

harvesting season.

– Increasing the calculation speed and making the tool

compatible with other LCA software (e.g., OpenLCA)

and databases.

– Coupling with other dynamic LCIA modules.

– Improving user-friendliness, namely the visualization of

the outputs.

4.4 Further research on the time-differentiated LCA

Enlarging the scope of the current dynamic LCA could be

envisaged from the following perspectives. An exploratory

development would consider novel integrated modeling ap-

proaches for sustainability assessment (Schaubroeck 2018;

Schaubroeck and Rugani 2017). A framework to differentiate

industrial chains and related environmental interventions over

time is crucial when coupling with nonlinear consequential

models of earth or technosphere. After all, these are the only

other impact models in which cause-effect chains are

nonlinear and differentiated over time. Arvesen et al. (2018)

point out this importance by providing factors derived from

LCAs (with some minor temporal differentiation) to be used

in such integrated assessment models.

By introducing full time-differentiation, the timing of FU

delivery shall also be considered to ensure the comparability

among different product systems. If the FU consists of a prod-

uct, assuming t0 as the point of product provision, this implies

that the production of the product occurs in the relative past

whereas its usage and disposal occur in the relative future.

This could be interpreted as an attributional LCA viewpoint,

despite attributional studies following future product scenarios

also being possible. From a consequential LCA perspective, a

variation of demand of a process (reflecting a decision taken)

is assumed to trigger a change in the economy. In this case, t0
would correspond to the moment at which the decision is

taken; the demand variation occurs at a specific process in

the supply chain. From this viewpoint, the choice of the ac-

tivities actually requested after the decision is made according

to the consequential approach and inventory database. The

adaptation of the temporally differentiated framework of this

paper to the attributional and consequential dimension goes

far beyond the scope of this paper and deserves to be treated

consistently in future studies.

Similarly, the integration of spatial information is a devel-

opment opportunity that deserves further attention. This in-

cludes the actual location of processes, environmental inter-

ventions, and impacts. A few literature sources have already

focused on the integration of spatial aspects in LCA, in par-

ticular on how to prioritize the addition of spatial information

in the LCI database in order to reduce the computation time

(e.g., Mutel et al. 2011; Yang and Heijungs 2017). However, a

combination of spatial and temporal characterization was not

addressed. In principle, integration can be relevant in some

situations. Consider, for example, that a toxic compound is

emitted twice in a short time at the same location. Its effect

might bemuch greater than if it is emitted at different locations

in the same short time duration. The graph search approach

adopted in this work could also be applied to spatial differen-

tiation. To this end, full spatial characteristics of processes and

environmental interventions shall be added and further used

when tracing back the processes along the life cycle network.

The main aim of this work was to provide an improved

artifact that can be of use in further studies. Despite having

already investigated our tool through a case study and param-

eter evaluation (see Section 3 in the Electronic Supplementary

Material), further research is needed to increase the value of its

impact in the field.

5 Conclusions

An operational approach and tool to assess the fully time-

differentiated LCA results of a product life cycle were devel-

oped. The main feature of these is to implement the full
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temporal differentiation of background LCI processes. A sup-

ply chain model is implemented with a graph search algo-

rithm. Temporal characterization was achieved for about

15000 processes of ecoinvent 3.2. The temporal database is

used by the tool as a stand-alone web application. The tool

was designed to work with case studies imported from

Simapro or OpenLCA. The temporally differentiated LCI

are further processed with dynamic LCIA models for climate

change and toxicity, to gather the final temporally differenti-

ated LCA results. As of now, the tool software is freely avail-

able online (http://dyplca.univ-lehavre.fr/) for testing

purposes; the temporal database is protected by intellectual

property rights.

The feasibility of a full dynamic LCA was tested with a

case study on mobility. The case study showed that consider-

ing temporal differentiation across the complete life cycle,

especially in the background system, can significantly change

the results and interpretation of comparative LCA results.

Therefore, the additional sophistication introduced by full

temporal differentiation is valuable. This is particularly the

case for product systems, which show significant environmen-

tal interventions and material exchanges over long time pe-

riods upstream to the FU.

This work provides the first operational framework to con-

duct fully temporally differentiated LCA. The inherent limita-

tions outlined shall be considered as opportunities for further

research on the temporal model and in particular on the tem-

poral database to refine the temporal characterization of back-

ground processes. This requires a collegial effort, in particular

involving the different industrial experts from the different

sectors.
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