
A Toolkit for Detecting and Analyzing Malicious Software

Michael Weber, Matthew Schmid & Michael Schatz
Cigital, Inc.

Dulles, VA 20166
fmweber, mschmid, mschatzg@cigital.com

David Geyer
dgeyer@gmu.edu

Abstract

In this paper we present PEAT: The Portable Executable
Analysis Toolkit. It is a software prototype designed to pro-
vide a selection of tools that an analyst may use in order
to examine structural aspects of a Windows Portable Ex-
ecutable (PE) file, with the goal of determining whether
malicious code has been inserted into an application af-
ter compilation. These tools rely on structural features of
executables that are likely to indicate the presence of in-
serted malicious code. The underlying premise is that typi-
cal application programs are compiled into one binary, ho-
mogeneous from beginning to end with respect to certain
structural features; any disruption of this homogeneity is
a strong indicator that the binary has been tampered with.
For example, it could now harbor a virus or a Trojan horse
program. We present our investigation into structural fea-
ture analysis, the development of these ideas into the PEAT
prototype, and results that illustrate PEAT’s practical ef-
fectiveness.

1. Introduction

Malicious software remains a major threat to today’s
information systems. Detecting and analyzing dangerous
programs is a costly and often inaccurate endeavor. The
difficulty of this task is underscored by a recent contest
challenging participants to figure out the nefarious behavior
of a particular program that has already been determined to
be malicious in nature [10]. Often identifying a program
(or portion thereof) as malicious is half the battle. In this
paper we introduce a prototype tool to aid in the analysis of
potentially malicious software.

At the current stage of our work we are focusing on the
detection of malicious software (malware) that has been
attached to an otherwise benign host application. This is
the modus operandi for many of the most common forms
of malware including executable viruses and many Trojan
horse programs. The host program provides cover while

the virus or Trojan horse performs malicious actions unbe-
knownst to the user. These programs often propagate while
attached to games or other enticing executables.

Malicious programmers have demonstrated their cre-
ativity by developing a great number of techniques through
which malware can be attached to a benign host. Several
insertion methods are common, including appending new
sections to an executable, appending the malicious code
to the last section of the host, or finding an unused region
of bytes within the host and writing the malicious content
there. A less elegant but effective insertion method is to
simply overwrite parts of the host application.

Given the myriad ways malicious software can attach to
a benign host it is often a time-consuming process to even
locate the point of infection. Traditional tools including
disassemblers and debuggers may be useful for examining
malware once it has been located, but provide little help in
guiding an analyst to the points of interest. Malicious soft-
ware hiding in a data section or other unexpected location
may be particularly difficult to identify. To make matters
worse, the total code size of a malicious program is fre-
quently orders of magnitude smaller than the host that it
infects.

To help a malicious software analyst quickly and ef-
ficiently locate malware within a host application we de-
veloped the Portable Executable Analysis Toolkit (PEAT).
PEAT’s goal is to provide methods of examining Microsoft
Windows Portable Executable (PE) files [9] for signs of
malicious code. We accomplish this task by developing
analysis techniques that identify regions of the program
that were unlikely to have been part of the host application
when it was originally compiled and built. The presence of
such regions is a strong indicator that malicious software
has infected the host application.

This paper is organized as follows. First we summarize
present technologies that address the more general prob-
lem of undesirable code (viruses, backdoor programs, etc.)
in order to define the gap within that problem space that
PEAT fills. Next we describe in detail the capabilities that
PEAT provides, along with the ideas behind those capabil-



ities and their intended uses. Following that is a brief case
study which illustrates our practical experience with using
PEAT to detect the dangerous Trojan horse program Back
Orifice 2000 [8, 5] hidden within a seemingly harmless pro-
gram. A section summarizing some of PEAT’s weaknesses
is included. We conclude with a section describing our in-
tentions for further improving PEAT in order to increase its
effectiveness in analyzing malicious software.

2. Background

In the general case, malicious software detection is the-
oretically infeasible. In the specific case of searching for
a particular malicious code instance, it is not only possi-
ble, but performed daily by anti-virus software. Thus, we
have good commercial solutions to detecting known mali-
cious code instances. However, the problem of determining
whether software has malicious functionality is undecid-
able in the general case [11]. That is, we cannot look at
a given application and, in general, decide whether it con-
tains code that will result in malicious behavior. This is
equivalent to the halting problem in computer science the-
ory, which states that there is no general-purpose algorithm
that can determine the behavior of an arbitrary program [7].

Aside from the halting problem, there is the definition of
maliciousness to consider. What is malicious depends to a
large extent on the beholder and the context. For example,
a disk formatting program might be exactly what the user
wants (and therefore is not considered malicious), though
when embedded in a screensaver unbeknownst to the user,
it can be considered malicious. Thus, we cannot develop
an algorithm to decide maliciousness.

Other seminal work in this area has proved the unde-
cidability properties of detecting malicious software in the
general case in different contexts [3, 4, 13]. So, while the
prior art has demonstrated that detecting malicious code in
the general case is undecidable, what options are we left
with in addressing the unknown malicious code problem?

One approach to detecting malicious code in executable
programs is being investigated by the LSFM Research
Group [2] in which both static and dynamic methods are
applied in order to perform model checking to ensure that
the program under analysis will not violate any stated se-
curity policies. This is an example of an approach to ma-
licious software detection that requires an analyst to define
malicious behavior in the form of a policy.

Our present research differs from traditional approaches
to the malicious code problem in that it does not attempt
to define or identify malicious behavior. Instead, the re-
search focuses on structural characteristics of malicious
executable code. This approach allows for methods of ex-
amining any application, whether previously known or un-
known, in order to determine if it has been tampered with

since its original development. Such tampering usually
takes the form of an embedded virus or Trojan horse that
is activated during subsequent executions of the executable
program.

We chose Microsoft Windows as the initial platform for
PEAT because of its market dominance and the prolifera-
tion of malicious code targeted at that operating system and
its applications. As other platforms increase in popularity,
malicious attacks on those platforms are sure to follow. We
designed PEAT with this in mind so that it may be eas-
ily extended to accommodate other executable file formats,
such as ELF.

3. PEAT: Portable Executable Analysis Toolkit

The Portable Executable Analysis Toolkit (PEAT) pro-
vides an analyst with an array of tools for examining Win-
dows Portable Executable (PE) files for signs of malicious
code. Future work will extend PEAT to include features
to help understand the capabilities of that software. These
tools are designed to locate structural features of executa-
bles that do not fit in with surrounding regions; i.e., regions
of bytes that appear to have been inserted into an other-
wise homogeneous binary file. The underlying premise is
that programs are typically compiled into one consistent bi-
nary. Any deviation from this self-consistency is a strong
indicator of tampering. The program may be infected with
a virus, it could contain a Trojan horse program, or it could
have been modified in some other manner resulting in a
program whose behavior is different from the intended be-
havior of the original program.

3.1. Overview

PEAT’s tools fall into three general categories: simple
static checks, visualization, and automated statistical anal-
ysis. Simple static checks consist of a list of features whose
presence or absence PEAT attempts to verify in order to
quickly gain information that might suggest something sus-
picious. For example, PEAT immediately issues a warning
if the program’s entry point is in an unusual location. Visu-
alization tools include graphical depictions of several fea-
tures of the PE file. Examples of these include

� probabilities that regions of bytes in the PE file contain
code, padding, ASCII data, or random byte values

� address offsets for instructions that perform opera-
tions such as jumps, calls, or register accesses

� patterns of instructions that are known to indicate cer-
tain behavior (e.g., pushing arguments onto the stack
and making a call)



The visualization toolkit also uses PEAT’s disassembler,
based on work by Watanabe [14] , to parse and decode in-
structions. The user may then view the disassembly list-
ing. In addition, in order to identify ASCII strings, the
user may view the ASCII representation of all byte values
within a given region. Together, these visualization tools
are intended to allow an expert analyst to explore an exe-
cutable file in an attempt to identify regions that appear to
be inconsistent with the entire program. To complement
these manual analysis capabilities, PEAT also provides au-
tomated analysis tools to guide the analyst to suspicious
regions of the PE file.

PEAT’s automated analysis tools perform statistical
tests in order to detect anomalous regions. The analysis
operates on many of the same PE file characteristics as
the visualization tools. The user chooses which features
to consider, and the analysis engine will then divide the
PE file sections into several regions and determine whether
there are any statistically significant differences between
those regions. Each anomaly that is found is reported and
stored as a suspect region, along with automatically gener-
ated comments describing why it stands out.

The remainder of this section describes these tools in
detail.

3.2. Static checks

PEAT performs several static checks of the PE file un-
der analysis to quickly gain information that might suggest
that it contains something suspicious. The first of these is a
check on the program’s entry point address, obtained from
the PE file header. This address should fall within some
section that is marked as executable (typically this will be
the first section, and named .text or CODE). If this is not
the case, for example, if the entry point lies in the .reloc
section, which should not contain executable code, a warn-
ing will be displayed in PEAT’s main window once the PE
file is loaded into PEAT.

Another static check attempts to identify “bogus calls”,
which we define to be instructions that call to the immedi-
ately following instruction. Such a sequence of instructions
is a common method viruses use to determine their address
in memory. This is because the value of the instruction
pointer register EIP gets pushed onto the stack as a side ef-
fect of a CALL instruction [1]. The virus exploits this by
immediately popping this value. Because of the suspicious
nature of such instruction sequences, PEAT will alert the
user to their presence after the PE file has been disassem-
bled.

Finally, PEAT determines which DLL libraries are listed
in the PE file’s import table and reports the name and con-
tents of each. In addition, it finds all instructions in the
program that call a function in a DLL library and reports

Figure 1. Byte-type section view: code likeli-
hood

the locations of those instructions, along with the library
and function name. This is a quick initial pass at determin-
ing whether the program has any unexpected capabilities,
such as file or network I/O in an application that should not
require that functionality.

3.3. Visualization tools

Byte-Type Views: The visualization toolkit provides
multiple ways to view structural features of a PE file.
One such view is a plot that allows an analyst to quickly
see which regions of a PE file contain code, ASCII data,
padding for alignment, or random byte values. An exam-
ple is given in Figure 1 in which the .text segment of the
W32/Stupid virus is displayed. Each point along the hor-
izontal axis represents a window of bytes of the .text seg-
ment, and its value along the vertical axis, scaled from 0
to 1, represents how likely the window of bytes consists
of some byte-type of interest, with higher values indicating
greater likelihood. In this example, code likelihood is dis-
played. What we see is that only the latter portion of this
.text segment appears to contain real code, indicated by the
fairly solid line of points high on the vertical axis.

The probability values are determined by standard sta-
tistical proportion tests in which the proportion of a cer-
tain set of byte values (e.g., values in the ASCII character
range) observed in a window of bytes is computed. Based
on the size of the window, the size of the set of target byte
values, and the observed proportion of those target values,
the probability p of drawing the observed byte values from
a population of random byte values is computed. 1 The
complement of p is plotted, so that higher values indicate
greater likelihood that the window contains the byte-type
of interest. In addition to these probabilities, the observed

1Here, p = 1� F (z) where F is the cumulative distribution function
of a standard normal random variable and z = x�n�ep

n�e�(1�e)
with n be-

ing the window size, e being the expected proportion, and x=n being the
observed proportion.



Figure 2. ASCII view

Figure 3. Disassembly view

proportion of each of these byte-types is also available for
viewing.

The other type of information that is available in this
view is a plot of byte-value entropy. That is, the section is
divided into several windows and the total entropy of the
byte values in that window is computed. These entropy
values are then normalized against the total entropy values
for each window and then plotted on the vertical axis.

ASCII View: From the section-level view described
above, the user may select a region to investigate further.
One additional view is a display of the ASCII represen-
tation of each byte in the selected region. An example is
displayed in Figure 2. These bytes correspond to the re-
gion from Figure 1 that has a high probability of containing
ASCII data.

Disassembly View: Another way to investigate a par-
ticular region of interest is to have PEAT disassemble that
region and display the results. For each instruction that is
parsed, the address, raw byte values, instruction name, and
the operands of the instruction are displayed. An example
is shown in Figure 3.

Memory Access via Register Offsets: PEAT provides
a view that allows the user to see whenever memory is ac-
cessed by adding an offset to a register value in order to
determine an address in memory. The user first chooses a
register to consider, such as the base pointer register EBP,
and then PEAT uses the disassembly information to find
and plot all such memory accesses. An example is shown

Figure 4. Register offset view

below. There is a horizontal line through the middle of
the vertical axis representing 0, and positive and negative
offsets are plotted against this. This view can be used to
visually assess whether some region uses this means of ac-
cessing memory differently from other regions (e.g., larger
offsets, more frequent offsets, or offsets in opposite direc-
tions).

Other Views: We have defined some other views that
have not yet been incorporated into PEAT. One such view
displays offsets for jump and call instructions, similar to
the view of register offsets, in order to visually determine
whether regions are fairly self-contained or whether large
jumps are made, such as to outside the boundaries of the
executing segment. Another view displays common in-
struction patterns, such as several pushes followed by call
(indicating the pushing of arguments onto the stack in or-
der to make a procedure call). The analyst could visually
note the presence or absence of these common patterns and
determine whether any region of the section appears to be
different from the others.

3.4. Statistical analysis

As a supplement to the simple static checks and the vi-
sualization tools, PEAT also provides analysis capabilities
based on using statistical methods for identifying anoma-
lous regions within a PE file. The user may choose from
a wide range of features to extract from the program, such
as:

� Instruction frequencies

� Instruction patterns

� Register offsets

� Jump and Call offsets

� Entropy of opcode values

� Code and ASCII probabilities



These are discussed in further detail below, in terms of
their potential usefulness in identifying anomalous regions
within a program. But first we discuss the general statistical
approach that is applied for whichever features are used as
input data.

When PEAT performs its automated analysis, it iterates
over each section of the PE file. The section is disassem-
bled into instructions, and then divided into n consecutive
disjoint windows of a fixed number of instructions. The
metric of interest for each window is computed (e.g., en-
tropy of opcode values), yielding a list of values

X = (x1; x2; :::; xn)

From this list, another list of differences

Y = (y1; y2; :::; yn�1)

is computed, where yi = xi+1 � xi.
Next, PEAT iterates over the windows and determines

for each window whether the corresponding data point in
X is a statistical outlier with respect to the remaining data
points in X. For window i, the mean and standard devia-
tion of X nxi is computed, and it is determined whether xi
lies within two standard deviations of the mean. Anytime
this is not the case, the window will be reported as anoma-
lous, along with a probability reflecting the likelihood of
realizing a value at least as deviant as xi from the remain-
ing empirical distribution. This procedure yields a list of
windows that have, for example, anomalous entropy, with
respect to the other windows in the section.

A similar procedure is applied to the windows with re-
spect to the Y data points, yielding a list of windows that
exhibit a significant sequential change in the metric of in-
terest. For example, if common instruction patterns have
been observed up to some point in the section, and then
all of a sudden disappear, this will be reported. The rea-
soning behind using both the X and Y points is that the
X points may be insufficient to find an anomalous region
in a section whose first half, for example, is normal, while
its entire second half has been overwritten with malicious
code.

Given this general framework for statistical analysis,
PEAT provides several different metrics from which to
build a set of criteria for anomaly detection.

Instruction Frequencies: The idea behind examin-
ing instruction frequencies from window to window stems
from one of our more fundamental premises that viruses
tend to be written in assembly language while the host ap-
plications tend to be complied from high-level languages.
We performed a study based on this premise to identify
any instructions that appear frequently in assembly lan-
guage programs and rarely in compiled code, and similarly,
instructions that appear frequently in compiled code and

rarely in assembly language. The results of this study led to
the lists of instructions whose frequencies are calculated for
the purpose of finding anomalous windows. Ideally, mali-
cious assembled code that has been injected into a section
of a PE file will be discovered during the statistical anal-
ysis due to a sudden absence of frequent compiled code
instructions, and further analysis could verify that assem-
bly language instructions are abnormally frequent in that
region.

Instruction Patterns: The motivation for examining
patterns of instructions is very similar to the ideas be-
hind examining instruction frequencies. Our premise is
that compiled code is likely to exhibit regular instruction
sequences to implement common constructs like function
calls and returns and looping constructs. An assembly lan-
guage programmer’s conventions for implementing these
are not necessarily the same as the compiler, and perhaps
not even consistent from use to use. We have performed
an initial study of assembly language output from the Mi-
crosoft Visual C++ compiler and have built a list of patterns
that are seen to result from the use of common high-level
language constructs. The frequencies of the patterns are
one metric that the user can choose to incorporate into an
analysis with the goal being to discover injected malicious
assembly language code via the sudden absence of such
patterns.

Memory Access via Register Offsets: Another premise
we have is that normal applications and malicious code will
each use certain registers differently. In particular, the base
pointer register EBP is commonly used by normal applica-
tions as a reference point for accessing local variables on
the stack. Malicious programs, however, can take advan-
tage of this key reference point to determine where they are
in memory, a commonly necessary piece of information for
them to function and adjust as they spread throughout un-
known executables. Thus register offset values used when
accessing memory via a register are another metric that can
be used during statistical analysis.

Jump and Call Distances: The common layout of an
application compiled from a high-level language is sim-
ply a sequence of self-contained functions. Control flows
between these functions via the CALL and RET instruc-
tions. Jump instructions alter the control flow within a
single function, implementing high level conditional con-
structs such as if statements and while loops. Therefore,
the distances traveled during a normal application’s jump
instructions should be relatively small and regular, and sim-
ilarly, the distances traveled during call instructions should
be relatively larger and regular. What should very rarely be
observed in normal applications are extremely large jump
or call distances, such as to other sections of the PE file.

Byte-Type Probabilities: The last types of information
that PEAT uses as input to the statistical analysis are the



probabilities that windows consist of ASCII data, padding,
or real code. This is the same information that is presented
in the section view display. In conjunction with the other
metrics, this byte-type information can aid in the further
investigation of regions that are marked as anomalous. For
example, if a window is marked as an outlier for having
a sudden absence of common instruction patterns, but it is
also marked as an outlier for having a sudden high proba-
bility of being padding and low probability of being code,
the analyst can more confidently conclude that the absence
of patterns does not indicate the presence of assembly lan-
guage code but rather the absence of code altogether.

When the entire automated analysis completes, the ana-
lyst is presented with a list of windows that were found to
be anomalous. Each is reported along with its location in
the section and a description of what characteristics made
it stand out. From this list, the analyst can easily invoke the
visualization options, such as the disassembly, in order to
further investigate some particular region.

4. Results

We have had initial success with using Peat to perform
analysis on several malicious code samples. Of particular
interest is a study in which we detected the Back Orifice
2000 server [8, 5] hiding inside of a seemingly harmless
application.

InPEct [12] is a executable binding tool used to inject
arbitrary Trojans into arbitrary victim applications on the
Windows platform. When a user runs the resulting exe-
cutable, the injected Trojan will start to run in the back-
ground, and the victim application will run as usual. The
Trojan persists after the victim application terminates. We
used InPEct to inject the BO2K server into a typical Win-
dows application: the calculator program, calc.exe.

We then examined the infected executable with Peat in
order to determine if any of Peat’s metrics could detect
the Trojan’s presence and give insight into the infection
method. The process of that examination is presented here,
along with the results.

When Peat first loads a PE file, it displays several pieces
of information from the PE header, including a list of the
file’s sections and its entry point. Upon loading the in-
fected calculator program, Peat issues a warning that the
program’s entry point is in an unusual place. The program
control begins in the .rsrc section, as opposed to the ex-
pected .text section. In addition, we see that the .rsrc sec-
tion is unusually long, compared to that of typical applica-
tions. This information, shown in Figure 5, is the first piece
of evidence that the original application has been tampered
with.

Next, Peat performs its automated analysis in order to
identify anomalous regions within each section of the file.

Figure 5. PE header information for the in-
fected calculator program

It identifies two anomalous windows in the .rsrc section and
displays these as shown in Figure 6. The first window is an
outlier with respect to the code probability metric. It has a
high likelihood of containing code, but the other windows
in this section do not. An analyst should recognize this as
quite suspicious, as the .rsrc section does not typically con-
tain code. However, this finding is consistent with Peat’s
entry point warning. The entry point happens to lie in this
anomalous window.

This window also stands apart from the remainder of
the section due to an abnormal level of entropy. The sec-
ond anomalous window was marked as having an unusual
change in entropy, with respect to the previous window.
This pair of warnings (an abnormal value, followed by a
drastic change in that value, for any given metric) typically
suggests that something has been inserted into the origi-
nal application. To investigate these entropy levels further,
the analyst uses the visualization tools to examine the .rsrc
section.

The view of the entropy metric for the .rsrc section is
shown in Figure 7. 2 We observe that there is a point
at which the entropy level drastically increases. This is a
strong indicator that an encrypted region of bytes is present.

At this point, the analyst has gathered sufficient evi-
dence to recognize a particular pattern. A common tech-
nique that Trojan injection tools use, including InPEct, is

2Only the first portion is actually shown. The user would scroll to the
right to see the remainder, which looks similar to the latter portion of the
data shown here.



Figure 6. Two anomalous regions of the .rsrc
section

to encrypt and append the Trojan to the end of the last sec-
tion of the victim application. The injection method also
inserts some additional code to tend to matters such as de-
crypting the Trojan, running it, and returning control to the
original application. Finally, it changes the program entry
point to this newly inserted startup routine.

After observing all of this evidence, the analyst may
confidently conclude that the file under investigation ap-
pears to have been infected with a Trojan via the method
described above. If the analyst is interested in examining
the file further, the disassembly view of the inserted startup
routine is available as a useful staring point. Other features
would be useful to an analyst in this scenario, such as de-
termining the identity or capabilities of the inserted Trojan.
The current implementation of Peat does not yet address
these issues, but they are discussed in the following sec-
tion.

5. Weaknesses

Malicious software detection technologies tend to suf-
fer from a common problem: once an attacker knows the
criteria that drive the detection logic, he can adapt his at-
tack to circumvent detection. PEAT, to some extent, is also
subject to this. Although PEAT has a collection of several
independent criteria, a determined attacker could specialize
an attack to avoid PEAT’s detection methods. For example,
an analyst using PEAT would have difficulty detecting any
of the following attacks, all of which lie within PEAT’s in-
tended scope of infected executables:

Figure 7. The entropy metric for the .rsrc sec-
tion of the calculator program

� If the host executable is completely overwritten and
replaced by the malicious code, PEAT will not detect
any inconsistencies during the analysis. However this
attack is not very appealing to an attacker because the
victim user will immediately become suspicious after
running the host executable and observing that it did
not run properly.

� If the attacker has some knowledge of a particular host
application’s source and compilation history, he could
develop his malicious code in a similar fashion, so that
the metrics that PEAT computes would have similar
values across the malicious code and the host appli-
cation. For example, he could choose to develop a
Trojan in Visual C++ for the sole purpose of having
that Trojan masquerade as a function belonging to the
host application that was known to be developed in
that language. Fortunately, this would only be the first
step along the path to avoiding detection in this man-
ner. Other factors such as compiler optimization lev-
els and even coding styles may results in the Trojan
exhibiting outstanding patterns. Further, the attacker
still faces the problem of modifying the host so that
control flows to the Trojan, and PEAT has proven to
be effective at identifying various methods of doing
this.

� It is possible to infect a host application with a very
small amount of code that simply loads a separate
DLL containing a malicious payload or perhaps starts
another process. PEAT is currently limited in its abil-
ity to handle this attack. It can alert the analyst to
the presence of calls to common DLL functions like
LoadLibrary() and CreateProcess(). How-
ever it does not descend into all such libraries or sep-
arate executables in order to analyze them in the con-
text of the main file under analysis.



In addition there are other attacks on executables that lie
outside of the scope of PEAT. For example, some viruses
attack executable images in memory, as opposed to the file
stored on disk.

Finally, PEAT may sometimes report anomalies that do
not necessarily indicate the presence of malicious code. For
example, it may report that at the end of the .text segment,
the byte value entropy suddenly and drastically changes.
Further inspection might reveal that this is due to the pres-
ence of section alignment padding and not some alteration
of the original file. This is not a false alarm in the tradi-
tional sense, as PEAT is not intended to be used as an auto-
matic detection tool. However, it does reveal that an analyst
requires some degree of domain knowledge about PE files,
viruses, and other system-level concepts, as well as some
experience working with PEAT and learning how to inter-
pret its output from various metrics in order to perform a
sound analysis.

6. Future work

The main accomplishment of this work was the identi-
fication of several structural aspects of Windows executa-
bles that can reliably indicate the presence of malicious
code. The next major feature that we plan to incorporate
into PEAT is a component that can analyze the capabilities
of a region of code. PEAT already provides the identifi-
cation of imported DLLs and the location of calls to DLL
functions. We plan to take this a step further by using this
information to determine what specific actions the code is
capable of performing. In addition, we plan to incorporate
the ability to recursively descend into unknown imported
DLLs to determine their capabilities. For example, if the
PE file imports DLL unknown.dll, and its function foo()
is called, we would like to determine the capabilities of that
function as well.

Along the lines of analyzing code’s capabilities, we have
noted that many forms of malicious code, in particular
viruses, reuse sections of code from other malicious pro-
grams. These reused sections of code can free the mali-
cious code writer from having to rewrite complicated func-
tionality like infection routines or encryption routines. It
is desirable to be able to identify such common sequences
of instructions. In fact, an analyst should be able to draw
on an entire database of known, and possibly documented,
malicious code building blocks so that when these are en-
countered during analysis, the analyst can quickly deter-
mine that code’s functionality. With these ideas in mind,
we plan to implement a framework for maintaining a col-
lection of these common code patterns and incorporate this
into PEAT.

Finally, the Honeynet group is currently hosting the Re-
verse Challenge project in which an unknown malicious

Linux executable is to be analyzed in order to determine its
capabilities and origin [10]. Participants in this contest are
typically using tools such as IDA Pro Disassembler [6] and
Fenris [15] to examine the ELF format binary. The current
implementation of PEAT serves as a useful complement to
such tools. For example, the IDA disassembler is quite use-
ful for analyzing code, but its effectiveness could be greatly
augmented by coupling it with PEAT. In this arrangement,
the analyst may not need to analyze the assembly of an
entire program but only particular regions that PEAT iden-
tifies as being suspicious, thereby greatly reducing the time
invested in the analysis. We are examining useful features
related to program understanding that these two tools pro-
vide. More importantly, we are noting missing features that
would be beneficial to an analyst, so that future versions of
PEAT may fill these gaps.

References

[1] IA-32 Intel Architecture Software Developer’s Manual, Vol-
ume 2. Intel, 2001.

[2] J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y.
Lavoie and N. Tawbi. Static Detection of Malicious Code
in Executable Programs. Symposium on Requirements En-
gineering for Information Security (SREIS’01). March 5-6,
2001.

[3] F. Cohen. Computer viruses. Computers & Security, 6(1):22–
35, 1987.

[4] F. Cohen. Computational aspects of computer viruses. Com-
puters & Security, 8(4):325–344, 1989.

[5] Cult of the Dead Cow. Back Orifice 2000 website. Available
at http://bo2k.sourceforge.net. May, 2002.

[6] DataRescue. IDA Pro Disassembler website. Available at
http://www.datarescue.com/idabase/. May, 2002.

[7] M.E. Davis and E.J. Weyuker. Computability, Complexity,
and Languages. Academic Press, 1983.

[8] Internet Security Systems. ISS X-Force White Paper:
Back Orifice 2000 Backdoor Program. Available at
http://documents.iss.net/whitepapers/bo2k.pdf. July, 1999.

[9] M. Pietrek. Windows 95 System Programming Secrets. IDG
Books, 1995.

[10] Project Honeynet. The Reverse Challenge website. Avail-
able at http://project.honeynet.org/reverse/. July, 1999.

[11] A. Rubin and D. Geer. Mobile code security. IEEE Internet
Computing, 2(6), November/December 1998.

[12] SysD Labs. InPEct executable binder. Available at
http://sysdlabs.hypermart.net/proj/inpect.txt. 2000.



[13] H. Thimbleby, S. Anderson, and P. Cairns. A framework for
modeling trojans and computer virus infection. Computer
Journal, 41(7):444–458, 1999.

[14] T. Watanabe. How to write a disassembler. 2000.

[15] M. Zalewski. Fenris website. Available at
http://razor.bindview.com/tools/fenris/. May, 2002.


