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Abstract

Cell-type-specific expression of optogenetic molecules allows temporally precise manipulation of 

targeted neuronal activity. Here we present a toolbox of 4 knock-in mouse lines engineered for 

strong, Cre-dependent expression of channelrhodopsins ChR2-tdTomato and ChR2-EYFP, 

halorhodopsin eNpHR3.0, and archaerhodopsin Arch-ER2. All 4 transgenes mediate Cre-

dependent, robust activation or silencing of cortical pyramidal neurons in vitro and in vivo upon 

light stimulation, with ChR2-EYFP and Arch-ER2 demonstrating light sensitivity approaching 

that of in utero or virally transduced neurons. We further show specific photoactivation of 

parvalbumin-positive interneurons in behaving ChR2-EYFP reporter mice. The robust, consistent, 

and inducible nature of our ChR2 mice represents a significant advancement over previous lines, 

whereas the Arch-ER2 and eNpHR3.0 mice are the first demonstration of successful conditional 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
*Correspondence should be addressed to Hongkui Zeng (hongkuiz@alleninstitute.org). 

Author Contributions

L.M., J.K. and H.G. generated the Cre reporter mouse lines. T.M., B.M.H. and K.S. conducted the slice physiology study on Ai27 and 

Ai32 mice. H.K., Y-W.A.H., A.J.G., S.Z., J.M.R. and E.E.T. conducted the slice physiology study on Ai35 and Ai39 mice. J-M.Z., 

X.G., Y.M. and X.H. conducted the in vivo cortical recordings. A.B., S.F. and G.B. conducted the in vivo hippocampal and thalamic 

recordings. A.R.J. provided institutional support. E.S.B. provided the Arch-ER2 construct. L.M., T.M., H.K., J-M.Z., A.B., S.F., 

E.S.B., G.B., X.H., E.E.T. and H.Z. analyzed data and wrote the paper.

Publisher's Disclaimer: Open public access: All 4 Cre-reporter mouse lines have been deposited to the Jackson Laboratory for 

distribution (JAX Stock Numbers for Ai27: 012567, Ai32: 012569, Ai35: 012735, Ai39: 014539). All 4 gene-targeting DNA 

constructs have been deposited to Addgene, a plasmid repository, for distribution. All ISH expression data will be available at http://

connectivity.brain-map.org/transgenic/search/basic.

HHS Public Access
Author manuscript
Nat Neurosci. Author manuscript; available in PMC 2012 November 01.

Published in final edited form as:

Nat Neurosci. ; 15(5): 793–802. doi:10.1038/nn.3078.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.nature.com/authors/editorial_policies/license.html#terms
http://connectivity.brain-map.org/transgenic/search/basic
http://connectivity.brain-map.org/transgenic/search/basic


transgenic optogenetic silencing. When combined with the hundreds of available Cre-driver lines, 

this optimized toolbox of reporter mice will enable widespread investigations of neural circuit 

function with unprecedented reliability and accuracy.

Introduction

A major challenge in neuroscience is to understand how brain functions are mediated by 

particular cell types within neural networks. Dissection of such complex networks requires 

the ability to manipulate the activities of specific cell types and to examine the resulting 

effects. One of the most exciting recent innovations in experimental neuroscience has been 

the development of light-activated channels or pumps, derived from microbial 

photosynthetic systems, to modulate neural activity, known as optogenetics. The best-known 

prototypes for the application of optical control in neurons include the neural-activating 

cation channel, channelrhodopsin-2 (ChR2) 1-3, and the neural-silencing chloride transporter 

halorhodopsin (NpHR) 4, 5 and proton pump archaerhodopsin-3 (Arch) 6. These and related 

optogenetic molecules 7 allow activation or silencing of neurons with unprecedented 

specificity and excellent temporal precision on a millisecond scale, and are in widespread 

use.

In mice, cell-type-specific genetic manipulation is most widely achieved through the Cre/lox 

recombinase system. Hundreds of Cre mouse lines, generated in individual labs and through 

large-scale efforts 8-10, have been established to direct specific gene expression or deletion 

in a wide range of cell types or populations throughout the nervous system. A major 

challenge to developing optogenetic tools is the need to express high levels of the opsins, 

due to the relatively small optical current mediated by each opsin molecule. For this reason, 

opsin genes have been most often introduced in vivo using recombinant viral vectors or by in 

utero electroporation (IUE). By delivering an adeno-associated virus (AAV) that expresses 

an opsin in a Cre-dependent manner, e.g. using floxed-stop or floxed-inverse (FLEX) 

cassettes 11, 12, it is possible to virally deliver an opsin to a brain region, where only Cre-

positive cells will activate expression of the opsin. Although successful for many 

applications, these approaches possess intrinsic limitations. They can result in incomplete 

coverage of neurons within the region, which may limit experiments requiring complete 

labeling (e.g. neural silencing), and variable opsin expression levels across cells from the 

injection center out. The variability in the number and location of opsin-expressing cells 

between animals necessitates laborious validation for each animal, introducing variability in 

data interpretation. The brain targets of interest may be very small, very large, or hard for 

the virus to access for other reasons (e.g. a difficult location for injection, a particular cell 

type that cannot be infected by any serotype of virus, or during brain development).

A transgenic mouse approach can overcome many of these limitations. However, exogenous 

opsin gene expression in transgenics is typically regulated by a specific linked promoter, and 

so, is predetermined to occur in a particular and fixed cell population 13-19. A Cre-dependent 

system of opsin expression would exploit the abundant resource available Cre-driver lines 

constitute and would offer a powerful approach for controlling the activity of a wide range 

of cells. However, transgenic mice with robust Cre-dependent expression of opsins have 
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been difficult to generate, as indicated by recent characterization of a ChR2 Cre-reporter 20. 

To date, no transgenic line with Cre-dependent expression of a silencing opsin has been 

described. Efforts to overcome the limitations of early versions of silencing opsins, such as 

protein aggregation and low conductance 21, has led to the development of newer optical 

silencing molecules, including eNpHR 22, eNpHR3.0 23, and various forms of Arch 6, 24, 

with great improvement in membrane expression and related increase in photoconductance, 

making reliable genetic silencing achievable now.

Here we report the creation of a toolbox of 4 new mouse lines with high-level and Cre-

dependent expression of ChR2(H134R)-tdTomato, ChR2(H134R)-EYFP, Arch-EGFP-ER2, 

or eNpHR3.0-EYFP. Inducible expression of these opsins is driven by a unique expression 

cassette in a modified Rosa26 locus, which we recently showed capable of mediating 

efficient fluorescent labeling 9. Here we demonstrate for the first time that high-performance 

optogenetic manipulation in Cre-dependent transgenic mice is enabled for all the classes of 

opsin molecules using this optimized strategy.

For all 4 lines, we found that cortical pyramidal neurons were highly responsive to either 

light activation (ChR2s) or light inhibition (eNpHR3.0, Arch-ER2), in both in vitro brain 

slice preparations and in vivo brains of awake animals. In addition, we found that light 

activation of hippocampal and reticular parvalbumin (Pvalb)-positive interneurons, as well 

as cortical rhythms resulting from synchronized reticular Pvalb+ neuron activation, can be 

readily achieved in behaving ChR2-EYFP mice. These results demonstrate that selective 

optical activation and silencing can be applied to different cell types in different brain 

regions in these mice, using a variety of photostimulation paradigms. Thus, when combined 

with the plethora of publically available Cre-driver lines, these transgenics should greatly 

facilitate the study of various neuronal cell types including those inaccessible to previous 

approaches.

Results

Generation of mice conditionally expressing opsin genes

We previously demonstrated strong, ubiquitous, Cre-dependent expression of fluorescent 

markers from a modified Rosa26 locus by incorporating a CAG promoter and the 

woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) 9. Using the same 

expression strategy, we created 4 new Cre-dependent mouse lines that express optogentic 

tools: the H134R mutant version of ChR2 25 fused to either tdTomato (Ai27; 

ChR2(H134R)-tdTomato) or EYFP (Ai32; ChR2(H134R)-EYFP); a modified version of 

Arch (Ai35; ss-Arch-EGFP-ER2, abbreviated as Arch-ER2) 6; or eNpHR3.0 (Ai39; 

eNpHR3.0-EYFP) 23 (Fig. 1a). ChR2(H134R) was chosen because it produces larger 

conductance changes compared to wild-type ChR2, likely due to its slower deactivation 

kinetics. Both Arch-ER2 and eNpHR3.0 have Kir2.1 ER-exporting signals which were 

shown to enhance proper expression of microbial opsin proteins to the cell 

membrane 6, 21-23.

To examine Cre-dependent expression of the optogenetic reporters, each line was bred with 

Emx1-Cre. Consistent with Emx1-Cre’s recombination pattern, all mice displayed strong 
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native fluorescence throughout cortex and hippocampus (Fig. 1b). In each line, the 

fluorescent fusion proteins were primarily localized to the cell membrane with minimal 

accumulation in the cytoplasm, which was best seen in the cell body layer of all 

hippocampal subfields (CA1, CA3, and dentate gyrus) where the fluorescence was lower 

than in the dendritic layers and was ring-shaped (Fig. 1b-c). Axon fibers extending from the 

cortex and hippocampus, as well as their termination zones (e.g. thalamus), were also 

strongly labeled (Fig. 1b). Axon fiber fluorescence in Emx1-Cre;Ai39 mice appeared weaker 

than in other lines, indicative of possible lower protein expression. The mRNA expression of 

the opsin-fusion genes was mapped by in situ hybridization (ISH) on brain sections (Fig. 

1d). All showed strong ISH signals in the cortex and hippocampus at the single-cell level, 

similar to expression seen in our Cre reporter mouse lines that express fluorescent proteins 9.

In the absence of Cre, no leaky expression at mRNA or fluorescence level was seen in Ai27 

and Ai32 mice, although some leakage at mRNA level was seen in Ai35 and Ai39 mice 

(Supplementary Figs. 1a and 2a). In addition to Emx1-Cre, strong Cre-dependent expression 

of opsin-fusion genes was also seen throughout the brain in other Cre-driver crosses (e.g. 

Pvalb-IRES-Cre, Camk2a-CreERT2, Chat-IRES-Cre) (Supplementary Figs. 1b, 2b and 3), 

consistent with previous studies of our Cre-dependent fluorescent reporter mice 9. Plasma 

membrane targeting of all 4 transgenes was also seen in all cases with no detectable 

intracellular protein aggregates, as shown in the Pvalb+ interneurons in the cortex of the 4 

types of Pvalb-IRES-Cre/reporter mice (Supplementary Fig. 1b). Long-term expression of 

these optogenetic transgenes in the various Cre-defined cell populations did not produce 

observable toxicity (Supplementary Fig. 4). The robust and widespread opsin-fusion 

expression observed in these multiple lines thus suggests that a variety of cell populations 

will be amenable to photo-manipulation by these Cre-dependent optogenetic tools.

Effective light-activation of cortical pyramidal neurons

We investigated the photoexcitability of cortical pyramidal neurons from Emx1-Cre;Ai27, 

Emx1-Cre;Ai32 mice (abbreviated as E-Ai27 and E-Ai32), and Ai32 alone mice not crossed 

to any Cre, by whole-cell recordings in the barrel cortex of acute brain slices with a 

previously established photostimulation paradigm 26, 27 (Fig. 2a), and compared them to 

neurons in which ChR2 was expressed by in utero electroporation (IUE). ChR2-expressing 

neurons showed normal resting membrane potentials (E-Ai27, -65.7 ± 1.4 mV, n = 14; E-

Ai32, -65.4 ± 1.4 mV, n = 9; Ai32 (-Cre), -66.6 ± 2.2 mV, n = 9; IUE, -66.0 ± 2.4 mV, n = 

6; mean ± s.e.m.). For each trial, a series of 1-ms pulses of constant-power blue light (473 

nm) was applied through an air objective, sequentially on an 8 × 16 grid pattern overlaying 

cortical layers 1-5 (Fig. 2a). The grid covered the soma, dendrites, and parts of the axonal 

arbor of the recorded layer 2/3 pyramidal neuron (Fig. 2b). In voltage clamp mode, large 

photocurrents were evoked in E-Ai27 and E-Ai32 cells with modest laser powers (Fig. 2b). 

With high laser powers (1350-1700 μW), the large photocurrents (peak current for Ai27: 

1.51 ± 0.24 nA, n = 10; Ai32: 2.01 ± 0.04 nA, n = 7) were often accompanied by spikes. 

Even under high power stimulation conditions, no detectable photocurrent was recorded 

from Ai32 (-Cre) control cells (Fig. 2b, n = 9). In current clamp mode, action potentials 

(APs) were evoked in 12 of 14 E-Ai27 cells (2 cells showed subthreshold or no response), in 
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9 of 9 E-Ai32 cells which is comparable to IUE cells 26, 28, and in 0 of 9 Ai32 (-Cre) cells 

(Fig. 2c-d).

To compare the photosensitivity, each cell was stimulated with a series of varying laser 

powers to determine the threshold for evoking an AP (Fig. 2e). We found that E-Ai27 cells 

showed substantial heterogeneity in their thresholds for spiking, whereas E-Ai32 cells 

demonstrated consistently low thresholds (Fig. 2e-f). The average threshold powers were: E-

Ai27, 919 ± 146 μW (ranging 550-1720 μW, n = 12); E-Ai32, 67 ± 6 μW (ranging 55-116 

μW, n = 9); IUE, 56 ± 17 μW (ranging 8-128 μW, n = 7) (Fig. 2e). We further found that 

high power stimulation consistently evoked APs on more sites of the grid for E-Ai32 cells 

than E-Ai27 cells (Fig. 2g) and with shorter spike latencies (Fig. 2h). Notably, low laser 

powers evoked APs in E-Ai32 cells similar to IUE cells, but E-Ai32 cells showed less 

variability in the number of sites that could trigger an AP (Fig. 2i).

Photoexcitation of axons is desirable for stimulating long-range postsynaptic neurons. The 

subcellular distribution of ChR2 will also influence the spatial resolution of 

photostimulation in brain slices and in vivo 29. Antidromic APs triggered in axons can be 

distinguished from those triggered in the somata and dendrites, because somatic/dendritic 

APs are associated with a slow charging phase preceding the AP threshold whereas axon-

initiated APs arrive in the soma without prior charging 30 (Fig. 2c). By analyzing the 

charging phase, each AP was categorized as originating from either somatic/dendritic or 

axonal stimulation (Fig. 2d). Under our photostimulation conditions both E-Ai27 and E-

Ai32 cells were preferentially excited in axons, whereas E-Ai32 cells, similar to IUE cells, 

were also more readily excited in the somata and dendrites than E-Ai27 (Supplementary Fig. 

5). In sum, our results demonstrate that whereas E-Ai27 cells are less sensitive to 

photostimulation, the light response properties of E-Ai32 cells are comparable in many 

aspects to those of IUE ChR2-expressing cells.

Effective light-silencing of cortical pyramidal neurons

To test light-evoked neuronal silencing, we performed whole-cell recordings from layer 2/3 

or layer 5 cortical pyramidal neurons (Fig. 3a) in acute slice preparations taken from adult 

Emx1-Cre;Ai35 or Emx1-Cre;Ai39 mice (abbreviated as E-Ai35 or E-Ai39). In all 

pyramidal neurons tested (29/29), illumination with a 200-μm optical fiber coupled to a 593-

nm yellow laser caused marked hyperpolarization from the resting membrane potential. The 

response was very similar to a hyperpolarizing current injection prior to the light pulse (Fig. 

3b). Recorded neurons exhibited a variety of responses to hyperpolarizing currents injected 

under current clamp conditions. Some exhibited Ih currents and/or rebound firing of APs in 

response to a transient application of a hyperpolarizing current, while others did not. In each 

case, the effect of the input current could be effectively reproduced by light (Fig. 3b). Upon 

repeated cycles of light stimulation (23 mW mm-2), the extent of hyperpolarization 

diminished to about two-thirds of the initial value, then reached a plateau in E-Ai39 cells 

(Fig. 3c). The E-Ai39 cells could recover from such diminished response to >90% original 

level after ~5-min rest between the cycles. Unlike E-Ai39, the E-Ai35 neurons did not 

exhibit diminishing effects with repeated light stimulation (Fig. 3c).
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Both E-Ai35 and E-Ai39 cells showed larger hyperpolarization with increased light 

intensities (Fig. 3d). The mean maximal hyperpolarization (measured at 23 mW mm-2) was 

26.39 ± 2.67 mV for E-Ai35 (n = 15) and 12.96 ± 1.39 mV for E-Ai39 (n = 14). Under 

voltage clamp conditions, light-induced currents were corresponding to light intensity and 

were highly reproducible from cell to cell (Fig. 3e-f). The photocurrents attained in E-Ai35 

neurons at low and high light levels were 2-3 fold greater than those observed in E-Ai39 

neurons (1.7 mW mm-2: p < 0.05, n = 5 for E-Ai35, n = 7 for E-Ai39; 23 mW mm-2: p < 

0.01, n = 8 for E-Ai35, n = 9 for E-Ai39) (Fig. 3f). APs induced under current clamp by 

constant positive current injections were rapidly and reversibly inhibited by light 

illumination (23 mW mm-2) in all trials in both E-Ai35 and E-Ai39 neurons (Fig. 3g). We 

conclude that Ai35-expressed Arch-ER2 is somewhat more efficient at generating 

photocurrents than Ai39-expressed eNpHR3.0, but that both transgenically-expressed opsins 

are effective tools for the silencing of neural activity.

To ensure that no physiologically significant opsins are expressed from the un-induced 

reporter loci, we examined light-induced responses in cortical pyramidal neurons (n = 4) of 

Ai35 mice, as well as cortical (n = 4) and hippocampal CA1 (n = 3) pyramidal neurons of 

Ai39 mice, in the absence of any Cre allele. No light-induced changes were observed in the 

Ai35 (-Cre) cells at all, either at resting membrane potential (Fig. 3h-i) or when activated by 

a positive current injection (Fig. 3j), even with the highest intensity (23 mW mm-2). 

Similarly for Ai39 (-Cre) cells, light (593 nm, 23 mW mm-2; or 640 nm, 24 mW mm-2) 

caused no or negligible change in membrane potential (-0.02 ± 0.08 mV, n = 7, Fig. 3i). This 

is consistent with the leaky mRNA but no leaky protein expression in Ai39 (-Cre) mice 

(Supplementary Figs. 1a and 2).

Silencing by alternative light sources

In addition to the yellow light (593 nm) which is near the excitation maximum of the Arch 

and NpHR proteins 4, 6, 31, we also tested neural silencing by two alternative light sources, a 

640-nm red laser and a white LED, that offer several practical advantages. Red lasers are 

less expensive and more easily modulated than the yellow lasers. Though somewhat red-

shifted relative to the excitation peaks of Arch and NpHR, longer wavelengths are also less 

prone to attenuation by light scattering, so the off-peak excitation may be partly offset by 

improved tissue penetration. Red light also offers better spectral separation from the blue 

light used to activate ChR2, so they may be better suited for binary control of activity 4, 32. 

LEDs are inexpensive light sources and are potentially portable or implantable for 

experiments in moving animals.

These alternative light sources efficiently silenced both E-Ai35 and E-Ai39 cortical 

pyramidal neurons (Fig. 4). Both the LED and 640-nm red laser produced an intensity-

dependent drop in membrane potential (Fig. 4b,e,g,i), and effectively silenced current-

induced spiking (Fig. 4c,f,h,j). At similar powers, the 640-nm light response of E-Ai35 

neurons was ~43% of that obtained with 593-nm light (Figs. 3d and 4e), while the 640-nm 

light response of E-Ai39 neurons was ~100% of that obtained with 593-nm light (Figs. 3d 

and 4i), consistent with the red-shifted spectrum reported for eNpHR3.0 23.
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Light inhibition of hippocampal network activity

In order to test the effectiveness of Emx1-Cre;Ai35 mice as a model for inhibiting neural 

network activity, we tested light-mediated silencing of a well-described monosynaptic 

pathway from area CA3 to area CA1 of the hippocampus (Fig. 5a) 33. In this model, firing of 

hippocampal neurons was induced in brain slice preparations by elevated K+, and population 

activity was recorded from CA1 (Fig. 5b). Focused illumination of the CA3 region produced 

an immediate drop in CA1 activity (Fig. 5c). With sustained illumination, CA3 firing 

increased, but remained below baseline level. Partial release from silencing may occur over 

time because of compensatory effects in the network and/or because only a portion of the 

CA3 neurons with outputs to CA1 are inhibited by the focal illumination. Following light 

off, firing rates returned quickly to baseline, and there was no rebound of spiking activity.

Dual recording from CA1 and CA3, combined with focal illumination of CA1, confirmed 

that these results were consistent with the silencing of a unidirectional synaptic input from 

CA3 to CA1 (Fig. 5d-e). First, illumination of CA1 had no effect on population activity in 

CA3. By contrast, direct illumination of CA1 caused immediate and nearly complete 

silencing of this region, and a large rebound increase in firing was observed upon recovery 

from direct illumination of CA1. In addition, the extent of CA1 inhibition was dependent on 

the area of illumination on CA3, under conditions of constant light intensity per unit area 

(Supplementary Fig. 6). We conclude that illumination of CA3 results in the selective 

inhibition of synaptic inputs to CA1, thus demonstrating the potential of Ai35 (and Ai39) 

mice for optogenetic studies of brain circuitry.

In vivo activation and silencing of cortical neurons

To evaluate the effectiveness of light modulation in vivo in these transgenic mice lines, we 

performed extracellular recordings in awake, head-fixed adult mice. We estimated that light 

intensity at the electrode recording site to be 1-5% of that at the optical fiber tip, which was 

500-900 μm above the recording site, based on the Monte Carlo simulation of light 

attenuation in brain tissues 6.

In Emx1-Cre;Ai32 mice, we recorded a total of 16 units, including 7 single units and 9 multi 

units. Of the 7 single units, firing rates significantly increased in 6 units (Fig. 6a), and 

decreased in 1 unit, upon blue light (473 nm) illumination (0.8 mW out of a 100-μm optical 

fiber, corresponding to ~100 mW mm-2 at the fiber tip and ~2 mW mm-2 at the recording 

sites). The light induced spiking is fast, reliable and precise after each pulse illumination 

(Supplementary Fig. 7). Precise activation was observed even when the fiber tip was 1.5-2 

mm away from the recording site, where light intensity is expected to drop to ~0.17% of that 

at the tip. Of the 9 multi units, firing rates significantly increased in 8 units, and decreased in 

1 unit. Light illumination and recording was also performed in an Ai32 (-Cre) mouse as a 

negative control. Of the 3 cortical neurons recorded, none were modulated by light at the 

highest power. In Emx1-Cre;Ai27 mice, we recorded a total of 11 units, including 4 single 

units and 7 multi units. Of the 4 single units, firing rates significantly increased in only 1 

unit, and decreased in the other 3, with the same blue light illumination (2.2 mW, ~280 mW 

mm-2 at the 100-μm fiber tip, and ~5 mW mm-2 at the recording sites). However, all 7 multi 

units increased their firing rates. Overall, the single and multi units with increased firing 
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rates showed an enhancement of 350-1400% from the baseline for E-Ai32 (768 ± 94%, n = 

14), and 150-350% for E-Ai27 (198 ± 25%, n = 8) (Fig. 6b). The magnitude of light-induced 

activation in E-Ai32 is significantly higher than that in E-Ai27, consistent with that 

observed in vitro (Fig. 2).

To evaluate the efficiency of optical silencing in vivo mediated by eNpHR3.0 and Arch-

ER2, we used Emx1-Cre;Ai35, Camk2a-CreERT2;Ai35, and Camk2a-CreERT2;Ai39 mice. 

Following tamoxifen induction, Camk2a-CreERT2 drives eNpHR3.0 or Arch-ER2 

expression in majority of cortical pyramidal neurons similar to Emx1-Cre (Supplementary 

Fig. 1) 9. In an Emx1-Cre;Ai35 mouse, we recorded a total of 10 single units in cell attached 

mode with glass electrodes. All single units significantly reduced their firing rates upon 

green light illumination (532 nm, 16 mW, ~470 mW mm-2 at the 200-μm fiber tip, and ~13 

mW mm-2 at the recording sites) (Fig. 6c). The recorded neurons showed a reduction of 

83-100% from the baseline firing rates (93 ± 2%, n = 10) (Fig. 6e, left panel). Light-induced 

silencing was instantaneous, with 0 ms latency for 9 of the 10 neurons recorded. The 

population latency was 1 ± 1 ms from light onset (Fig. 6e, right panel). Similar results of 

complete silencing of single unit activities were observed in a tamoxifen-induced Camk2a-

ERT2;Ai35 mouse (93 ± 7% silencing at ~10 mW mm-2 at the recording sites, n = 2). Light 

illumination and recording was also performed in an Ai35 (-Cre) mouse as a negative 

control. Of the 8 cortical neurons recorded, none were modulated by light at the highest 

power used (~16 mW mm-2 at the recording sites).

In a tamoxifen-induced Camk2a-CreERT2;Ai39 mouse, we recorded a total of 13 single 

units. Of these, 7 significantly reduced their firing rates (Fig. 6d), 3 did not change, and 3 

increased their firing rates upon green light illumination (11 mW, ~1400 mW mm-2 at the 

100-μm fiber tip, and ~30 mW mm-2 at the recording sites). The single units with reduced 

firing rates showed a reduction of 83-97% from the baseline (90 ± 2%, n = 7), with 0-20 ms 

latency from light onset (8.6 ± 4.0 ms) (Fig. 6e). The magnitude of silencing in Ai39 mice 

with 30 mW mm-2 light is comparable to that observed in Ai35 mice with 10 mW mm-2 

light (p = 0.4), but the latency of silencing in Ai39 mice is significantly longer than that in 

Ai35 mice (p < 0.05). The observed incomplete inhibition could result from the neurons that 

did not express Camk2a-CreERT2, and thus were disinhibited or activated through neural 

network mechanisms, consistent with previous observations using viral labeling method in 

vivo 24.

We then compared the responses of the same single units to different light intensities. These 

single units in both Emx1-Cre;Ai35 and Camk2a-CreERT2;Ai39 mice showed less 

inhibition at lower light intensities (Fig. 6f). In Ai35, firing rates were reduced by 49 ± 10% 

at 5 mW mm-2, and by 93 ± 2% at 13 mW mm-2 (n = 10, p = 0.001). In Ai39, firing rates 

were reduced by 62 ± 9% at 10 mW mm-2, and by 90 ± 2% at 30 mW mm-2 (n = 7, p = 

0.02).

In vivo activation of Pvalb+ interneurons

To examine the photoexcitability in an inhibitory neuronal type, we performed extracellular 

recordings in awake behaving Pvalb-IRES-Cre;Ai32 mice using a custom-designed 

optoelectronic probe 34 containing 5-20 μm optical fibers that deliver locally focused light 
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(~1 mW at the tip). For an independent assessment of the specificity of Pvalb+ neuron 

activation in these mice, two brain areas, the hippocampal CA1 region and the thalamus, 

were chosen because in these areas interneurons and principal cells can be reliably separated 

by physiological means 35-37. In the hippocampus, the neuron with the typical 

autocorrelogram (ACG) of fast firing perisomatic interneurons 38 was directly activated by 

both single pulses and the sinus pattern (Fig. 7a). In contrast, the bursting, putative 

pyramidal cell was silenced at the time of the firing epoch of the activated neuron. Using 

previously established waveform criteria, trough-to-peak time and the width of the spike of 

the wide-band (1 Hz – 5 kHz) unit at 20% of its peak amplitude 35, 39, we were able to 

segregate all recorded neurons into two major groups (Fig. 7b and Supplementary Fig. 8). 

All of the light activated neurons fell into the ‘narrow-spike category’. In another 

comparison, neurons were identified as excitatory or inhibitory neurons on the basis of 

putative monosynaptic excitation and inhibition estimated by their short-time cross-

correlograms 35, 39, 40. Again, the two groups were segregated and all activated neurons fell 

into the physiologically identified interneuron cluster (Fig. 7b and Supplementary Fig. 8). 

These results show that ChR2-mediated activation was absent in CA1 pyramidal cells, and 

present in fast firing interneurons, corresponding to the perisomatic Pvalb+ interneurons.

In the thalamus, the characteristic low-threshold spike burst patterns of thalamocortical 

neurons can be reliably separated from the fast firing inhibitory interneurons of the reticular 

nucleus 37. In the mouse reticular nucleus the majority of interneurons are PVALB-

immunoreactive 41. Simultaneous recordings from reticular and the adjacent thalamocortical 

neurons and their local optogenetic activation generated two separate groups. Neurons that 

were activated by either single pulses or sinusoid pattern had ACGs characteristic of 

reticular neurons, whereas bursty neurons were suppressed by light stimulation (Fig. 7c and 

Supplementary Fig. 9). Light-activated and light-suppressed neurons had significantly 

different burst index magnitudes (Fig. 7d). Thus, these findings establish further support for 

the specificity of ChR2-mediated activation in reticular Pvalb+ interneurons. Although these 

physiological methods cannot distinguish between Pvalb+ and other classes of 

interneurons 42, the physiological results are consistent with the previously demonstrated 

recombination specificity of Pvalb-IRES-Cre to Pvalb+ interneurons in both hippocampus 

and thalamus 9.

Since reticular inhibitory neurons are critical for pacing thalamocortical rhythm 37, we 

examined their light activation on neocortical activity of waking mice. Single pulse 

stimulation (5 ms, 20 mW) evoked a primary response, likely through rebound spike 

activation of thalamocortical neurons 36, 37, followed by several cycles of activity typical of 

thalamocortical reverberation (Fig. 7e, left panel). Repetitive activation of reticular neurons 

at 10 Hz effectively entrained the thalamocortical circuit 36 (Fig. 7e, right panel). These 

findings demonstrate that reticular neurons can be recruited effectively by local light 

stimulation in Pvalb-IRES-Cre;Ai32 mice to induce physiologically relevant cortical 

patterns.
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Discussion

We have established 4 new transgenic mouse lines with robust Cre-dependent expression of 

ChR2, Arch-ER2 or eNpHR3.0. Compared to a previously published R26∷ChR2-EGFP 

Cre-reporter mouse line 20, our Ai32 ChR2-EYFP-expressing line exhibits significantly 

greater light sensitivity. In the R26∷ChR2-EGFP mice, using very similar stimulation 

paradigms in cortical slices, very long and strong laser pulses (~20 ms, ~2 mW) were 

needed to induce single spiking in interneurons, and even so spiking could not be induced in 

pyramidal neurons. The necessity to use mice with homozygous floxed-ChR2 allele and to 

feed the mice with retinol was also reported. In contrast, the Ai32 mice possess excitability 

with 1-ms light pulses at intensities as low as 30 μW, much larger photocurrents, and much 

shorter latency to spiking, in pyramidal neurons. We further show that pyramidal neurons 

and interneurons are also readily excitable in vivo with low light in heterozygous animals. 

These greatly improved properties are likely to be proven critical in future in vitro and in 

vivo studies. Using such an efficient transgenic expression strategy is particularly essential 

for expressing the silencing opsins (Arch and eNpHR) to functional levels.

The transgenic targeting strategy used in the R26∷ChR2-EGFP line 20 is similar to our 

strategy described here. Both targeted the Rosa26 locus and used a strong and ubiquitous 

CAG promoter. But, two main differences may be responsible for the improved expression 

level in the new lines reported here. First, our expression cassettes included a WPRE 

sequence, which we previously showed to enhance protein expression of Rosa26-targeted 

transgenes 9. Second, while the R26∷ChR2-EGFP line incorporated a commonly-utilized 

floxed-stop cassette that contains the bacterial neomycin-resistant (neo) gene in front of the 

stop, we intentionally excluded the neo gene from our own floxed-stop cassette and instead 

placed it separately downstream from the transgene expression cassette. Although it is 

unclear whether the relocation of the neo gene is helpful to the significantly improved 

expression in our mice, it is well-known that integration of bacterial sequences into 

mammalian genomes could cause epigenetic modifications that affect expression of nearby 

genes.

Each of our optogenetic lines exhibited distinct photo-response properties that could be 

useful for different applications. Neurons from Ai32 appeared significantly more 

photosensitive than those from Ai27, both in vitro and in vivo. Although the basis for this 

difference between Ai27 and Ai32 neurons is unresolved, and no apparent difference in 

expression level or membrane localization was seen, we speculate that the bulkier tdTomato 

fluorescent tag in the Ai27 transgene may interfere with some channel properties. Although 

Ai32’s photosensitivity seems desirable for most experiments, Ai27’s red label and/or 

preferential axonal excitation may be advantageous in some applications 28, 30. Our in vitro 

and in vivo data on Ai35 and Ai39 neurons suggest that Arch-ER2 produces greater 

photocurrents and larger hyperpolarization than eNpHR3.0 under both green and yellow 

light. This could be due to the observed lower protein level for eNpHR3.0 even though the 

mice were generated using identical designs. However, due to its broad and red-shifted 

activation spectrum, eNpHR3.0 is equally effective as Arch-ER2 under red light, and may 

be preferable for dual-channel work together with blue light-responsive depolarizing opsins.
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The kinetics of the in vivo light response of ChR2-expressing neurons in Ai27 and Ai32 

mice were identical to those observed with virally expressed opsins, with a rapid increase in 

spiking at light onset, followed by a stable, lower steady-state firing level during light 

stimulation and often a period of suppression immediately following light termination 32. 

Photoinhibition of Arch-ER2 or eNpHR3.0-expressing neurons in Ai35 or Ai39 mice in vivo 

showed a near instantaneous reduction in firing rate, consistent with that observed with viral 

infection method 6. Many of the neurons recorded in Ai35 and Ai39 mice were nearly 

completely silenced. The homogenous and complete silencing in these mice presents a major 

advantage of the consistent expression achieved in these transgenic mice compared to viral 

infection method 6, 24.

An important question is the specificity of neuronal activity manipulation in the targeted 

populations. While this can be addressed by exhaustive anatomical multiple labeling 

methods, physiological verification of specificity is also useful. We have chosen two brain 

areas, the CA1 pyramidal layer and the thalamus because identification of principal cells and 

interneurons in these regions is possible by physiological means 35-40. While these methods 

cannot distinguish among the large family of interneurons 38, light-activated neurons 

displayed well-known features of short-duration spikes and high firing rates, typical of 

perisomatic Pvalb+ interneurons. Conversely, putative CA1 pyramidal neurons and 

thalamocortical cells with bursting properties and excitatory connections were never directly 

activated by light. Instead, the majority of them were suppressed by light stimulation. These 

excellent physiological-optogentic correlations in the intact brain support the cell type 

specificity of ChR2 activation. They also suggest that optogenetic activation of genetically 

labeled cell types, especially those difficult to distinguish by physiological or other means, 

will enable more refined in vivo identification and characterization of their functional 

properties 43.

Systematic expression characterization data from our previously generated fluorescent 

reporter lines (e.g. Ai14), crossed to dozens of different Cre-driver lines, have shown that 

Cre-dependent activation of transgene expression can be obtained in nearly all neuronal 

types 9. Thus, although data presented here are confined to the light responses of cortical/

hippocampal pyramidal neurons and hippocampal/thalamic Pvalb+ interneurons, we believe 

it highly likely that these optogenetic tools will effectively modulate activity in a wide range 

of neurons. It should be noted that different types of neurons may have different excitability 

properties for both intrinsic and/or local circuitry reasons, and hence may require individual 

optimization of the conditions for activation and silencing.

Here we not only provide a novel set of transgenic tools with superior properties for both 

stimulating and silencing neuronal activity, we also demonstrate a transgenic expression 

strategy having several significant conceptual advantages. First, since the opsins are 

expressed as single copies in an identical manner from a consistent genomic environment, 

reliable comparisons of in vivo performance can be made between different opsin genes and 

different transgenic lines. Second, the Cre-dependent on-off switch for transgene expression 

effectively prevents or minimizes leaky expression in non-targeted cells while enables 

strong expression from the well-characterized CAG promoter in targeted cells, a clear 

advantage over the specific promoter-driven single transgenic approach in which the 

Madisen et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2012 November 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



promoters used could have variable (sometimes unknown or uncharacterized) expression in 

both targeted and non-targeted cells. Third, because of the efforts we and others have taken 

to systematically characterize expression in Cre-driver lines 8, 9, especially when similar 

reporter lines are used, documented and publicly available information about Cre-

recombination patterns (e.g. http://connectivity.brain-map.org/transgenic/search/basic) can 

advise researchers about the cell-type specificity of expression expected when using a 

particular Cre driver with these reporter lines. This is of great importance also considering 

that unintended ectopic Cre expression may exist to varied degrees in some Cre lines, and 

informed choice about appropriate Cre (or inducible Cre) lines for specific cell types need to 

be made. Finally, this proven expression system will also facilitate the rapid incorporation of 

newly engineered optogenetic variants, and once validated, apply them to all the Cre lines. 

This presents a “one-for-all” opportunity than expressing one opsin in one cell type at a 

time, and will further increase the range of optogenetic capabilities for investigating neural 

circuits and brain function.

Methods

All experimental procedures related to the use of mice were approved by the Institutional 

Animal Care and Use Committees of the Allen Institute for Brain Science, the Howard 

Hughes Medical Institute, Boston University, Seattle Children’s Research Institute, or 

Rutgers University, in accordance with NIH guidelines.

Gene targeting in ES cells and generation of knock-in Cre reporter mice

Targeting constructs were generated using a combined gene synthesis (GenScript) and 

molecular cloning approach. ChR2(H134R)-tdTomato was synthesized based on the hChR2 

sequence 26, and ChR2(H134R)-EYFP was synthesized based on the ChR2 sequence 3. Both 

fragments, as well as the ss-Arch-EGFP-ER2 6 and the eNpHR3.0-EYFP 23 fragments, were 

each cloned into a Rosa26-pCAG-LSL-WPRE-bGHpA targeting vector 9, in between LSL 

and WPRE sequences. LSL sequence contains specifically LoxP – Stop codons – 3x SV40 

polyA – LoxP.

The targeting vectors were linearized and transfected into the 129/B6 F1 hybrid ES cell line 

G4 44. G418-resistant ES clones were first screened by PCR using primers spanning the 1.1 

kb 5’ genomic arm (forward primer: 5’-gggctccggctcctcagaga-3’, reverse primer: 5’-

atgccaggcgggccatttac-3’), and then confirmed by Southern blot analysis of HindIII digested 

DNA, which was probed with a 1.1 kb genomic fragment from immediately upstream of the 

5’ arm. Positive ES clones were injected into C57BL/6J blastocysts to obtain chimeric mice 

following standard procedures. Chimeric mice were bred with C57BL/6J mice to obtain 

germline transmitted F1 mice. The reporter mice can be bred with the Rosa26-PhiC31 mice 

(JAX Stock # 007743) 45 to delete the PGK-neo cassette in the germline of the mice.

Expression characterization

Reporter mice were crossed to various Cre lines, including Emx1-Cre (JAX Stock # 

005628), Camk2a-CreERT2 (JAX # 012362), Pvalb-IRES-Cre (JAX # 008069) and Chat-
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IRES-Cre (JAX # 006410). Expression of the reporter genes was assessed by both native 

fluorescence (without antibody staining) on perfused, microtomed sections and by ISH.

For ISH, the Allen Institute-established pipelines for tissue processing, probe hybridization, 

image acquisition, and data processing were used. The procedures were previously 

described 9, 46 and can be found at the Transgenic Mouse database (http://help.brain-

map.org/display/mouseconnectivity/Documentation). Expression levels were analyzed with 

2-tailed, paired or unpaired Student’s t-test at an alpha level of 0.05.

Electrophysiology and photostimulation on Ai27 and Ai32 brain slices

P30 – P60 mice were used. Recordings on 300-μm thick barrel cortical slices were 

performed in the presence of 5 μM (R)-CPP (Tocris) and 10 μM NBQX (Tocris). 

Electrophysiology and stimulus conditions were as described 26. A series of 473-nm laser 

pulses (Crystal Laser) of 1-ms duration and 30-1770 μW (at specimen) for photostimulation 

was delivered through an air objective (4x; 0.16 NA; UPlanApo, Olympus) with a beam 

diameter of 6-20 μm (scattering in the tissue was not taken into account). Photostimulation 

marched through an 8×16 grid with 50 μm spacing. The laser stimuli were given in a spatial 

sequence designed to avoid consecutive stimulation to neighboring spots to minimize 

desensitization 47. Data were acquired using Ephus (available at www.ephus.org).

Inflection point analysis

APs triggered in axons could be distinguished from those triggered in somata and dendrites 

by their waveforms. Dendritic APs have a charging phase that precedes reaching the AP 

threshold (set to be 15 mV) at the inflection points. To determine the charging phase and the 

inflection point, we calculated the first derivative of an AP trace. The AP was identified as a 

derivative peak larger than 25 mV/ms; the charging phase as a derivative peak before AP 

and larger than 0.5 mV/ms; and the inflection point as the lowest derivative point between 

the charging peak and the AP peak. APs with an inflection point higher than 15mV were 

scored as somatic/dendritic; otherwise as axonal.

In utero electroporation

In utero electroporation (IUE) was done as previously described 26, 28. In brief, the plasmids 

for electroporation contained ChR2-mVenus (2 μg/μl) and cytoplasmic mCherry at 3:1 

molar ratio. E16 timed-pregnant C57BL/6J mice were deeply anesthetized using an 

isoflurane-oxygen mixture. The uterine horns were exposed and 0.2-0.5 μl of DNA solution 

with Fast Green dye (Sigma) was pressure injected (Picospritzer, General Valve) through a 

pulled glass capillary tube (Warner Instruments). The head of each embryo was placed 

between custom-made tweezer-electrodes, with the positive plate contacting the right side of 

the head. For E16 animals, the transfection was restricted to layer 2/3 cortical cells in the 

electroporated hemisphere. IUE mice were used for slice physiology at ages of P14-P21.

Electrophysiology and photostimulation on Ai35 and Ai39 brain slices

Mice 7-21 weeks old were used to prepare coronal slices (neocortex experiments, 350-400 

μm thick; hippocampus experiments, 400-500 μm thick) for intracellular whole cell 

recordings. Illumination of brain slice preparations was supplied by a 593-nm, 50-mW 
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yellow laser (LaserSight Technologies), a 640-nm, 50-mW diode red laser (Opto Engine), or 

a Luxeon 5 watt white LED (Lumileds Lighting). Light sources were coupled to a 200-μm, 

0.22-NA optical fiber. Light output was calibrated with a Thorlabs PM100 meter and S130A 

detector (Thorlabs).

Hippocampal network recordings

Young adult mice (P35-50, Fig. 5) and adult mice (6 months, Supplementary Fig. 6) were 

used. Extracellular KCl was elevated from 3 to 8 mM over a 20-min period to initiate 

spontaneous bursting in the hippocampal slice. Experiments began 10 min after KCl reached 

8 mM. Extracellular recordings were made from areas CA1 and CA3 using glass electrodes 

filled with ACSF (<2 MΩ). An optical fiber (200-μm diameter) connected to a computer 

driven white LED source (Fig. 5) or a 640-nm laser (Supplementary Fig. 6) was positioned 

over CA3 or CA1. Population bursting and the integration of population bursts were 

recorded prior to, during and following the light stimulation. Integration of the population 

bursts was conducted in real-time using an in-line integrator (time constant = 200 ms; James 

Franck Institute electronic shop). Instantaneous frequency and amplitude of integrated bursts 

were analyzed post hoc using Clampfit 10. Differences were determined using 2-tailed 

unpaired t-test between two means, or one-way repeated measures ANOVA followed by 

multiple comparisons testing (Dunnett’s comparison) among three or more means.

In vivo photostimulation and extracellular recording in awake, head-fixed mice

Recordings in awake head-fixed mice (3-7 months old) were performed as previously 

described 6, 32. Briefly, under isoflurane anesthesia, a plastic head-plate was implanted over 

the cortex. Once the mouse was recovered from surgery, recordings were made while the 

mouse was awake and head fixed, using linear multi-contact silicone electrodes 

(NeuroNexus). To avoid light-induced artifact on the silicone electrodes, we also used 

borosilicate glass microelectrodes filled with saline. The glass microelectrodes have an 

impedance of ~7 MΩ. Optical fibers were coupled to the electrodes (100-μm fiber coupled to 

silicone electrode, and 200-μm fiber to glass electrode), with the tip positioned 500-900 μm 

above the recording sites. The optical fiber was connected to a green laser (532 nm) or a 

blue laser (473 nm), with tunable power (Shanghai Laser Corp). Lasers were controlled by a 

function generator (Agilent Tech). Light intensity was measured with a power meter 

PM100D (Thorlabs). Data acquisition was performed with a multichannel Omniplex system 

(Plexon) for the NeuroNexus silicone electrode, or with a Multiclamp 700B amplifier and 

digitized with a Digidata 1440 digitizer (Molecular Device).

Spikes were sorted with Offline Sorter 3.0 (Plexon). Neurons modulated by light were 

identified by performing a paired t-test, for each neuron, between the baseline firing rate 

before light onset and firing rate during light illumination, across all trials for that neuron, 

thresholding at p < 0.05 significance level as previously described 6, 32. Instantaneous firing 

rate histograms were computed by averaging the instantaneous firing rate with a time bin of 

10 ms for Ai35 and Ai39 neurons or 5 ms for Ai32 and Ai27 neurons.

Both green and blue light illumination of the silicone multi-contact electrodes produced 

significant slow artifacts as previously observed with Tungsten electrodes 32. The blue light-
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induced artifact was particularly strong on the silicone electrodes, which sometimes 

saturated the data acquisition amplifier at the onset of each light pulse, thus we excluded the 

first 20 ms after light onset for calculations for all Ai27 and Ai32 neurons. The green light-

induced artifact on silicone electrodes was much smaller in magnitude, and never saturated 

the amplifier system, allowing us to determine the latency of light-induced neural 

modulation in Ai35 and Ai39 mice. Light did not produce any optical artifact on glass 

electrodes. Latency was defined as the time from light onset to the time at which firing rate 

was significantly different from baseline for the following 30 ms.

In vivo photostimulation and extracellular recording in behaving Pvalb-IRES-Cre;Ai32 mice

Construction of fiber-based optoelectronic probes was done as previously described 34. The 

silicon probes have 4 shanks (Buzsaki32 from NeuroNexus). The shanks are 200 μm apart 

from each other and bear 8 recording sites each (160 μm2 each site; 1-3 MΩ impedance) 

arranged in a staggered configuration (20 μm vertical separation) 40. As light guides, we 

used multi-mode optical fibers (105 μm in diameter; AFS 105/125; Thorlabs). To restrict 

light activation only to the brain volume monitored by the silicon probe, the fiber was etched 

by dipping into concentrated hydrofluoric acid until the desired 5-20 μm diameter was 

achieved. The fiber was positioned on the silicon shank at ~100 μm above the uppermost 

recording site, and the rest of the fiber was glued to the shank. Light modulation was 

provided by DPSS laser (473 nm; SDL-473-050T; Shanghai Dream Lasers Technology). 

The intensity of light at the tip of the etched fiber could be varied. Typical stimulus intensity 

varied between 1 to 5 mW.

Recordings were performed either in anesthetized (isofluorane) or waking freely behaving 

mice (6-8 weeks old). In the chronic mice, the optoelectronic probe assembly was fixed to a 

micromanipulator and lowered into the brain by slow steps. In mice with light activation of 

the reticular nucleus, etched optic fibers were placed in the reticular nucleus unilaterally or 

bilaterally. Cortical activity was monitored by epidural recordings, using #000 screws, 

driven into the bone. Recording sessions typically lasted for 1 hour, during which the 

animal’s behavior alternated between periods of walking and immobility. 

Neurophysiological signals were amplified and multiplexed by a miniature head-stage of a 

256-channel multiplexed amplifier system and the multiplexed signals were directly 

recorded by the computer. After recovery, the animals could move relatively unconstrained 

due to the low weight and small size of the head-stage as well as the decreased number of 

connecting wires. Neuronal activity was sampled at 20 kHz per channel at 16 bit resolution, 

while the overall gain of the multiplexer system was 400x (KJE-1000; Amplipex). Spike 

sorting was performed semi-automatically, using KlustaKwik, followed by manual 

adjustment of the clusters 48.

Considerations for light intensity measurement in different experimental paradigms

The amount of depolarization or hyperpolarization generated in a given cell is corresponding 

to the summation of the photocurrents generated from all the activated opsin molecules. The 

latter is proportional to irradiance (light intensity per unit area) at the target multiplied by the 

illuminated surface area of the target cell (including cell body and dendritic/axonal 

processes, without considering further heterogeneity in opsin distribution and local 
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membrane excitability). Therefore illumination by a diffused light (e.g. directly from a LED 

or through a regular optical fiber) with lower irradiance but covering a larger surface area of 

the cell could have the same effect as illumination by a high intensity and highly focused, 

therefore high irradiance, light beam (e.g. laser light through the objective lens) on a smaller 

surface area of the cell. Furthermore, even highly focused light becomes scattered as it 

enters the brain tissue, and it is impossible to estimate the actual irradiance at the target 

without knowing the location/depth of the cell or which part of it is illuminated. For these 

reasons, different methods were employed to report the light intensities in our study. In brain 

slice photosilencing experiments (Figs. 3-5) irradiance (in mW mm-2) of the relatively 

diffused light at the surface of the brain slice was presented. In brain slice photoactivation 

experiments (Fig. 2) radiant flux (i.e. light intensity, in mW) of the focused light beam (6-20 

μm wide) at the surface of the brain slice was presented. In the in vivo photostimulation of 

cortical excitatory neurons (Fig. 6), the irradiance at the recorded cell level was estimated by 

Monte Carlo simulation based on known distance between the tip of the optical fiber 

(100-200 μm wide) and the electrode. In the in vivo photostimulation of hippocampal and 

thalamic Pvalb-positive neurons (Fig. 7), radiant flux at the tip of the etched optical fiber 

(5-20 μm wide) that was attached to the silicon probe was reported. All these types of 

descriptions can be considered appropriate for cross-experimental comparisons in each of 

their respective paradigm where the light delivery approach is consistent.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Generation and expression characterization of the Ai27, Ai32, Ai35 and Ai39 Cre-reporter 

lines. (a) Gene targeting vectors were designed to insert the Cre-dependent reporter cassettes 

into intron 2 of the Rosa26 locus. After obtaining germline-transmitted F1 mice, the PGK-

neo selection cassette can be deleted by PhiC31-mediated recombination between the AttB 

and AttP sites, which combine into an AttL site, by breeding with a Rosa26-PhiC31 deleter 

line. (b) tdTomato, EYFP, and EGFP native fluorescence in Emx1-Cre;Ai27, Emx1-

Cre;Ai32, Emx1-Cre;Ai35 and Emx1-Cre;Ai39 mice. Scale bar, 200 μm. (c) Confocal 

images of the CA1 pyramidal neurons in the same mice as in b, showing the cell membrane 

localization of tdTomato, EYFP and EGFP fluorescence. Scale bar, 20 μm. (d) Reporter 

gene mRNA expression in Emx1-Cre;Ai27, Emx1-Cre;Ai32, Emx1-Cre;Ai35 and Emx1-

Cre;Ai39 mice (ages all ~P56), using in situ hybridization (Ai27, tdTomato riboprobe; Ai32, 

Ai35 and Ai39, EGFP/EYFP riboprobe). Scale bar, 200 μm.

Madisen et al. Page 19

Nat Neurosci. Author manuscript; available in PMC 2012 November 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 2. 

Photostimulation of pyramidal neurons in cortical slices of Emx1-Cre;Ai27 (abbreviated as 

E-Ai27), Emx1-Cre;Ai32 (E-Ai32), and Ai32 alone (-Cre) mice. (a) A barrel cortex slice 

with the 8 × 16 photostimulation grid overlaid (blue dots; spacing 50 μm). Scale bar, 200 

μm. (b) Schematic of the photostimulation geometry and example traces. Whole-cell 

voltage-clamp traces from the dashed box area (left) are shown for E-Ai27 (with 840 μW 

light), E-Ai32 (70 μW) and Ai32 (1490 μW). Triangles, soma locations. (c) Waveforms of 

APs evoked by photoactivating the somata and dendrites (magenta) and axons (black). The 

arrow marks the inflection point. (d) Whole-cell current-clamp traces showing evoked APs 

in the 8 × 16 grid for a typical cell each of E-Ai27 (1700 μW), E-Ai32 (155 μW), Ai32 

(1500 μW), and IUE (155 μW). (e) Minimum laser power required to evoke an AP from at 

least one stimulation site. (f) Number of photostimulation sites evoking an AP as a function 

of laser power in E-Ai32 neurons (n = 7). (g) Number of stimulation sites triggering APs 

using high laser powers. (h) Spike latencies of somatic/dendritic APs from the light onset. 
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E-Ai32h: E-Ai32 cells (n = 9 cells, 143 APs) under high powers (≥1 mW). E-Ai32l: E-Ai32 

cells (n = 9 cells, 28 APs) under low powers (≤100 μW). E-Ai27: E-Ai27 cells (n = 2 cells, 4 

APs) under high powers. Spike latencies of axonal APs (not shown) varied greatly. (i) 

Number of stimulation sites triggering APs using low laser powers.
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Figure 3. 

Effective silencing of cortical pyramidal neurons by Arch-ER2 in Emx1-Cre;Ai35 (E-Ai35) 

and eNpHR3.0 in Emx1-Cre;Ai39 (E-Ai39) mice. (a) Biocytin staining (red) of a cortical 

pyramidal neuron after recording. Scale bar, 100 μm. (b) Voltage responses of representative 

neurons to a 1-s negative current injection or a 1-s light pulse. Under both conditions, Cell 2 

from E-Ai35 and E-Ai39 exhibits rebound firing at the end of the stimulus, whereas Cell 1 

does not. (c) Voltage response of a neuron to 10 consecutive trials of laser stimulation (1-s 

pulse, 1-s interpulse interval). Values are normalized to the first trial; first trial ΔV was 

-27.05 ± 2.38 mV (n = 8, E-Ai35) or -19.43 ± 2.82 mV (n = 10, E-Ai39). (d) Average 

hyperpolarization from the resting membrane potential (mean of 10 stimulations as in c) 

evoked by different light intensities. (e) Representative photocurrent traces under voltage 

clamp (-70 mV) and 12 mW mm-2 illumination. (f) Mean photocurrents evoked by low and 

high light intensity. (g) Effective suppression of AP firing in E-Ai35 or E-Ai39 neurons 

evoked by positive current injection (+50-100 pA). (h) Voltage responses of Ai35 (-Cre) and 

E-Ai35 neurons under maximal light illumination (23 mW mm-2). (i) Comparison of light-

induced hyperpolarization in Cre-positive (E-Ai35, n = 15; E-Ai39, n = 14) and Cre-

negative (Ai35, n = 4; Ai39, n = 7) neurons. (j) Maximum light (23 mW mm-2) failed to 

slow or silence the firing of a Cre-negative Ai35 neuron evoked by positive current injection 

(+100 pA).
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Figure 4. 

Alternative light sources for silencing of cortical pyramidal neurons in Emx1-Cre;Ai35 (E-

Ai35) and Emx1-Cre;Ai39 (E-Ai39) mice. (a-c) Inhibition of E-Ai35 neurons by a white 

LED. (a) An example E-Ai35 neuron exhibited similar hyperpolarization response to 

negative current injection (-100 pA) and illumination by white light. (b) White light dose-

response curve (n = 3). (c) An example of effective silencing by white light (11 mW mm-2) 

of APs evoked by a positive current injection (+100 pA). (d-f) Inhibition of E-Ai35 neurons 

by red laser light (640 nm). (d) An example E-Ai35 neuron exhibited similar 

hyperpolarization response to negative current injection (-100 pA) and illumination by red 

light. (e) Red light dose-response curve (n = 7). At the highest tested intensity (25 mW 

mm-2) the 640-nm laser illumination achieved 43% ± 5% of the hyperpolarization achieved 

with the 593-nm laser. (f) An example of silencing of current-evoked APs by red laser light. 

(g-h) Inhibition of E-Ai39 neurons by a white LED. (g) White light dose-response curve (n 

= 5). (h) An example of silencing of current-evoked APs by white light. (i-j) Inhibition of E-

Ai39 neurons by red laser light (640 nm). (i) Red light dose-response curve (n = 7). At the 

highest tested intensity (25 mW mm-2) the 640-nm laser illumination achieved 100% ± 35% 

of the hyperpolarization achieved with the 593-nm laser. (j) An example of silencing of 

current-evoked APs by red laser light.
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Figure 5. 

Effective silencing of induced population bursting in the hippocampal circuit in Emx1-

Cre;Ai35 mice. (a) Schematic for the inhibition of presynaptic neurons in the hippocampal 

circuit. K+ (8 mM) induced population bursting in CA1 was recorded with an extracellular 

electrode (R). A white light source (LED, yellow circle) was positioned over CA3 to 

activate Arch-ER2 in presynaptic neurons. (b) Representative traces of the integrated (top) 

and raw (bottom) population bursting activity from CA1 before (expanded traces in inset 1), 

during (2), and following (3) the illumination of CA3. Raw population bursting activity is 

the direct measure of unit activity. Integrated population activity represents the change of 

unit activity (time constant = 200 ms). (c) Quantified response of population bursting from 

CA1 (n = 4 experiments) during 4 intervals: light-off control; the first (0) and final (4) 

minute of a 5-min exposure to white light; and 5 minutes after light exposure (recovery). 

Values were normalized to light-off control (** p < 0.01, repeated measures ANOVA; mean 

± s.e.m.). (d) Schematic for the inhibition of postsynaptic neurons in the hippocampal 

circuit. Neurons were recorded simultaneously using dual extracellular electrodes (CA1: R, 

CA3: R1). A white LED was positioned over CA1 to activate Arch-ER2 in postsynaptic 

neurons. (e) Representative traces of the integrated (top) and raw (bottom) population 

bursting activity from CA3 and CA1 before (inset 1), during (2), and following (3) 

illumination to CA1. Light to CA1 led to suppressed bursting from that region, but bursting 

activity in CA3 was unaffected.
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Figure 6. 

Optical activation or silencing of pyramidal neuron activities in the neocortex of awake 

Emx1-Cre;Ai27, Emx1-Cre;Ai32, Emx1-Cre;Ai35 and Camk2a-CreERT2;Ai39 mice 

(abbreviated as Ai27, Ai32, Ai35 or Ai39, respectively, here). (a) Neural activity and spike 

waveforms in a representative Ai32 neuron before, during and after 200-ms blue light 

illumination (3 mW mm-2). Top, spike raster plot; bottom, histogram of instantaneous firing 

rate averaged across trials (bin size, 5 ms). (b) Average changes in firing rates upon blue 

light illumination in Ai27 and Ai32 mice. (*** p < 0.001) (c) Neural activity and spike 

waveforms in a representative Ai35 neuron before, during and after 5-s green light 

illumination (13 mW mm-2). (d) Neural activity and spike waveforms in a representative 
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Ai39 neuron before, during and after 5-s green light illumination (30 mW mm-2). For c and 

d, top, spike raster plot; bottom, histogram of instantaneous firing rate averaged across trials 

(bin size, 10 ms). (e) Average changes in firing rates (left) and latencies (right) observed in 

Ai35 and Ai39 single units during green light illumination at indicated light intensities. (* p 

< 0.05) (f) Green light illumination at higher intensity induced more powerful silencing in 

Ai35 and Ai39 mice. (* p < 0.05, ** p<0.01) All data points are mean ± s.e.m.
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Figure 7. 

In vivo identification of light-activated neurons in the hippocampus and thalamus of Pvalb-

IRES-Cre;Ai32 mice. (a) Excitation of ChR2-expressing neurons in the hippocampal CA1 

region during waking state. Top row shows peristimulus histogram of a Pvalb+ neuron (Cell 

47) transiently activated by single pulses or 8-Hz sinus light stimulation (1 mW). Also 

shown are the autocorrelogram (ACG) and waveform (± s.e.) of the neuron. Note typical 

ACG for a fast firing putative basket cell 35. Bottom row shows the same arrangement for a 

nearby pyramidal cell (Cell 45). Note ACG typical of bursting neurons. (b) Optogenetic 

(left) and physiological (right) classifications of neuron types in the hippocampus strongly 

overlap. Physiological segregation of simultaneously recorded neurons is based on two 

parameters – spike width and trough-to-peak time (inset). (c) Activation of ChR2-expressing 

neurons in the thalamus during anesthesia. Top row shows a reticular nucleus Pvalb+ neuron 

(Cell 4-16) in response to single pulses or 10-Hz sinus light stimulation. Bottom row shows 

a simultaneously recorded thalamocortical neuron (Cell 2-23) with typical bursting pattern 

in ACG 36, 37. (d) Distribution of burst index in the activated (putative reticular, red) and 

suppressed (putative thalamocortical, blue) neurons. Burst index is the ratio of spikes with 

short (<6 ms) inter-spike intervals relative to other spikes in the same session. (e) Light-

evoked cortical patterns in response to reticular nucleus stimulation in the waking Pvalb-

IRES-Cre;Ai32 mice. Single pulse (left) and sinus pattern (10 Hz, right) evoked activities 

are epidural recordings from the ipsilateral and contralateral parietal areas.
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