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Abstract - In this paper, we present a novel technique for 

calibrating central omnidirectional cameras. The proposed 

procedure is very fast and completely automatic, as the user is 

only asked to collect a few images of a checker board, and click 

on its corner points. In contrast with previous approaches, this 

technique does not use any specific model of the omnidirectional 

sensor. It only assumes that the imaging function can be 

described by a Taylor series expansion whose coefficients are 

estimated by solving a four-step least-squares linear 

minimization problem, followed by a non-linear refinement 

based on the maximum likelihood criterion. To validate the 

proposed technique, and evaluate its performance, we apply the 

calibration on both simulated and real data. Moreover, we show 

the calibration accuracy by projecting the color information of a 

calibrated camera on real 3D points extracted by a 3D sick laser 

range finder. Finally, we provide a Toolbox which implements 

the proposed calibration procedure. 

Index Terms – catadioptric, omnidirectional, camera, 

calibration, toolbox. 

I. INTRODUCTION 

An omnidirectional camera is a vision system providing a 

360° panoramic view of the scene. Such an enhanced field of 

view can be achieved by either using catadioptric systems, 

which opportunely combine mirrors and conventional 

cameras, or employing purely dioptric fish-eye lenses [10].  

Omnidirectional cameras can be classified into two 

classes, central and non-central, depending on whether they 

satisfy the single effective viewpoint property or not [1]. As 

shown in [1], central catadioptric systems can be built by 

combining an orthographic camera with a parabolic mirror, or 

a perspective camera with a hyperbolic or elliptical mirror. 

Conversely, panoramic cameras using fish-eye lenses cannot 

in general be considered as central systems, but the single 

viewpoint property holds approximately true for some camera 

models [8]. 

In this paper, we focus on calibration of central 

omnidirectional cameras, both dioptric and catadioptric. After 

describing our novel procedure, we provide a practical Matlab 

Toolbox [14], which allows the user to quickly estimate the 

intrinsic model of the sensor in a very practical way. 

II. RELATED WORK 

Previous works on omnidirectional camera calibration can 

be classified into two different categories. The first one 

includes methods which exploit prior knowledge about the 

scene, such as the presence of calibration patterns [3, 4] or 

plumb lines [5]. The second group covers techniques that do 

not use this knowledge. This includes calibration methods 

from pure rotation [4] or planar motion of the camera [6], and 

self-calibration procedures, which are performed from point 

correspondences and epipolar constraint through minimizing 

an objective function [7, 8, 9, 11]. All mentioned techniques 

allow obtaining accurate calibration results, but primarily 

focus on particular sensor types (e.g. hyperbolic and parabolic 

mirrors or fish-eye lenses). Moreover, some of them require 

special setting of the scene and ad-hoc equipment [4, 6]. 

In the last years, novel calibration techniques have been 

developed, which apply to any kind of central omnidirectional 

cameras. For instance, in [2], the authors extend the geometric 

distortion model and the self-calibration procedure described 

in [8], including mirrors, fish-eye lenses and non-central 

cameras. In [15, 17, 18], the authors describe a method for 

central catadioptric cameras using geometric invariants. They 

show that any central catadioptric system can be fully 

calibrated from an image of three or more lines. In [16], the 

authors present a unified imaging model for fisheye and 

catadioptric cameras. Finally, in [19], they present a general 

imaging model which encompasses most projection models 

used in computer vision and photogrammetry, and introduce 

theory and algorithms for a generic calibration concept. 

In this work, we also focus on calibration of any kind of 

central omnidirectional cameras, but we want to provide a 

technique, which is very practical and easy to apply. The 

result of this work is a Matlab Toolbox, which requires a 

minimum user interaction. In our work, we use a checker 

board as a calibration pattern, which is shown at different 

unknown positions. The user is only asked to collect a few 

images of this board and click on its corner points. No a priori 

knowledge about the mirror or the camera model is required.  

The work described in this paper reexamines the 

generalized parametric model of a central system, which we 

presented in our previous work [20]. This model assumes that 

the imaging function, which manages the relation between a 



pixel point and the 3D half-ray emanating from the single 

viewpoint, can be described by a Taylor series expansion, 

whose coefficients are the parameters to be estimated. 

      The contributions of the present work are the following. 

First, we simplify the camera model by reducing the number 

of parameters. Next, we refine the calibration output by using 

a 4-step least squares linear minimization, followed by a non

linear refinement, which is based on the maximum likelihood 

criterion. By doing so, we improve the accuracy of the 

previous technique and allow calibration to be done with a 

smaller number of images. 

Then, in contrast with our previous work, we no longer need 

the circular boundary of the mirror to be visible in the image. 

In that work, we used the appearance of the mirror boundary 

to compute both the position of the center of the 

omnidirectional image and the affine transformation. 

Conversely, here, these parameters are automatically 

computed using only the points the user selected.  

In this paper, we evaluate the performance and the 

robustness of the calibration by applying the technique to 

simulated data. Then, we calibrate a real catadioptric camera, 

and show the accuracy of the result by projecting the color 

information of the image onto real 3D points extracted by a 

3D sick laser range finder. Finally, we provide a Matlab 

Toolbox [14] which implements the procedure described here. 

The paper is organized in the following way. For the sake 

of clarity, we report in section III the camera model 

introduced in our previous work, and provide its new 

simplified version. In section IV, we describe our camera 

calibration technique and the automatic detection of both the 

image center and the affine transformation. Finally, in section 

V, we show the experimental results, on both simulated and 

real data, and present our Matlab Toolbox. 

III. A PARAMETRIC CAMERA MODEL 

For major clarity, we initially report the central camera 

model introduced in [20], then, we provide its new simplified 

version. We will use the notation given in [8].  

In the general central camera model, we identify two 

distinct references: the camera image plane (u , ' v' )  and the 

sensor plane (u , ' ' v ' ' ) . The camera image plane coincides with 

the camera CCD, where the points are expressed in pixel 

coordinates. The sensor plane is a hypothetical plane 

orthogonal to the mirror axis, with the origin located at the 

plane-axis intersection. 

In Fig. 1, the two reference planes are shown in the case of a 

catadioptric system. In the dioptric case, the sign of u’’ would 

be reversed because of the absence of a reflective surface. All 

coordinates will be expressed in the coordinate system placed 

in O, with the z axis aligned with the sensor axis (see Fig. 1a). 
TLet X be a scene point. Then, assume ' u' = [u , ' ' v ' ' ]  be the 

Tprojection of X onto the sensor plane, and u' = [u , ' v' ] its 

image in the camera plane (Fig. 1b and 1c). As observed in 

[8], the two systems are related by an affine transformation, 

which incorporates the digitizing process and small axes 
2 2 1 2 misalignments; thus ' u' = Au' +t , where A ℜ ∈ x and t ℜ ∈ x . 

At this point, we can introduce the imaging function g, 

which captures the relationship between a point ' u' , in the 

sensor plane, and the vector p emanating from the viewpoint 

O to a scene point X (see Fig. 1a). By doing so, the relation 

between a pixel point u’ and a scene point X is: 

(λ ⋅ p = λ ⋅ ' u' g ) = λ ⋅ g(Au'+t) = PX , λ > 0 , (1) 

where X ℜ ∈ 4 is expressed in homogeneous coordinates 
3x4and P ℜ ∈ is the perspective projection matrix. By calibration 

of the omnidirectional camera we mean the estimation of the 

matrices A and t, and the non-linear function g, so that all 

vectors g(Au'+t) satisfy the projection equation (1). We 

assume for g the following expression 

T 
, (g(u'',v'' )= ( u'',v'' f u'',v'' )) , (2) 

We assume that the function f depends on u’’ and v’’ only 
2through ρ ' ' = u ' ' 2 +v ' ' . This hypothesis corresponds to 

assume that the function g is rotationally symmetric with 

respect to the sensor axis. 

(a) (b) (c) 
Fig. 1 (a) coordinate system in the catadioptric case. (b) Sensor plane, in 

metric coordinates. (c) Camera image plane, expressed in pixel coordinates. 

(b) and (c) are related by an affine transformation. 

Function f can have various forms related to the mirror or 

the lens construction. These functions can be found in [10, 11, 

12]. Unlike using a specific model for the sensor in use, we 

choose to apply a generalized parametric model of f , which is 

suitable to different kinds of sensors. The reason for doing so, 

is that we want this model to compensate for any 

misalignment between the focus point of the mirror (or the 

fisheye lens) and the camera optical center. Furthermore, we 

desire our generalized function to approximately hold with the 

sensors where the single viewpoint property is not exactly 

verified (e.g. generic fisheye cameras). In our earlier work, we 

proposed the following polynomial form for f 

( 2 N,, ,, ,,u'',v'' f )= a + a1ρ + a2ρ + ... + aN ρ , (3)0 

where the coefficients ai , i = ...N 2, 1, 0, , and the polynomial 

degree N are the parameters to be determined by the 

calibration. 

Thus, (1) can be rewritten as 
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IV. CAMERA CALIBRATION 
A. Solving for camera extrinsic parameters 

By calibration of an omnidirectional camera we mean the       Before describing how to determine the extrinsic 

estimation of the parameters [A, t, a0 , a2 ,..., aN ]. In order to parameters, let us eliminate the dependence from the depth 
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Now, let us focus on a particular observation of the calibration 

pattern. From (9), we have that each point p on the pattern 
j 

contributes three homogeneous equations 

assumption to be unitary is reasonable because the eccentricity 

of the external boundary, in the omnidirectional image, is 

usually close to 0. Conversely, O can be very far from the c 

image center I . The method we will discuss does not care c ρ
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known geometry is shown at different unknown positions,  
which are related to the sensor coordinate system by a rotation A linear estimate of H can be obtained by minimizing the  

2 2matrix R = [ r , r , r ] and a translation t, called extrinsic least-squares criterion min1 2 3 M ⋅ H , subject to H = 1 . This 

parameters. Let I i be an observed image of the calibration is accomplished by using the SVD. The solution of (11) is 
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linear minimization. In subsection E, we will apply a non

linear refinement based on the maximum likelihood criterion.  

The structure of the linear refinement algorithm is the 

following: 

1. The first step uses the camera model ( a0 , a2 ,..., a N ) 

estimated in B, and recomputes all extrinsic parameters 

by solving all together equations (10.1), (10.2) and (10.3). 

The problem leads to a linear homogeneous system, 

which can be solved, up to a scale factor, using SVD. 

Then, the scale factor is determined uniquely by 

exploiting the orthonormality between vectors r1 , r . 

2. In the second stage, the extrinsic parameters recomputed 

in the previous step are substituted in equations (10.1) 

and (10.2) to ulteriorly refine the intrinsic camera model. 

The problem leads to a linear system, which can be 

solved as usual by using the pseudoinverse.  

D.  Iterative center detection 

As stated at the beginning of section IV, we want our 

calibration toolbox to be as automatic as possible, and so, we 

desire the capability of identifying the center of the 

omnidirectional image O (Fig. 1c) even when the externalc 

boundary of the sensor is not visible in the image. 

known up to a scale factor, which can be determined uniquely 

since vectors r1 , r are orthonormal. Because of the2 

orthonormality, the unknown entries r31 , r32 can also be 

computed uniquely.  

To resume, the first calibration step allows finding the 

extrinsic parameters r11 , r12 , r21 , r22 , r31 , r , t , t for each pose of 32 1 2 

the calibration pattern, except for the translation parameter t3 . 

This parameter will be computed in the next step, which 

concerns the estimation of the image projection function. 

B.  Solving for camera intrinsic parameters 

In the previous step, we exploited equation (10.3) to find 

the camera extrinsic parameters. Now, we substitute the 

estimated values in the equations (10.1) and (10.2), and solve 

for the camera intrinsic parameters a0 , a2 ,..., aN that describe 

the shape of the imaging function g. At the same time, we also 

compute the unknown t3 

i for each pose of the calibration 

pattern. As done above, we stack all the unknown entries of 

(10.1) and (10.2) into a vector and rewrite the equations as a 

system of linear equations. But now, we incorporate all K 

observations of the calibration board. We obtain the following 

system 
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procedure for different center locations, and, for each trial, we 

computed the Sum of Squared Reprojection Errors (SSRE). 

where  As a result, we verified that the SSRE always has a global 

minimum at the correct center location. i i i iY r i i i i iY r i i i iY r iAi = Bi X C X( )+ t t1+ + + +r21 = v ⋅ r31 = r11, ,i i22 2 32 12 
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(a)  (b) 
Fig. 2 When the position of the center is wrong, the 3D points of the checker 

board do not correctly back-project (green rounds) onto the calibration points 

Finally, the least-squares solution of the overdetermined 

system is obtained by using the pseudoinverse. Thus, the 

intrinsic parameters a0 , a ,..., aN , which describe the model, are 2 

now available. In order to compute the best polynomial degree 

N, we actually start from N=2. Then, we increase N by unitary 

steps and we compute the average value of the reprojection 

error of all calibration points. The procedure stops when a 

minimum error is found. 

C. Linear refinement of intrinsic and extrinsic parameters 

To resume, the second linear minimization step described 

in part B finds out the intrinsic parameters of the camera, and 

simultaneously estimates the remaining extrinsic t3 

i . The next 

two steps, which are described here, aim at refining this 

primary estimation. This refinement is still performed by 

(red crosses) (a). Conversely, (b) shows the reprojection result when the center 

is correct. 

This result leads us to an iterative search of the center O , 

which stops when the difference between two potential center 

locations is less than a certain fraction of pixel ε (we 

reasonably set ε=0.5 pixels): 

1. At each step of this iterative search, a particular image 

region is uniformly sampled in a certain number of points.  

c 

c 



2. For each of these points, calibration is performed by 

using that point as a potential center location, and SSRE 

is computed.  

3. The point giving the minimum SSRE is assumed as a 

potential center.  

4. The search proceeds by refining the sampling in the 

region around that point, and steps 1, 2 and 3 are repeated 

until the stop condition is satisfied. 

Observe that the computational cost of this iterative search is 

so low that it takes only 3 seconds to stop. 

E.  Non- linear refinement 

The linear solution given in the previous subsections A, B 

and C is obtained through minimizing an algebraic distance, 

which is not physically meaningful. To this end, we chose to 

refine it through maximum likelihood inference. 

Let us assume we are given K images of a model plane, 

each one containing L corner points. Next, let us assume that 

the image points are corrupted by independent and identically 

distributed noise. Then, the maximum likelihood estimate can 

be obtained by minimizing the following functional: 

Fig. 3 A picture of our simulator showing several calibration patterns and the 

virtual omnidirectional camera at the axis origin. 
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point M of the plane i according to equation (1). Ri and Ti are
j 

the rotation and translation matrices of each plane pose; Ri is 

parameterized by a vector of 3 parameters related to R by the i

Rodrigues formula. Observe that now we incorporate into the 

functional both the affine matrix A and the center of the 

omnidirectional image O .c 

By minimizing the functional defined in (14), we actually 

compute the intrinsic and extrinsic parameters which 

minimize the reprojection error. In order to speed up the 

convergence, we decided to split the non-linear minimization 

into two steps. The first one refines the extrinsic parameters, 

ignoring the intrinsic ones. Then, the second step uses the 

extrinsic parameters just estimated, and refines the intrinsic 

ones. By performing many simulations, we found that this 

splitting does not affect the final result with respect to a global 

minimization. 

To minimize (14), we used the Levenberg-Marquadt 

algorithm, as implemented by the Matlab function 

lsqnonlin. The algorithm requires an initial guess of the 

intrinsic and extrinsic parameters. These parameters are 

obtained using the linear technique described in the previous 

subsections. As a first guess for A, we used the unitary matrix, 

while for O we used the position estimated through the c 

iterative procedure explained in subsection D. 

V. EXPERIMENTAL RESULTS 

In this section, we present the experimental results of the 

proposed calibration procedure on both computer simulated 

and real data. 

A.  Simulated Experiments 

The reason for using a simulator is that we can monitor 

the actual performance of the calibration, and compare the 

results with a known ground truth. The simulator we 

developed allows choosing both the intrinsic parameters (i.e. 

the imaging function g) and extrinsic ones (i.e. the rotation 

and translation matrices of the simulated checker boards). 

Moreover, it permits to fix the size of the virtual pattern, and 

also the number of calibration points, as in the real case. A 

pictorial image of the simulation scenario is shown in Fig. 3. 

As a virtual calibration pattern we set a checker plane 

containing 6x8=48 corner points. The size of the pattern is 

150x210 mm. As a camera model, we choose a 4th order 

polynomial, whose parameters are set according to those 

obtained by calibrating a real omnidirectional camera. Then, 

we set to 900x1200 pixels the image resolution of the virtual 

camera.  

A.1. Performance with respect to the noise level 

In this simulation experiment, we study the robustness of 

our calibration technique in case of inaccuracy in detecting the 

calibration points. To this end, we use 14 poses of the 

calibration pattern. Then, Gaussian noise with zero mean and 

standard deviation σ is added to the projected image points. 

We vary the noise level from σ=0.1 pixels to σ=3.0 pixels, 

and, for each noise level, we perform 100 independent 

calibration trials. The results shown are the average.  

Fig. 4 shows the plot of the reprojection error vs. σ . We 

define the reprojection error as the distance, in pixels, between 

the back-projected 3D points and correct image points. Figure 

4 shows both the plots obtained by just using the linear 

minimization method, and the non-linear refinement. As you 

can see, the average error increases linearly with the noise 

level in both cases. Observe that the reprojection error in the 

non-linear estimation is always less than that in the linear 



method. Furthermore, note that for σ = 0.1 , which is larger 

than the normal noise in a practical calibration, the average 

reprojection error of the non-linear method is less than 0.4 

pixels. 
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Fig. 4 The reprojection error vs. the Fig. 5 Accuracy of the extrinsic 

noise level with the linear parameters: the absolute error (mm) of 
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Fig. 6 An image of the calibration pattern, projected onto the simulated 

omnidirectional image. Calibration points are affected by noise with σ =3.0 

pixels (blue rounds). Ground truth (red crosses). Reprojected points after the 

calibration (red squares). 

In Fig. 6, we show the 3D points of a checker board back-

projected onto the image. The ground truth is highlighted by 

red crosses, while the blue rounds represent the calibration 

points perturbed by noise with σ=3.0 pixels. Despite the large 

amount of noise, the calibration is able to compensate for the 

error introduced. In fact, after calibration, the reprojected 

calibration points are very close to the ground truth (red 

squares). 

We also want to evaluate the accuracy in estimating the 

extrinsic parameters R and T of each calibration plane. To this 

end, Figure 5 shows the plots of the absolute error (measured 

in mm) in estimating the origin coordinates (x, y and z) of a 

given checker board. The absolute error is very small because 

it is always less than 2mm. Even if we do not show the plots 

here, we also evaluated the error in estimating the correct 

plane orientations, and we found an average absolute error 

less than 2°. 

B. Real Experiments Using the Proposed Toolbox 

Following the steps outlined in the previous sections, we 

developed a Matlab Toolbox [14], which implements our new 

calibration procedure. This tool was tested on a real central 

catadioptric system, which is made up of a hyperbolic mirror 

and a camera having the resolution of 1024x768 pixels. Only 

three images of a checker board taken all around the mirror 

were used for calibration. Our Toolbox only asks the user to 

click on the corner points. The clicking is facilitated by means 

of a Harris corner detector having sub-pixel accuracy. The 

center of the omnidirectional image was automatically found 

as explained in IV.D. After calibration, we obtained an 

average reprojection error less than 0.3 pixels (Fig. 2.b). 

Furthermore, we compared the estimated location of the center 

with that extracted using an ellipse detector, and we found 

they differ by less than 0.5 pixels.  

B.1 Mapping Color Information on 3D points 

One of the challenges we are going to face in our 

laboratory consists in getting high quality 3D maps of the 

environment by using a 3D rotating sick laser range finder 

(SICK LMS200 [13]). Since this sensor cannot provide the 

color information, we used our calibrated omnidirectional 

camera to project the color onto each 3D point. The results are 

shown in Fig. 7.  

In order to perform this mapping both the intrinsic and 

extrinsic parameters have to be accurately determined. Here, 

the extrinsic parameters describe position and orientation of 

the camera frame with respect to the sick frame. Note that 

even small errors in estimating the correct intrinsic and 

extrinsic parameters would produce a large offset into the 

output map. In this experiment, the colors perfectly 

reprojected onto the 3D structure of the environment, showing 

that the calibration was accurately done. 

VI. CONCLUSIONS 

In this paper, we presented a novel and practical 

technique for calibrating any central omnidirectional cameras. 

The proposed procedure is very fast and completely 

automatic, as the user is only asked to collect a few images of 

a checker board, and to click on its corner points. This 

technique does not use any specific model of the 

omnidirectional sensor. It only assumes that the imaging 

function can be described by a Taylor series expansion, whose 

coefficients are the parameters to be estimated. These 

parameters are estimated by solving a four-step least-squares 

linear minimization problem, followed by a non-linear 

refinement, which is based on the maximum likelihood 

criterion. 



Fig. 7 The panoramic picture shown in the upper window was taken by using a hyperbolic mirror and a perspective camera, the size of 640x480 pixels. After 

intrinsic camera calibration, the color information was mapped onto the 3D points extracted from a sick laser range finder. In the lower windows are the mapping 

results. The colors are perfectly reprojected onto the 3D structure of the environment, showing that the camera calibration has been accurately done. 

In this work, we also presented a method to iteratively 

compute the center of the omnidirectional image without 

exploiting the visibility of the circular field of view of the 

camera. The center is automatically computed by using only 

the points the user selected. 

Furthermore, we used simulated data to study the 

robustness of our calibration technique in case of inaccuracy 

in detecting the calibration points. We showed that the non

linear refinement significantly improves the calibration 

accuracy, and that accurate results can be obtained by using 

only a few images. 

Then, we calibrated a real catadioptric camera. The 

calibration was very accurate as we obtained an average 

reprojection error les than 0.3 pixels in an image the 

resolution of 1024x768 pixels. We also showed the accuracy 

of the result by projecting the color information from the 

image onto real 3D points extracted by a 3D sick laser range 

finder. 

Finally, we provided a Matlab Toolbox [14], which 

implements the entire calibration procedure. 
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