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Abstract

Neuronal population codes are increasingly being investigated with multivariate pattern-information analyses. A key
challenge is to use measured brain-activity patterns to test computational models of brain information processing. One
approach to this problem is representational similarity analysis (RSA), which characterizes a representation in a brain or
computational model by the distance matrix of the response patterns elicited by a set of stimuli. The representational
distance matrix encapsulates what distinctions between stimuli are emphasized and what distinctions are de-emphasized in
the representation. A model is tested by comparing the representational distance matrix it predicts to that of a measured
brain region. RSA also enables us to compare representations between stages of processing within a given brain or model,
between brain and behavioral data, and between individuals and species. Here, we introduce a Matlab toolbox for RSA. The
toolbox supports an analysis approach that is simultaneously data- and hypothesis-driven. It is designed to help integrate a
wide range of computational models into the analysis of multichannel brain-activity measurements as provided by modern
functional imaging and neuronal recording techniques. Tools for visualization and inference enable the user to relate sets of
models to sets of brain regions and to statistically test and compare the models using nonparametric inference methods.
The toolbox supports searchlight-based RSA, to continuously map a measured brain volume in search of a neuronal
population code with a specific geometry. Finally, we introduce the linear-discriminant t value as a measure of
representational discriminability that bridges the gap between linear decoding analyses and RSA. In order to demonstrate
the capabilities of the toolbox, we apply it to both simulated and real fMRI data. The key functions are equally applicable to
other modalities of brain-activity measurement. The toolbox is freely available to the community under an open-source
license agreement (http://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/license/).

Citation: Nili H, Wingfield C, Walther A, Su L, Marslen-Wilson W, et al. (2014) A Toolbox for Representational Similarity Analysis. PLoS Comput Biol 10(4): e1003553.
doi:10.1371/journal.pcbi.1003553

Editor: Andreas Prlic, UCSD, United States of America

Received January 7, 2013; Accepted January 24, 2014; Published April 17, 2014

Copyright: � 2014 Nili et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Medical Research Council of the UK (programme MC-A060-5PR20) and by a European Research Council Starting Grant
(ERC-2010-StG 261352) to NK. Additional funding was provided by European Research Council Advanced Grant (230570-NEUROLEX) to WMW. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hamed.nili@mrc-cbu.cam.ac.uk (HN); nikolaus.kriegeskorte@mrc-cbu.cam.ac.uk (NK)

This is a PLOS Computational Biology Software Article

Introduction

Brain science is constantly developing its techniques of brain-

activity measurement. Neuronal recordings have always offered

superior spatial and temporal resolution, and are improving in

terms of the numbers of channels that can be recorded

simultaneously in animal models. Functional magnetic resonance

imaging (fMRI) has always had superior coverage and very large

numbers of channels, enabling us to noninvasively measure the

entire human brain simultaneously with tens to hundreds of

thousands of voxels, and it has begun to invade the submillimeter

range in humans. In the near future, it might be possible to image

the activity of every cell within a functional area with millisecond

temporal resolution [1].

A fundamental challenge is to use these rich spatiotemporal

measurements to learn about brain information processing. Linear

decoding analyses have helped reveal what information is present

for linear readout in each region [2–11]. Beyond linear decoding,

we would like to characterize neuronal population codes more

comprehensively, including not only what information is present,

but also the format, in which the information is represented. In

addition, we would like to use activity measurements to test

computational models of brain information processing [12]. One

approach to these challenges is representational similarity analysis

(RSA [13]; for a review of recent studies, see [14]).

In contrast to decoding analysis, which detects information

about predefined stimulus categories in response patterns, RSA

tests hypotheses about the representational geometry, which is

characterized by the representational dissimilarities among the

stimuli. RSA can relate brain activity patterns to continuous and

categorical multivariate stimulus descriptions. When the stimulus

description is the internal representation in a computational

model, RSA can be used to test the model. RSA can also relate

brain representations to behavioral data, such as similarity

judgments e.g. [13,15–16].

Although RSA has been successfully applied in many studies

(e.g. [17–23] and many more reviewed in [14]), there has not been

any freely available set of analysis tools implementing this method.

An easy-to-use toolbox for RSA promises to help newcomers get

started and could also provide a basis for collaborative develop-

ment of further methodological advances across labs. Here we
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describe a freely available toolbox developed in Matlab. The

toolbox provides a core set of functions for performing the data-

and hypothesis-driven analyses of RSA. It includes a number of

demo scripts that demonstrate key analyses based on simulated

and real brain-activity data. These scripts come ready to run and

provide an easy start for learning how to combine components to

perform the desired analyses in Matlab. They may also serve as

prototypes for a user’s own analyses. The toolbox does not

currently provide a graphical user interface; knowledge of Matlab

is required. The outputs of the analyses are visualizations of brain

representations and results of inferential analyses that test and

compare alternative theoretical models. The toolbox supports a

range or nonparametric frequentist inference techniques (signed-

rank, randomization, and bootstrap tests), which are applicable to

single subjects as well as groups of subjects, and can treat subjects

and/or stimuli as random effects.

We start with a brief description of the basic principles of the

method and in particular the notion of a representational

dissimilarity matrix (RDM), the core concept of RSA (Figure 1).

We then proceed with a description of RSA in three steps. The

steps are illustrated by applying the toolbox to simulated data

(Figures 2–4). We then apply the key inferential analyses to real

fMRI data (previously analyzed in [19]). This provides an example

of how new biological insights can be gained from the technique

by using the toolbox.

Basics of representational similarity analysis
In studies of brain activity, subjects typically experience a

number of experimental conditions while some correlate of

neuronal activity is measured at multiple brain locations. In

perceptual studies, the experimental conditions typically corre-

spond to distinct stimuli. We will use the more specific term

‘‘stimulus’’ here for simplicity, with an understanding that the

methods apply to non-perceptual (e.g. imagery or motor)

experiments as well. The vector of activity amplitudes across

response channels (i.e. voxels in fMRI, neurons or sites in cell

recording) within a region of interest (ROI) is referred to as the

activity pattern. Each stimulus is associated with an activity pattern,

which is interpreted as the representation of the stimulus (or of the

mental state associated with the experimental condition) within the

ROI. Typically, the activity pattern is a spatial pattern. However,

it may also be a spatiotemporal pattern [24–25].

RSA characterizes the representation in each brain region by a

representational dissimilarity matrix (RDM, Figure 1). The most

basic type of RDM is a square symmetric matrix, indexed by the

stimuli horizontally and vertically (in the same order). The

diagonal entries reflect comparisons between identical stimuli

and are 0, by definition, in this type of RDM. Each off-diagonal

value indicates the dissimilarity between the activity patterns

associated with two different stimuli. The dissimilarities can be

interpreted as distances in the multivariate response space. The

RDM thus describes the geometry of the arrangement of patterns

in this space. Popular distance measures are the correlation

distance (1 minus the Pearson correlation, computed across voxels

or sites of the two activity patterns), the Euclidean distance (the

square root of the sum of squared differences between the two

patterns), and the Mahalanobis distance (which is the Euclidean

distance measured after linearly recoding the space so as to whiten

the noise). The goal of RSA is to understand the representational

geometry of a brain region. This is achieved by visualizing the

representational distances in 2D and by statistically comparing the

brain region’s RDM to various model RDMs.

RDMs can be derived from a variety of sources beyond brain-

activity patterns. For example, one can define an RDM on the

basis of behavioral measures that capture the discriminability of

different objects, such as judgments of dissimilarity, frequencies of

confusions, or reaction times in a discrimination task. Hypotheses

about the representations in a given brain region might also make

Figure 1. Computation of the representational dissimilarity matrix (RDM). During the experiment, each subject’s brain activity is measured
while the subject is exposed to N experimental conditions, such as the presentation of sensory stimuli. For each brain region of interest, an activity
pattern is estimated for each experimental condition. For each pair of activity patterns, a dissimilarity is computed and entered into a matrix of
representational dissimilarities. When a single set of response-pattern estimates is used, the RDM is symmetric about a diagonal of zeros. The
dissimilarities between the activity patterns can be thought of as distances between points in the multivariate response space. An RDM describes the
geometry of the representation and serves as a signature that can be compared between brains and models, between different brain regions, and
between individuals and species.
doi:10.1371/journal.pcbi.1003553.g001

Toolbox for Representational Similarity Analysis
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specific predictions about their similarity structure. We may, for

example, hypothesize that several stimuli should be represented as

similar to each other because they share a semantic feature. This

prediction can be expressed in an RDM. One may also obtain

RDMs from computational models. For example, an RDM may

be derived from the representation in a hidden layer of units in a

neural network model. We refer to RDMs derived from either

conceptual or computational models, or from behavioral data, as

model RDMs.

Design and implementation
The toolbox implements RSA in a stepwise manner. Its

components can be used for analyzing dissimilarity matrices

derived from any source. The input to the toolbox is the set of

activity patterns corresponding to the experimental conditions for

each ROI in each subject. In the first step, the brain-activity-based

RDMs are computed and visualized. Descriptive visualizations

give an intuitive sense of the representational geometry, revealing

which pairs of stimuli are represented distinctly and which are

represented similarly. In the second step, different RDMs are

compared and the relationships among RDMs are visualized. This

serves to reveal the extent to which the representational geometries

in brain regions and models are similar to each other. These first

two steps are descriptive and the visualizations will reflect both

signals and noise, precluding any definite inferences. The third

step is statistical inference on (a) the ability of each model RDM to

account for each brain representation, and (b) the differences

among models in their ability to account for each brain

representation.

In order to demonstrate the three steps of analysis, we apply the

toolbox to both simulated and real brain-activity data. Simulations

enable us to define arbitrary hypothetical representational

geometries. In a simulation, we know the ‘‘ground truth’’, i.e.

the noiseless true patterns underlying the noisy measurements that

form the input to the analyses. This enables us to test how well our

methods, despite the noise, can reveal the true representational

geometry underlying the data.

The simulated data recreate an RDM similar to the one

observed for human IT for a set of 92 images [19]. This RDM is

characterized by two major clusters, corresponding to animate and

inanimate objects (roughly the first and the second half of the set of

92 stimuli, respectively). Within the animates, there is a subcluster

corresponding to faces. This cluster includes human and animal

faces and appears as two small blue squares along the diagonal

(corresponding to comparisons within human and within animal

faces) and two small blue off-diagonal squares (corresponding to

comparisons between human and animal faces). We first created a

hypothetical ground-truth RDM (Figure 2, top left) by linearly

combining the noisy estimate of the human-IT RDM from [19]

with a categorical-model RDM. We then created a set of 92

Figure 2. Visualizing representations as RDMs, 2D arrangements, and clustering dendrograms. Percentiled RDMs are displayed in the
top row. The left RDM corresponds to the simulated ground truth (dissimilarities measured before adding noise). The middle RDM is an example of a
simulated single-subject RDM (dissimilarities measured after adding isotropic Gaussian noise to the ground-truth patterns). The group-average RDM
(right) is computed by averaging the RDMs for all 12 simulated subjects, which reduces the noise. Visual inspection reveals the simulated structure
designed here to be similar to the human-IT RDM from Kriegeskorte et al. [19], with two main clusters corresponding to animate and inanimate
objects and a cluster corresponding to human and animal faces. Two-dimensional arrangements (middle row, computed by MDS with metric stress
criterion) provide a spatial visualization of the approximate geometry, without assuming any categorical structure. The third row displays the results
of hierarchical agglomerative clustering to the three RDMs. Clustering starts with the assumption that there is some categorical structure and aims to
reveal the categorical divisions. MDS plots and dendrograms share the same category color code (see color legend).
doi:10.1371/journal.pcbi.1003553.g002

Toolbox for Representational Similarity Analysis
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patterns in a 100-dimensional response space, whose RDM

matched the ground-truth RDM. (This was achieved by randomly

sampling patterns from an isotropic Gaussian and then driving

them to conform to the ground-truth RDM using forces.) Finally,

we assumed the resulting patterns to be the ‘‘true’’ representation,

and simulated data for 12 subjects, by adding a realistic level of

isotropic Gaussian noise to the patterns.

Results

Figures 2–4 show the results of the basic steps of RSA for a

simulated data set – along with the ground truth the analysis is

meant to reveal. Figure 5 shows the application of the key final

inferential analyses to real data (from [19]). A good way to get

started with the toolbox is to run DEMO1_RSA_ROI_simulate-

dAndRealData.m, which reproduces all the results presented for

simulated and real data in this paper (Figures 2–5, not including

the additional results in Text S1).

Step 1 — computing and visualizing RDMs
The first step is the calculation and visualization of the RDMs.

This step is data-driven and helps reveal the dimensions of the

stimulus space that are most strongly reflected in the response

patterns. Figure 2 (top row) shows the RDMs for the simulated

data. The group-average RDM better replicates the geometry

simulated as ground truth, than the noisy single-subject RDMs.

Multidimensional scaling [26–29] or t-SNE [30] may also be used

in this step to visualize the similarity structure of the RDMs. These

methods arrange the stimuli in a 2D plot such that the distances

among them reflect the dissimilarities among the response patterns

they elicited. Thus, stimuli that are placed closer together in these

arrangements elicited more similar response patterns. Such

visualizations provide an intuitive sense of the distinctions that

are emphasized and de-emphasized by a population code. These

methods are data-driven and do not presume a categorical

structure. Hierarchical cluster trees (Figure 2, bottom) can help

reveal categorical divisions. Unlike MDS, this technique assumes

the existence of some categorical structure, but it does not assume

any particular grouping into categories. In summary, step 1

consists in data-driven, exploratory methods that reveal the

geometry of each representation by visualizing the RDMs and

corresponding 2D arrangements and hierarchical cluster trees.

These methods can be applied to each brain and model RDM. In

step 2, the relationship among the representations in different

brain regions and models will be explored.

Step 2 — comparing brain and model RDMs
The second step of RSA is the descriptive visualization of the

relationships among brain and model RDMs. To this end, we

first consider the matrix of pairwise correlations between all

brain and model RDMs. This matrix (Figure 3A) reveals, which

representations in brain regions or models are similar, and

which are dissimilar. Any metric that quantifies the extent to

which two matrices are ‘‘in agreement’’ could be used as a

measure of RDM similarity. We do not in general want to

assume a linear relationship between the dissimilarities. Unless

we are confident that our model captures not only the neuronal

representational geometry but also its possibly nonlinear

reflection in our response channels (e.g. fMRI patterns),

assuming a linear relationship between model and brain RDMs

appears questionable. We therefore prefer to assume that a

model RDM predicts merely the rank order of the dissimilar-

ities. For this reason we recommend the use of rank-correlations

for comparing RDMs [19].

Figure 3. Visualizing the relationships among multiple representations. (A) Matrix of RDM correlations. Each entry compares two RDMs by
Kendall’s tA. The matrix is symmetric about a diagonal of ones. (B) MDS of the RDMs. Each point represents an RDM, and distances between the
points approximate the tA correlation distances (1 minus tA) among the RDMs. The 2D distances are highly correlated (0.94, Pearson; 0.91, Spearman)
with the RDM correlation distances. Visual inspection reveals that the group-average RDM is similar to the ground-truth RDM. However, the group-
average RDM is also similar to some other model RDMs.
doi:10.1371/journal.pcbi.1003553.g003
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Classical rank correlation measures are Spearman’s rank

correlation coefficient (which is the Pearson correlation coefficient

computed on ranks), Kendall’s rank correlation coefficient tA (‘‘tau

a’’, which is the proportion of pairs of values that are consistently

ordered in both variables), and the closely related coefficients tB,

and tC (which deal with ties in different ways). We recommend

Kendall’s tA, when comparing models that predict tied ranks to

models that make more detailed predictions. Kendall’s tA is more

Figure 4. Simulated representation – inferential comparisons of multiple model representations. Several candidate RDMs are tested and
compared for their ability to explain the reference RDM. As expected, the true model corresponding to the simulated ground truth (no noise) is the
most similar candidate RDM to the reference. Note that the true model falls within the ceiling range, indicating that it performs as well as any possible
model can, given the noise in the data. The second best fit among the candidate RDMs is the categorical model with some extra information about
the within-animate category structure. This model reflects the categorical clustering in the simulated data, but misses the simulated within-category
structure. A horizontal line over two bars indicates that the two models perform significantly differently. The pairwise statistical comparisons show
that the true model is significantly better than all other candidate RDMs. Most of the other pairwise comparisons are significant as well, illustrating
the power of the signed-rank test used for comparing candidate performances in this simulated scenario. Kendall’s tA is used as a measure of RDM
similarity, because candidates include categorical models (i.e. models predicting equal dissimilarities for many pairs of stimuli). Other rank-correlation
coefficients overestimate the performance of categorical candidate RDMs (Figure S2 in Text S1). All candidate RDMs except that obtained from the
RADON model are significantly related to the reference RDM (p values from one-sided signed-rank test across single-subject estimates beneath the
bars).
doi:10.1371/journal.pcbi.1003553.g004
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likely than tB, tC, and the Pearson and Spearman correlation

coefficients to prefer the true model over a simplified model that

predicts tied ranks for a subset of pairs of dissimilarities

(Supplementary Figure S2). Note that Matlab’s Kendall rank

correlation function implements tB, but the toolbox includes the

more appropriate tA. Unfortunately, tA takes much longer to

compute than the Spearman correlation coefficient, which can

slow down randomization and bootstrap inference (step 3)

substantially for large RDMs. In the absence of models that

predict tied ranks, the Spearman correlation coefficient is a good

alternative.

Visual inspection of the correlation matrix of RDMs (Figure 3A)

enables the user to get a sense of how similar the representations in

different brain regions and models are to each other. The MDS

plot based on this matrix (Figure 3B) provides an intuitive

overview of the relationships among the brain and model RDMs.

Figure 5. Human IT (real data) – inferential comparisons of multiple model representations. Like Fig. 4, this figure demonstrates
inferential analyses supported by the toolbox. Here, however, inference is performed on real data from fMRI. The smaller number of subjects (4)
precludes the use of second-level inference with subject as a random effect. Relatedness to the reference RDM is therefore tested using stimulus-label
randomization and the pairwise performance comparisons among the candidate RDMs (along with the error bars) are based on bootstrap resampling
of the stimulus set. The models are the same as in Fig. 4 and reproduced here for convenience (except for the ‘‘true model’’, which is unknown for the
real data). The comment bubbles detail the key changes in comparison to the analysis of Fig. 4, illustrating an alternative scenario for RSA statistical
inference.
doi:10.1371/journal.pcbi.1003553.g005

Toolbox for Representational Similarity Analysis
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However, statistical inference on the RDMs (step 3) is required to

draw definite conclusions about these relationships.

Step 3 — statistical inference
In Step 3, the final step, we perform statistical inference to assess

whether RDMs are related and whether there are differences in

the degree of relatedness between RDMs. For example, we might

want to test which of several models explain variance in a given

brain representation and whether some of them explain the

representation better than others. Alternatively, we might want to

test for which of several brain representations a given model

explains variance, and whether it explains some brain represen-

tations better than others. In either case, we are relating one RDM

(called the reference RDM) to multiple other RDMs (called the

candidate RDMs).

Figure 4 shows the results of statistical inference for our

simulated data set. In this example, the reference RDM is a

(simulated) brain RDM (to be explained) and the candidate RDMs

are model RDMs (serving to explain). Note that we refer to the

reference RDM as a single representation, even though the

analysis is based on one reference-RDM estimate per subject. The

relatedness of a candidate RDM to the reference RDM is

measured as the average across subjects of the correlations

between the candidate RDM and the single-subject reference-

RDM estimates.

The relatedness of each candidate RDM to the reference RDM

(Figure 4, bar height) was tested using a one-sided signed-rank test

[31] across the single-subject RDM correlations (p values under

bars). This is the default test in the toolbox when there are 12 or

more subjects (see Figures 4 and 5 and Text S1, in particular

Figure S1, for the full range of statistical tests and the default

choices). Note that although several models have very small

correlations with the simulated reference RDM here, all except the

RADON model are significantly related to the reference RDM.

In order to test whether two candidate RDMs differ in their

relatedness to the reference RDM, the toolbox computes the

difference between the RDM correlations in each subject and

performs a two-sided signed-rank test across subjects here. As

before, this is the default test when there are 12 or more subjects.

This procedure is repeated for each pair of candidate RDMs,

yielding a large number of statistical comparisons. Multiple testing

is accounted for by controlling the false-discovery rate (Benjamini

and Hochberg, [32]; by default, alternative: familywise error rate).

The significant comparisons are indicated by horizontal lines

above the bars.

Note that the analysis in Figure 4 also includes other brain

RDMs (monkey IT, based on [6]; human early visual cortex,

based on [19]) among the candidate RDMs. Comparing brain

RDMs to other brain RDMs can reveal the relationships between

their representations (‘‘representational connectivity’’ [13]). How-

ever, performance comparisons between candidate RDMs affected

by noise to different degrees (such as noiseless models and brain

RDMs) should not be formally interpreted.

Importantly, the bar graph includes an estimate of the noise

ceiling. The noise ceiling is the expected RDM correlation

achieved by the (unknown) true model, given the noise in the

data. An estimate of the noise ceiling is important for assessing

to what extent the failure of a model to reach an RDM

correlation close to 1 is caused by a deficiency of the model or

by the limitations of the experiments (e.g. high measurement

noise and/or limited amount of data). If the best model does

not reach the noise ceiling, we should seek a better model. If

the best model reaches the noise ceiling, but the ceiling is far

below 1, we should improve our experimental technique, so as

to gain sensitivity to enable us to detect any remaining

deficiencies of our model.

The noise ceiling is indicated by a gray horizontal bar, whose

upper and lower edges correspond to upper- and lower-bound

estimates on the group-average correlation with the RDM

predicted by the unknown true model. Note that there is a hard

upper limit to the average correlation with the single-subject

reference-RDM estimates that any RDM can achieve for a

given data set. Intuitively, the RDM maximizing the group-

average correlation lies at the center of the cloud of single-

subject RDM estimates. Where exactly this ‘‘central’’ RDM falls

depends on the chosen correlation type. For the Pearson

correlation, we first z-transform the single-subject RDMs. For

the Spearman correlation, we rank-transform the RDMs. After

this transformation, the squared Euclidean distance is propor-

tional to the respective correlation distance. This motivates

averaging of the single-subject RDMs to find the RDM that

minimizes the average of the squared Euclidean distances and,

thus, maximizes the average correlation (see Text S1 for the

proof). For Kendall’s tA, we average the rank-transformed

single-subject RDMs and use an iterative procedure to find the

RDM that has the maximum average correlation to the single-

subject RDMs.

The average RDM (computed after the appropriate transform

for each correlation type) can be thought of as an estimate of the

true model’s RDM. This estimate is overfitted to the single-subject

RDMs. Its average correlation with the latter therefore overesti-

mates the true model’s average correlation, thus providing an

upper bound. To estimate a lower bound, we employ a leave-one-

subject-out approach. We compute each single-subject RDM’s

correlation with the average of the other subjects’ RDMs. This

prevents overfitting and underestimates the true model’s average

correlation because the amount of data is limited, thus providing a

lower bound on the ceiling.

Figures 2–4 demonstrated the toolbox on simulated

data, where the ground truth was known. In Figure 5, the

inferential analyses are applied to a real data set (human IT,

based on fMRI data from [19]). The structure of the reference

RDM is very similar in the simulated and real data. However,

we only have 4 subjects and so subject cannot be treated as a

random effect in this analysis. The toolbox therefore uses a

stimulus-label randomization test [33–34] to test the related-

ness of each candidate RDM to the reference RDM, and a

bootstrap test [35], based on resampling with replacement of

the stimulus set, to compare the performance of different

candidate RDMs.

Additional Analysis Options

Searchlight representational similarity analysis
ROI-based RSA analyzes the representational geometry in a

predefined set of brain regions. However, other brain regions

might also have representational geometries that conform to the

predictions of our models. Searchlight analysis [5] provides a

method of continuously mapping pattern information throughout

the entire measured volume. The toolbox includes searchlight

RSA [22] for fMRI data. RSA is carried out for a spherical cluster

of voxels centered at each voxel. This provides an RDM-

correlation map for each model RDM, which reveals where in

the brain the local representation conforms to the model’s

predictions. Inference is performed at each voxel by a signed-

rank test across subjects and the resulting p map is thresholded to

control the false-discovery rate (see Text S1, in particular Figure

S3, for details).

Toolbox for Representational Similarity Analysis
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The linear-discriminant t value: Combining the
advantages of linear classifiers and representational
similarity analysis
Linear classifiers have been successfully applied to a variety

of neurophysiological data [2–4,36–37, for an introduction see

9]. They find optimal weights and enable highly sensitive

detection of distributed information in a population code that

can be linearly read out. However, they reflect only categorical

distinctions and do not characterize the representational

geometry as richly as RSA does. This raises the question of

whether the advantages of these methods can be combined.

RDMs are distance matrices whose entries reflect the

separation in the representation of each pair of stimuli. We

could use a linear classifier to estimate the discriminability of

each pair of stimuli, and interpret these discriminabilities as

our distances. Here we introduce a new measure of separability

for RSA that is based on linear discriminant analysis. We first

divide the data into two independent sets. For each pair of

stimuli, we then fit a Fisher linear discriminant to one set,

project the other set onto that discriminant dimension, and

compute the t value reflecting the discriminability between the

two stimuli. We call this multivariate separation measure the

linear-discriminant t (LD-t) value. It can be interpreted as a

crossvalidated, normalized variation on the Mahalanobis

distance (see Figure S4). Note, however, that it is not a

distance in the mathematical sense, because it can be negative.

The LD-t has a number of desirable properties. First, whereas

distance measures are positively biased, it is symmetrically

distributed around 0 (t distribution) when the true distance is 0.

The LD-t therefore enables instant inference on the discrim-

inability (by converting the t values to p values) for each pair of

stimuli. Second, it enables inference on mean discriminabilities

across many pairs of stimuli by within-subject randomization

of stimulus labels or across-subjects random-effects tests.

(Other distance measures require bias correction, e.g. sub-

tracting an estimate of the expected distance for repetitions of

the same stimulus.) Third, the LD-t works well for condition-

rich designs, in which we have few trials (or even just one trial)

for each particular stimulus. (We can obtain an error

covariance estimate pooled over all stimuli, whereas a linear

support vector machine fitted to a pair of response patterns

would reduce to a minimum Euclidean-distance classifier.)

Fourth, in contrast to decoding accuracy (which could also be

computed for each stimulus pair), the LD-t is a continuous

measure in each subject and does not suffer from a ceiling

effect. (When the decoding accuracy is at its 100% ceiling, the

LD-t still continuously reflects the separation of the patterns in

the multivariate response space.) The LD-t is supported by the

toolbox and its application illustrated in Figure S5 (see Text S1

for more details).

Discussion

We introduced a toolbox for RSA that supports the analysis of

representational dissimilarity matrices characterizing brain regions

and models. First, the RDMs for brain regions and models and

their inter-relationships are visualized. Then statistical inference is

performed to decide what models explain significant variance and

whether the models perform significantly differently. The toolbox

additionally supports searchlight RSA, i.e. the continuous map-

ping of RSA statistics throughout the brain. Finally, we introduced

the linear-discriminant t value as a measure of multivariate

discriminability that bridges the gap between classifier decoding

and RSA.

Choosing the most appropriate statistical inference
procedure
The toolbox uses frequentist nonparametric inference proce-

dures. For testing the relatedness of two RDMs, the preferred (and

default) method is the signed-rank test across subjects. This test

provides valid inference and treats the variation across subjects as

a random effect, thus supporting inference to the population. The

toolbox requires that RDMs for 12 or more subjects are available.

(The test could also be used for within-subject inference, if 12 or

more independent RDM estimates from the same subject were

available.) The fixed-effects alternative is to test RDM relatedness

using the stimulus-label randomization test [13]. This test is

definitely valid and expected to be more powerful than the signed-

rank test across subjects, because it tests a less ambitious

hypothesis: that the RDMs are related in the experimental group

of subjects, rather than in the population. The stimulus-label

randomization test can be used for a single subject or a group of

any size. However, it does require a sufficient number of stimuli: at

least 7, because for 6, there are only 6! = 720 unique permutations.

The signed-rank test across subjects would work with as few as 4

stimuli (generating 6 dissimilarities, enough for rank correlations to

take on an acceptable number of distinct values). However, the

inference procedures have not been validated for very small

numbers of conditions, so the toolbox currently requires 20 or

more stimuli for the stimulus-label randomization test, and we

suggest having at least 6 stimuli when using the signed-rank test

across subjects. Note also that RSA lends itself to condition-rich

designs and, in general, it is desirable to sample the stimulus space

richly.

The relatedness of two RDMs can also be tested by boot-

strapping the stimulus set and/or the subjects set. The motivation

for bootstrapping is to simulate repeated sampling from the

population. Bootstrapping, thus, can help generalize from the

sampled subjects and/or stimuli to the population of subjects and/

or the population of stimuli. (The population of stimuli would be a

typically very large set of possible stimuli, of which the

experimental stimuli can be considered a random sample.)

However, the bootstrap might not provide a very realistic

simulation of repeated sampling from the population. The basic

bootstrap tests implemented in the toolbox are known to be

slightly optimistic. Future extensions might include bias-corrected

and accelerated bootstrap methods [35].

Similar considerations apply to the tests of difference between

candidate RDMs regarding their relatedness to the reference

RDM. Again, the preferred (and default) test is the signed-rank test

across subjects, which supports generalization to the population.

Stimulus-label randomization is not appropriate in this context,

because it simulates the null hypothesis that the RDMs are

unrelated (and the stimulus labels, thus, exchangeable), rather than

the appropriate null hypothesis that both candidate RDMs are

equally related to the reference RDM. The alternative to the

signed-rank test is the bootstrap test. Again, this can be based on

resampling of the subjects and/or the stimuli. The slight optimism

of basic bootstrap tests should be kept in mind. However, at

conservative thresholds and with correction for multiple testing,

this test provides a reasonable alternative to the signed-rank test,

when there are not enough subjects.

Testing many models
A key feature of the toolbox is the statistical comparison of

multiple models. Figures 4 and 5 illustrate a typical scenario, in

which a wide range of qualitatively different models explain

significant variance in a brain region’s representational geometry.

These models include categorical models, models based on simple
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image features, complex computational models motivated by

neurophysiological findings, and behavioral models. The finding

that a model explains some variance in a brain representation (or

conversely allows above-chance-level decoding) reveals that the

region contains the information the model represents. However,

this is a very low bar for a computational account of a brain

representation. Many models will explain some component of the

variance, so finding one such model does not substantially advance

our understanding of brain function. Theoretical progress requires

that we compare multiple models [14]. The toolbox enables the

user to find the best among a whole range of models, and to assess

which other models it significantly outperforms. Importantly, the

noise ceiling reveals whether a model fully accounts for the non-

noise variance in the data, or leaves some variance to be explained.

If a computational model has parameters, these could be fitted

with a separate data set (comprised of an independent sample of

stimuli). Alternatively, if the parameter space is low-dimensional, it

could be grid-sampled and all resulting RDM predictions entered

as candidate RDMs for statistical comparison. Future extensions of

the toolbox might include functions that support the fitting of

parametric models and their validation with an independent data

set.

Relation to univariate encoding models
Univariate encoding models provide an alternative to RSA for

testing computational models of brain information processing [38–

41]. Both approaches test forward models, i.e. models that operate

in the direction of information flow in the brain: from stimuli to

brain responses. The shared aim is to test to what extent each

model can account for the neuronal representation in a brain

region. However, univariate encoding models are fitted to predict

each response channel (e.g. each voxel in fMRI) separately. RSA,

in contrast, compares the model representation to the brain

representation at the level of the response pattern dissimilarities.

The two approaches have complementary advantages. Predicting

every response channel separately enables us to create a map of

the intrinsic spatial organization for each brain region. Predicting

the dissimilarities of multivariate response patterns abstracts from

the single representational units and focuses on the population

representational geometry. We lose the detailed spatial organiza-

tion (the trees) and gain a population summary (the forest). The

representational dissimilarity trick [14] enables us to test compu-

tational models without first having to fit a linear model using a

separate data set of responses to an independent stimulus sample.

It also enables uncomplicated tests of categorical and behavioral

models and of relationships between brain regions and between

individuals and species [19]. The parallels and differences between

these two approaches have been explored in greater detail in [10].

Availability and Future Directions

The toolbox is freely available to the community. The user can

download the toolbox at http://www.mrc-cbu.cam.ac.uk/

methods-and-resources/toolboxes/license/. The zip file contain-

ing the toolbox (rsatoolbox.zip, software S1) is also included in the

supplementary materials.

There are a number of directions in which the toolbox might be

extended in the future. First, we plan to add functionality for time-

resolved RSA, including temporal-sliding-window techniques for

electrophysiological data (MEG/EEG and invasive recordings).

Such analyses can reveal the emergence and dynamics of

representational geometries over the course of tens to hundreds

of milliseconds after stimulus onset, reflecting recurrent neuronal

computations [25,42]. Second, we would like to include additional

methods for characterizing representational geometries. For

example, Diedrichsen et al. [43] have proposed a technique for

decomposition of the pattern variance into components reflecting

different stimulus-related effects and noise. This approach

promises estimates of the representational geometry that are more

comparable between representations affected by different levels of

noise. Another relevant recent technique is kernel analysis, which

can reveal the complexity of categorical boundaries in a

representation [44–45]. We expect that the field will develop a

range of such useful descriptive measures for representational

geometries. These should be included in the toolbox. Finally, it

would be desirable to complement the frequentist approach

described here by Bayesian inference procedures. By sharing the

toolbox with the community, we hope to accelerate the

collaborative pursuit of these methodological directions, in

addition to contributing to neuroscientific studies that aim to

reveal the nature of representational geometries throughout the

brain.

Supporting Information

Figure S1 Decision process for selection of statistical

tests. The flow diagram above shows the default decision process

by which the statistical inference procedures are chosen in the

toolbox. The analyses in Figures 4 and 5 of the paper correspond

to paths in the flowchart that lead to the leftmost (simulation in

Figure 4) and second from right (real data in Figure 5) box at the

bottom. Note that the flowchart does not capture all possibilities.

For example, the fixed-effects condition-label randomization test

of RDM relatedness can be explicitly requested, even when there

are 12 or more subjects’ estimates of the reference RDM and the

random-effects signed-rank test would be chosen by default.

(EPS)

Figure S2 Spearman versus Kendall’s tA rank correla-

tion for comparing RDMs. Here the inferential results from

the paper using Kendall’s tA (Figures 4, 5) are presented again

(panels A, B), and compared to the results obtained using the

Spearman correlation (panels C, D). The two rank correlation

coefficients differ in the way they treat categorical models (blue

bars) that predict tied dissimilarities. (A) For the simulated data,

Kendall’s tA correctly reveals that the true model (red bar) best

explains the data. It is the only model that reaches the ceiling

range, and it outperforms every other candidate significantly

(horizontal lines above the bars). (C) For the Spearman

correlation, the true model no longer has the greatest average

correlation to the reference RDM. Two categorical candidate

RDMs appear to outperform the true model, and significantly so

(horizontal lines). Both of these categorical models and the true

model now fall in the ceiling range. (B, D) For the real data, as

well, categorical models (blue) are favored by the Spearman

correlation.

(EPS)

Figure S3 Group-level results for 20 simulated subjects.

(A) A representational geometry of 64 patterns falling into two

clusters was simulated in a brain region (shown in green) in each of

20 subjects. Data outside the green region was spatially and

temporally correlated noise (typical of fMRI data) with no design-

related effects. Searchlight maps (searchlight radius = 7 mm) were

generated by computing the correlation between a model RDM

(reflecting the true cluster structure of the simulated patterns) and

the searchlight RDM at each voxel in each subject. (B) At each

voxel, a one-sided signed-rank test was applied to the subject-

specific correlation values. The 3D map of p value was thresholded
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so as to control the expected false-discovery rate at 0.05. Voxels

exceeding the threshold are highlighted (yellow). The maps in both

panels are superimposed on an anatomical T1 image re-sliced to

fit the simulated brain dimensions. The red contours depict the

borders of the brain mask. RDMs were computed for searchlights

centered on each voxel within the brain mask.

(EPS)

Figure S4 Relationship between the linear-discriminant

t value and the Mahalanobis distance. In the Mahalanobis

distance, the inverse of the error covariance (S) is pre- and post-

multiplied by the difference vector between the pattern estimates

(p1 and p2). If we use pattern estimates from an independent

dataset (dataset 2) for the post-multiplication, we obtain the

dataset-2 contrast estimate on the Fisher linear discriminant fit

with dataset 1. This is because the first part of the definition of the

Mahalanobis distance equals the weight vector w of the Fisher

linear discriminant. The LD-t is the Fisher linear discriminant

contrast (as shown) normalized by its standard error (estimated

from the residuals of dataset 2 after projection on the discriminant

dimension).

(TIF)

Figure S5 Random-effects inference on LD-t RDMs. (A)

Two fMRI datasets were simulated for 20 subjects. We simulated

fMRI time-course data Y based on a realistic fMRI design matrix

(X) with hemodynamic response predictors for 64 stimuli and

patterns (B) with a predefined hierarchical cluster structure (two

categories, each comprising two subcategories). The simulated

data were Y=XB+E, where E is the time-by-response errors

matrix, consisting of Gaussian noise temporally and spatially

smoothed by convolution with Gaussians to create realistic degrees

of temporal and spatial autocorrelation. The LD-t RDMs were

computed for each subject and averaged across subjects. The

group-average LD-t RDM is shown using a percentile color code.

(B) Inference on LD-t RDMs with subject as random effect. LD-t

analysis can serve the same purpose as classifier decoding analysis,

to test for pattern information discriminating two stimuli. For each

pair of stimuli, we used a one-sided signed-rank test across subjects

and obtained a p value. The left panel shows the pairs with p,

0.05, uncorrected (red). The middle panel shows the pairs that

survive control of the expected false-discovery rate (q,0.05). The

right panel shows the pairs that survive Bonferroni correction (p,

0.05, corrected).

(EPS)

Software S1 The zip file contains the complete RSA

toolbox. It also contains demo functions and brain-activity- and

behavior-based representational dissimilarity matrices used by the

demo functions. DEMO1_RSA_ROI_simulatedAndRealData.m

reproduces the main parts of figures 2–5 of the main paper. The

toolbox is written in Matlab and requires the Matlab program-

ming environment.

(ZIP)

Text S1 The supplementary materials (additional text)

for the manuscript.

(DOCX)
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