
A Toolkit for Managing Enterprise Privacy Policies

Michael Backes, Birgit Pfitzmann, and Matthias Schunter

IBM Zurich Research Laboratory, Rüschlikon, Switzerland
{mbc,bpf,mts}@zurich.ibm.com

Abstract. Enterprise privacy enforcement allows enterprises to internally en-
force a privacy policy that the enterprise has decided to comply to. An enterprise
privacy policy often reflects different legal regulations, promises made to cus-
tomers, as well as more restrictive internal practices of the enterprise. Further,
it may allow customer preferences. Hence it may be authored, maintained, and
audited in a distributed fashion.
Our goal is to provide the tools for such management of enterprise privacy poli-
cies. The syntax and semantics is a superset of the Enterprise Privacy Autho-
rization Language (EPAL) recently proposed by IBM. The basic definition is
refinement, i.e., the question whether fulfilling one policy automatically fulfills
another one. This underlies auditing of a policy against an old or new regulation
or promise and transferring data into a realm with a different policy. It is also
the semantic basis for composition operators. We further define such composi-
tion operators for different purposes. Our main focus it to combine usability for
enterprises, e.g., by treating multiple terminologies, incomplete data, and differ-
ent types of errors and defaults, with the formal rigor needed to make privacy
compliance meaningful and predictable.

1 Introduction

An increasing number of enterprises make privacy promises to customers or, at least in
the US and Canada, fall under new privacy regulations. To ensure adherence to these
promises and regulations, enterprise privacy technologies are emerging [8]. An impor-
tant tool for enterprise privacy enforcement is formalized enterprise privacy policies
[10, 17, 16]. Compared with the well-known language P3P [19] intended for privacy
promises to customers, languages for the internal privacy practices of enterprises and
for technical privacy enforcement must offer more possibilities for fine-grained distinc-
tion of data users, purposes, etc., as well as a clearer semantics.

Although the primary purpose of enterprise privacy policies is enterprise-internal
use, many factors speak for standardization of such policies: First, it would allow cer-
tain technical parts of regulations to be encoded into such a standardized language once
and for all. Secondly, a large enterprise with heterogeneous repositories of personal data
could then hope that enforcement tools for all these repositories become available that
allow the enterprise to consistently enforce at least the internal privacy practices cho-
sen by the CPO (chief privacy officer). Thirdly, with increasingly dynamic e-business,
data will be exchanged between enterprises, and enterprise boundaries change due to
mergers, acquisitions, or virtual enterprises. Then the sticky-policy paradigm stressed
in papers like [17] must be enforced. It states that the policy under which data have been

E. Snekkenes and D. Gollmann (Eds.): ESORICS 2003, LNCS 2808, pp. 162–180, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



A Toolkit for Managing Enterprise Privacy Policies 163

collected has to govern the use of these data at all times. This also requires compati-
ble enterprise privacy enforcement mechanisms. For these reasons, IBM has recently
proposed an Enterprise Privacy Authorization Language (EPAL) [1] as an XML speci-
fication for public comments and possible subsequent input to standardization.

An enterprise privacy policy often reflects different legal regulations, promises
made to customers, as well as more restrictive internal practices of the enterprise.
Further, it may allow customer preferences. Hence it may be authored, maintained,
replaced, and audited in a distributed fashion. In other words, one will need a life-
cycle management system for the collection of enterprise privacy policies. While such
thoughts occur as motivation in most prior work on enterprise privacy policies, no actual
definitions and algorithms needed for these management tools have been proposed.

The overall goal of this article is therefore to provide a comprehensive range of tools
for designing and managing privacy policies in an enterprise. We do this concretely for
the IBM EPAL proposal. However, for a scientific paper we cannot use the lengthy
XML syntax, but have to use a corresponding abstract syntax presented in [2] (which,
like EPAL, is based on [17]). Our paper reflects recent updates made between the earlier
abstract [2] and the published specification and XML Schema [1], so that it is currently
as close as possible to EPAL. Further, we do not abstract from conditions in contrast
to [2] so that we can define a semantics for incomplete context data, which is useful
both in general practice and specifically for refinements and composition of policies
from different realms. In spite of the current closeness to EPAL, we continue to call the
abstract language E-P3P as in [2] to avoid confusion with possible changes to EPAL.

The first tool we define is policy refinement. Intuitively, one policy refines another
if using the first policy automatically also fulfills the second policy. It is thus the fun-
damental notion for many situations in policy management. For instance, it enables
verification that an enterprise policy fulfills regulations or adheres to standards set by
consumer organizations or a self-regulatory body, assuming only that these coarser re-
quirements are once and for all also formalized as a privacy policy. Similarly, it enables
verification that a detailed policy for a part of the enterprise (defined by responsibility
or by technology) refines the overall privacy policy set by the company’s CPO. The
verification can be done in the enterprise or by external auditors, such as [21].

When a policy is first designed, refinement may be achieved in a constructive way,
e.g., by starting with the coarse policy and only adding details by certain provably re-
fining syntactic means. However, if a regulation changes or the enterprise extends its
operation to new sectors or countries, the enterprise has to verify that its existing policy
still complies with the new or additional regulations. Hence a definition of refinement
between two arbitrary policies is needed. Sticky policies are another application of gen-
eral refinement: Here data are transferred from the realm of one policy into another
(where the transfer must of course be permitted by the first policy), and the second
realm must enforce the first policy. However, the enforcement mechanisms (both orga-
nizational and technical) in the second realm will often not be able to deal with arbitrary
policies for each obtained set of data. In this case, one realm must perform a refinement
test before the data are transferred, i.e., one has to verify that the policy of the second
realm refines the policy of the first, at least for the restriction of the first policy to the
data types being transferred.



164 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

Composition is the notion of constructively combining two or more policies; typ-
ically the goal is that the resulting policy refines them all. For instance, an enterprise
might first take all applicable regulations and combine them into a minimum policy.
A general promise made to customers, e.g., an existing P3P translated into the more
general language, may be a further input. In enterprise parts that support detailed pref-
erences of individuals, such preferences may be yet another policy to be composed with
the others, yielding one final policy per individual. (In contrast, simple preferences may
be represented as a set of Boolean opt-in or opt-out choices, and treated as context data
by conditions within a single policy.) Typical applications where detailed preferences
are needed are wallet-style collections of user data for the purpose of transfer to other
enterprises, and collaborative tools such as team-rooms.

Composition is not a simple logical AND for powerful enterprise privacy policies
as in EPAL, e.g., because of the treatment of obligations, different policy scopes, and
default values. Moreover, refinement and composition turn up two basic questions about
the meaning of a privacy policy, which are not answered by the abstract semantics of
an individual policy. The first question is the meaning of a positive ruling in privacy
policies. Intuitively, negative rulings are understood to be definite; e.g., if a policy states
that certain data are not used for email marketing, then no such email marketing should
happen. The intuition is different for most positive rulings: If a policy allows third-party
email marketing, it is typically not seen as a promise to actually do marketing, neither
to the owners of the email addresses nor to the third parties. However, if one decides to
represent access rights for data subjects to their data, such as the right to see all their data
or to correct mistakes, with the normal policy mechanisms, then these positive rulings
must be mandatory. The second question is related: If a privacy policy, like EPAL,
is formulated with precedences to enable easy formulations of positive and negative
exceptions, then within a policy, neither negative nor positive rules are “final”, i.e.,
can be considered isolated from the policy. In contrast, in compositions, one may want
to retain an entire original policy as final. We solve both these problems by allowing
mandatory sub-policies. This allows us to distinguish final decisions from decisions that
may be overturned by other rules, and thus to represent all the cases just discussed. We
extend the notion of composition and refinement to these two-part policies.

Further Related Literature. The core contribution of new privacy-policy languages [10,
17, 16], compared with other access-control languages, is the notion of purpose and
purpose-bound collection of data, which is essential to privacy legislation. Other nec-
essary features that prevent enterprises from simply using their existing access-control
systems are obligations and conditions on context information. Individually, these fea-
tures were also considered in recent literature on access control, e.g., purpose hierar-
chies in [5], obligations in [4, 14, 20], and conditions on context information in [22].
However, we need them all in one language, and even for the individual features the
detailed semantics needed in practice, such as with multiple terminologies, typically
does not exist yet, and thus nor does a comparable toolkit. Policy composition has been
treated before, in particular for access control [6, 7, 9, 13, 15, 22], systems management
[18], or IPSEC [11]; however none of these papers does it for the general policies we
need and several do not have a clear underlying semantics. The publications closest to



A Toolkit for Managing Enterprise Privacy Policies 165

our treatment of incomplete data are those on information-disclosure-minimal negotia-
tion of access-control policies, e.g., [3, 12].

2 Syntax and Semantics of E-P3P Enterprise Privacy Policies

Privacy policies define the purposes for which collected data can be used, model the
consent a data subject can give, and may impose obligations onto the enterprise. They
can formalize privacy statements like “we use data of a minor for marketing purposes
only if the parent has given consent” or “medical data can only be read by the patient’s
primary care physician”. In this section, we present the abstract syntax and semantics
E-P3P of IBM’s EPAL privacy policy language [1]. Compared with [2], we abstract less
from conditions and obligations, so that we can present a more detailed semantics.

2.1 Hierarchies, Obligations, and Conditions

We start by defining the models of hierarchies, obligations, and conditions used in E-
P3P, and operations on them as needed in later refinements and compositions.

For conveniently specifying rules, the data, users, etc. are categorized in E-P3P as
in many access-control languages. This also applies to the purposes. In order to allow
structured rules with exceptions, categories are ordered in hierarchies; mathematically
they are forests, i.e., multiple trees. For instance a user “company” may group sev-
eral “departments”, each containing several “employees”. The enterprise can then write
rules for the whole “company” with exceptions for some “departments”.

Definition 1 (Hierarchy). A hierarchy is pair (H, >H) of a finite set H and a transi-
tive, non-reflexive relation >H ⊆ H×H , where every h ∈ H has at most one immediate
predecessor (parent). As usual we write ≥H for the reflexive closure.

For two hierarchies (H, >H) and (G, >G), we define

(H, >H) ⊆ (G, >G) :⇔ (H ⊆ G) ∧ (>H ⊆ >G);
(H, >H) ∪ (G, >G) := (H ∪ G, (>H ∪ >G)∗);

where ∗ denotes the transitive closure. Note that a hierarchy union is not always a
hierarchy again. �

E-P3P policies can impose obligations, i.e., duties for the enterprise. Examples are to
send a notification to the data subject after each emergency access to medical data, or
to delete data after a given time. Obligations are not structured in hierarchies, but by an
implication relation. For instance, an obligation to delete data within 30 days implies
that the data are deleted within 60 days. The overall obligations for a rule in E-P3P are
written as sets of individual obligations, which must have an interpretation in the appli-
cation domain. As multiple obligations may imply more than each one individually, we
define the implication (which must also be realized in the application domain) on these
sets. We also define how this relation interacts with vocabulary extensions.



166 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

Definition 2 (Obligation Model). An obligation model is a pair (O,→O) of a set O
and a relation →O ⊆ P(O) × P(O), spoken implies, on the powerset of O, where
ō1 →O ō2 for all ō2 ⊆ ō1, i.e., fulfilling a set of obligations implies fulfilling all sub-
sets.

For O′ ⊃ P(O), we extend the implication to O′ × P(O) by ((ō1 →O ō2) :⇔
(ō1 ∩ P(O) →O ō2)). �

The decision formalized by a privacy policy can depend on context data. Examples are
a person’s age or opt-in consent. In EPAL this is represented by conditions over data in
so-called containers [1]. The XML representation of the formulas is taken from [22],
which corresponds to a predicate logic without quantifiers. In the abstract syntax in [2],
conditions are abstracted into propositional logic, but this is too coarse for our purposes.
Hence we extend E-P3P to be closer to EPAL by formalizing the containers as a set of
variables with domains, and the conditions as formulas over these variables.

Definition 3 (Condition Vocabulary). A condition vocabulary is a pair Var =
(V,Scope) of a finite set V and a function assigning every x ∈ V , called a variable, a
set Scope(x), called its scope.

Two condition vocabularies Var1 = (V1,Scope1), Var2 = (V2,Scope2) are com-
patible if Scope1(x) = Scope2(x) for all x ∈ V1 ∩ V2. For that case, we define their
union by Var1 ∪ Var2 := (V1 ∪ V2,Scope1 ∪ Scope2). �

In the future, one might extend this to a full signature in the sense of logic, i.e., including
predicate and function symbols. In EPAL, this is hidden in user-defined functions that
may occur in the XACML conditions. For the moment, we assume a given universe of
predicates and functions with fixed domains and semantics.

Definition 4 (Condition Language). Let a condition vocabulary Var = (V,Scope)
be given.

– The condition language C(Var ) is the set of correctly typed formulas over V us-
ing the assumed universe of predicates and functions, and in the given syntax of
predicate logic without quantifiers.

– The free variables of a formula c ∈ C(Var) are denoted by free(c). Here these are
all variables of c.

– A (partial) assignment of the variables is a (partial) function χ : V →⋃
x∈V Scope(x) with χ(x) ∈ Scope(x) for all x ∈ V . The set of all assignments

for the set Var is written Ass(Var); that of all partial assignments Ass⊆(Var).
– For χ ∈ Ass(Var), let evalχ : C(Var) → {true, false} denote the evaluation

function for conditions given this variable assignment. This is defined by the un-
derlying logic and the assumption that all predicate and function symbols come
with a fixed semantics. �

An important aspect of our semantics is the ability to deal meaningfully with under-
specified requests. This means that a condition might not be evaluatable since only a
subset of the variables used in the conditions has been assigned. This is important not
only in federated scenarios as introduced in [9], but also for overall in-enterprise poli-
cies. For instance, some rules of a policy may need the age of a person or its employee



A Toolkit for Managing Enterprise Privacy Policies 167

role, while for many people no age or employee role is known in the enterprise. This
typically does no harm because other rules apply to these persons. For such situations,
we will need to know whether a condition can still become true or false , respectively,
when a partial assignment is extended. Hence we define extensions.

Definition 5 (Extension of partial assignments). Let a condition vocabulary Var =
(V,Scope) be given. If χ ∈ Ass⊆(Var) is defined on U ⊆ V , let

Ext(χ,Var) := {χ∗ ∈ Ass(Var) | ∀u ∈ U : χ∗(u) = χ(u)}
denote the set of extensions of χ. �

2.2 Syntax of E-P3P Policies

An E-P3P policy is a triple of a vocabulary, a set of authorization rules, and a default rul-
ing. The vocabulary defines element hierarchies for data, purposes, users, and actions,
as well as the obligation model and the condition vocabulary. Data, users and actions
are as in most access-control policies (except that users are typically called “subjects”
there, which in privacy would lead to confusion with data subjects), and purposes are
an important additional hierarchy for the purpose binding of collected data.

Definition 6 (Vocabulary). A vocabulary is a tuple Voc = (UH ,DH ,PH ,AH ,
Var ,OM ) where UH , DH , PH , and AH are hierarchies called user, data, purpose,
and action hierarchy, respectively, and Var is a condition vocabulary and OM an obli-
gation model. �

As a naming convention, we assume that the components of a vocabulary called
Voc are always called as in Definition 6 with UH = (U, >U), DH = (D, >D),
PH = (P, >P ), AH = (A, >A), Var = (V,Scope), and OM = (O,→O), except
if explicitly stated otherwise. In a vocabulary called Voci all components also get a
subscript i, and similarly for superscripts. A rule set contains authorization rules that
allow or deny operations. A rule basically consists of one element from each vocabulary
component. Additionally, it starts with an integer precedence, and ends with a ruling.

Definition 7 (Ruleset and Privacy Policy). A ruleset for a vocabulary Voc is a subset
of Z × U × D × P × A × C(Var) × P(O) × {+, ◦,−}.

A privacy policy or E-P3P policy is a triple (Voc, R, dr) of a vocabulary Voc, a
rule-set R for Voc, and a default ruling dr ∈ {+, ◦,−}. The set of these policies is
called EP3P , and the subset for a given vocabulary EP3P (Voc). �

In EPAL, precedences are only given implicitly by the textual order of the rules. Hence
our explicit precedences, and the fact that several rules can have the same precedence,
make E-P3P a superset of EPAL. The rulings +, ◦, and−mean ‘allow’, ‘don’t care’, and
‘deny’. The ruling ◦ was not yet present in [2]. In EPAL, it is called ‘obligate’ because
it enables rules that do not make a decision, but only impose additional obligations. An
example is a global rule “Whenever someone tries to access my data, I want to receive
a notification”.

As a naming convention, we assume that the components of a privacy policy called
Pol are always called as in Definition 7, and if Pol has a sub- or superscript, then so do
the components.



168 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

2.3 Semantics of E-P3P Policies

An E-P3P request is a tuple (u, d, p, a) which should belong to the set U×D×P×A for
the given vocabulary. Note that E-P3P and EPAL requests are not restricted to “ground
terms” as in some other languages, i.e., minimal elements in the hierarchies. This is use-
ful if one starts with coarse policies and refines them because elements that are initially
minimal may later get children. For instance, the individual users in a “department” of
an “enterprise” may not be mentioned in the CPO’s privacy policy, but in the department
privacy policy. For similar reasons, we also define the semantics for requests outside the
given vocabulary. We assume a superset S in which all hierarchy sets are embedded; in
practice it is typically a set of strings or valid XML expressions.

Definition 8 (Request). For a vocabulary Voc, we define the set of valid requests as
Req(Voc) := U×D×P×A. Given a superset S of the sets U, D, P, A of all considered
vocabularies, the set of all requests is Req := S4. �

The semantics of a privacy policy Pol is a function evalPol that processes a request
based on a given, possibly partial, assignment.

The evaluation result is a pair (r, ō) of a ruling (decision) and associated obligations.
Our semantics extends that of [2] in three ways. First, we have to deal with the new
partial assignments in the conditions of rules. Secondly, the ruling ◦ that was added
to the rule syntax gets a semantics; as explained above it is used to make obligations
without enforcing a decision. Thirdly, the ruling r may not only be +, ◦, or − as in a
rule, but also scope error or conflict error . This denotes that the request was out of
scope of the policy or that there was a conflict among applicable rules. The reason for
distinguishing these errors is that out-of-scope errors can be eliminated by enlarging the
policy, in contrast to conflict errors. This will become important for policy composition.

The semantics is defined by a virtual pre-processing that unfolds the hierarchies and
a request processing stage. Note that this is only a compact definition of the semantics
and not an efficient real evaluation algorithm.

Definition 9 (Unfolded Rules). For a privacy policy Pol = (Voc, R, dr), the unfolded
rule set UR(Pol ) is defined as follows:

URdown(Pol ) := {(i, u′, d′, p′, a′, c, ō, r) | ∃(i, u, d, p, a, c, ō, r) ∈ R

with u ≥U u′ ∧ d ≥D d′ ∧ p ≥P p′ ∧ a ≥A a′};
UR(Pol ) := URdown(Pol )

∪ {(i, u′, d′, p′, a′, c, ō,−) | ∃(i, u, d, p, a, c, ō,−) ∈ URdown(Pol )
with u′ ≥U u ∧ d′ ≥D d ∧ p′ ≥P p ∧ a′ ≥A a}. �

Note that ‘deny’-rules are inherited both downwards and upwards along the four hier-
archies while ‘allow’-rules are inherited only downwards. The reason is that the hier-
archies are considered groupings; if access is forbidden to an element of a group, it is
also forbidden for the group as a whole.

Next we define which rules are applicable for a request given a partial assignment of
the condition variables. These (unfolded) rules have the user, data, purpose, and action



A Toolkit for Managing Enterprise Privacy Policies 169

as in the request. Positive rules are only defined to be applicable if they evaluate to true
for all extensions of the partial assignment χ. Negative and don’t-care rules are defined
to be applicable whenever the conditions could still become true. For instance, if a rule
forbids access to certain data for minors, a child should not be able to obtain access by
omitting its age, and obligations from don’t-care rules for children should apply.

Definition 10 (Applicable Rules). Let a privacy policy Pol = (Voc, R, dr), a request
q = (u, d, p, a) ∈ Req(Voc), and a partial assignment χ ∈ Ass⊆(Var) be given. Then
the set of applicable rules is

AR(Pol , q, χ) :=
{(i, u, d, p, a, c, ō, +) ∈ UR(Pol ) | ∀χ∗ ∈ Ext(χ,Var ) : evalχ∗(c) = true}

∪ {(i, u, d, p, a, c, ō, r) ∈ UR(Pol ) | r ∈ {−, ◦} ∧
∃χ∗ ∈ Ext(χ,Var) : evalχ∗(c) = true}.

�

For formulating the semantics, we need the maximum and minimum precedence in a
policy.

Definition 11 (Precedence Range). For a privacy policy Pol = (Voc, R, dr), let
max (Pol ) := max{i | ∃(i, u, d, p, a, c, ō, r) ∈ R}, and similarly min(Pol ). �

We can now define the actual semantics, i.e., the result of a request given a partial as-
signment. Recall that rules with ruling ◦ are provided to allow obligations to accumulate
before the final decision; this is done in a set ōacc.

Definition 12 (Semantics). Let a privacy policy Pol = (Voc, R, dr), a request q =
(u, d, p, a) ∈ Req , and a partial assignment χ ∈ Ass⊆(Var) be given. Then the evalu-
ation result (r, ō) := evalPol(q, χ) of policy Pol for q and χ is defined by the following
algorithm, starting with ōacc := ∅. Every “return” aborts the algorithm.

– Out-of-scope testing. If q �∈ Req(Voc), return (r, ō) := (scope error , ∅).
– Processing by precedence. For each precedence level i := max (Pol ) down to

min(Pol):

• Accumulate obligations. For each applicable rule (i, u, d, p, a, c, ō′, r) ∈
AR(Pol , q, χ), set ōacc := ōacc ∪ ō′.

• Conflict detection. If two conflicting rules (i, u, d, p, a, c1, ō1, +) and
(i, u, d, p, a, c2, ō2,−) exist in AR(Pol , q, χ), return (conflict error , ∅).

• Normal ruling. If at least one rule (i, u, d, p, a, c, ō′, r) ∈ AR(Pol , q, χ) with
r �= ◦ exists, return (r, ōacc).

– Default ruling. If this step is reached, return (r, ō) := (dr , ōacc).

We also say that policy Pol rules (r, ō) for q and χ, omitting q and χ if they are clear
from the context. �



170 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

3 Refinement of Privacy Policies

In this section, we define the notion of refinement for E-P3P policies. As explained in
the introduction, refinement is the foundation of almost all operations on policies. We
further define policy equivalence and show that it equals mutual refinement.

Refining a policy Pol1 means adding more details, both rules and vocabulary, while
retaining its meaning with respect to the original vocabulary. Our notion of refinement
allows policy Pol2 to define a ruling if Pol1 does not care. Additionally, it is allowed to
extend the scope of the original policy and to define arbitrary rules for the new elements.
In all other cases, the rulings of both policies must be identical. This also comprises
the ruling conflict error . For new elements however, we have to capture that if they
are appended to the existing hierarchies, there could exist applicable rules for these
elements if they were already present, and newly added rules for these elements could
influence existing elements as well. As an example, a rule for a “department” may forbid
its “employees” to access certain data for marketing purposes. Now if a new employee
is added, this rule should as well be applicable; furthermore, defining a new rule for
this case with higher precedence, e.g., granting the new employee an exception to the
department’s rule should obviously not yield a refinement any more. In our definition
of refinement, we therefore do not evaluate each policy on its own vocabulary but on
the joint vocabulary of both policies. Since joining two vocabularies, i.e., joining their
respective hierarchies, might not yield another vocabulary, we introduce the notion of
compatible vocabularies.

Definition 13 (Compatible Vocabulary). Two vocabularies Voc1 and Voc2 are com-
patible if their condition vocabularies are compatible and all hierarchy unions UH 1 ∪
UH 2, DH 1 ∪DH 2, PH 1 ∪ PH 2, and AH 1 ∪AH 2 are hierarchies again.

We define the union of two compatible vocabularies as Voc1 ∪ Voc2 := (UH 1 ∪
UH 2, DH 1 ∪ DH 2, PH 1 ∪ PH 2, AH 1 ∪ AH 2, Var1 ∪Var2, OM 1 ∪OM 2). �

Dealing with the respective obligations is somewhat more difficult. Intuitively, one
wants to express that a finer policy may also contain refined obligations. However, since
a refined policy might contain additional obligations, whereas some others have been
omitted, it is not possible to simply compare these obligations in the obligation model
of the original policy. (Recall that we also use refinement to compare arbitrary poli-
cies; hence one cannot simply expect that all vocabulary parts of the refined policy are
supersets of those of the coarser policy.)

As an example, let the obligation model of the coarser policy contain obligations
o = “delete in a week” and o1 = “delete in a month” with the implication o →O1 o1. The
refined policy contains o2 = “delete immediately” and o as above with o2 →O2 o. Now
o2 should be a refinement of o1, but this cannot be deduced in either of the obligation
models. Hence both obligation models have to be used, i.e., one has o2 →O2 o →O1 o1.
We define this as obligation refinement. In order to obtain a meaningful refinement from
the point of view of Pol1, the relation →O2 has to be certified by a party trusted by the
maintainer of Pol1.



A Toolkit for Managing Enterprise Privacy Policies 171

Definition 14 (Obligation Refinement). Let two obligation models (Oi,→Oi) and
ōi ⊆ Oi for i = 1, 2 be given. Then ō2 is a refinement of ō1, written ō2 ≺ ō1, iff
the following holds:

∃ō ⊆ O1 ∩ O2 : ō2 →O2 ō →O1 ō1. �

We are now ready to introduce our notion of policy refinement.

Definition 15 (Policy Refinement). Let two privacy policies Pol i = (Voci, Ri, dr i)
for i = 1, 2 with compatible vocabularies be given, and set Pol∗i = (Voc∗i , Ri, dr i)
for i = 1, 2, where Voc∗i = (UH 1 ∪ UH2 ,DH 1 ∪ DH 2,PH 1 ∪ PH 2,AH 1 ∪ AH 2,
Var i,OM i). Then Pol2 is a refinement of Pol1, written Pol2 ≺ Pol1, iff for every
assignment χ ∈ Ass⊆(Var1 ∪ Var2) and every authorization request q ∈ Req one of
the following statements holds, where (ri, ōi) := evalPol∗i (q, χ) for i := 1, 2:

– (r1, ō1) = (r2, ō2) = (conflict error , ∅).
– (r1, ō1) = (scope error , ∅).
– r1 ∈ {+,−} and r2 = r1 and ō2 ≺ ō1.
– r1 = ◦ and r2 ∈ {+, ◦,−} and ō2 ≺ ō1.

�

Besides this rather strict notion of refinement, we can also define a notion of weak
refinement, denoted by ≺̃, where the refining policy may be less permissive than the
original policy. The only difference to Definition 15 is that + is treated like ◦ in the
fourth statement instead of like − in the third statement. Weak refinement corresponds
to the intuition that a policy Pol1 implements a privacy promise or requirement to use
data at most for certain purposes, so that a refining policy Pol2 can only restrict that
usage. However, while weak definition prevents misuse, it does not preserve guaranteed
access rights: For instance, Pol1 may guarantee an individual the right to read her data
while policy Pol2 does not. Strong refinement therefore seems the more useful notion
for E-P3P with its 3-valued logic where ◦, meaning ‘don’t-care’, is also a valid ruling.
In contrast one might choose weak refinement for a 2-valued policy language with only
the rulings + and −. We therefore concentrate on strong refinement.

After refinement, we now introduce a notion of equivalence of policies. Similar to
policy refinement, we start with the equivalence of obligations.

Definition 16 (Obligation Equivalence). Let two obligation models (Oi,→Oi) and
ōi ⊆ Oi for i = 1, 2 be given. Then ō1 and ō2 are equivalent, written ō1 ≡ ō2, iff
ō1 ≺ ō2 and ō2 ≺ ō1. �

The relation ≡ is clearly symmetric.

Definition 17 (Policy Equivalence). Two privacy policies Pol1 and Pol2 with com-
patible vocabularies are equivalent, written Pol1 ≡ Pol2, iff for every assignment
χ ∈ Ass⊆(Var1 ∪ Var2) and every request q ∈ Req we have

r1 = r2 and ō1 ≡ ō2

for the evaluation results (r1, ō1) := evalPol1(q, χ) and (r2, ō2) := evalPol2(q, χ). �



172 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

Clearly, policy equivalence is a symmetric relation, since obligation equivalence is sym-
metric. We can now establish the following theorem.

Theorem 1. Two privacy policies Pol1, Pol2 are equivalent if and only if they are
mutual refinements. Formally,

Pol1 ≡ Pol2 ⇔ Pol1 ≺ Pol2 ∧ Pol2 ≺ Pol1. �

Proof. Let an assignment χ ∈ Ass⊆(Var1 ∪ Var2) and an authorization request
q ∈ Req be given. Note that Pol1 ≡ Pol2 implies Req(Voc1) = Req(Voc2), as
otherwise there exists q ∈ Req(Voc1) \ Req(Voc2 ) without loss of generality such
that evalPol2(q, χ) = (scope error , ∅) �= evalPol1(q, χ). Similarly, we can show
that Pol1 ≺ Pol2 ∧ Pol2 ≺ Pol1 implies Req(Voc1) = Req(Voc2), as for q ∈
Req(Voc1)\Req(Voc2 ), we have evalPol2(q, χ) = (scope error , ∅) �= evalPol1(q, χ),
which contradicts Pol2 ≺ Pol1. Therefore, we have Pol i = Pol∗i for i = 1, 2, with
Pol∗i as in Definition 15, i.e., we can consider the evaluation of Pol i instead of Pol∗i to
show refinement. Hence let (ri, ōi) := evalPoli

(q, χ) = evalPol∗i (q, χ) for i = 1, 2 be
the corresponding rulings.

“⇒” Since policy equivalence is symmetric, it is sufficient to show that Pol2 refines
Pol1. If (r1, ō1) = (conflict error , ∅) then also (r2, ō2) = (conflict error , ∅)
because Pol1 ≡ Pol2. If (r1, ō1) = (scope error , ∅), nothing has to be shown.
Now let r1 ∈ {+, ◦,−}. Policy equivalence implies r2 = r1 and ō2 ≡ ō1; this is
sufficient for refinement.

“⇐” We distinguish the following cases:
(r1, ō1) = (conflict error , ∅). Then we also have (r2, ō2) = (conflict error , ∅)

since Pol2 refines Pol1. This implies ō1 ≡ ō2.
(r1, ō1) = (scope error , ∅). If r2 �= r1 we immediately obtain that Pol1 is not a

refinement of Pol2. Thus r2 = scope error . This implies ō2 = ∅ and thus
ō2 ≡ ō1.

r1 ∈ {+,−}. Then r2 = r1 since Pol2 refines Pol1. Further, since Pol1 and Pol2
are mutual refinements, we have ō1 ≺ ō2 and ō2 ≺ ō1 and thus ō1 ≡ ō2.

r1 = ◦. Assume for contradiction that r2 ∈ {+,−, scope error , conflict error}.
In this case Pol1 is no refinement of Pol2 any longer. Further, as in the previous
case, we have ō1 ≺ ō2 and ō2 ≺ ō1 and thus ō1 ≡ ō2.

4 Composition of Privacy Policies

In this section, we introduce two notions of composition of E-P3P policies, i.e., the
merging of two somehow compatible policies.

In an enterprise, policies may be defined on multiple levels in a management hierar-
chy. A chief privacy officer (CPO) may define enterprise-wide mandatory policy rules
that implement the applicable privacy laws. In addition, the CPO can define defaults
that apply if a department does not define its own rules. A department can then define
its own privacy policy rules. These rules override the default rules but are overruled by



A Toolkit for Managing Enterprise Privacy Policies 173

the mandatory rules of the CPO. In order to allow such distributed authoring and main-
tenance of privacy policies, we now introduce a notion of policy composition. If two
policies are composed, both rule-sets are enforced. By defining that one policy has a
higher precedence than the other, one can define one way to resolve conflicts. For such
precedence shifts and for dealing with default values, we start with the notion of the
normalization of a policy.

4.1 Policy Normalization

Recall that the default ruling of a policy determines the result if no rule applies for
a given request although the request is in the scope of the policy. When composing
policies, different default rulings must be resolved first. This is simple if the scope is
the same or the default ruling is the same. To resolve the more challenging cases, we
first convert the default ruling of a policy into a set of normal rules. These new rules
have the default ruling as their ruling, lowest precedence, no obligations and conditions,
and they cover the root elements of all hierarchies.

Definition 18 (Policy with Removed Default Ruling). Let Pol = (Voc, R, dr) be a
privacy policy and i ∈ Z. Then the policy with removed default ruling for Pol wrt. i is
the following policy rmDR(Pol , i):

If dr = ◦, then rmDR(Pol , i) := Pol .
Else for every hierarchy XH = (H, >H), let roots(XH ) := {x ∈ H | ¬∃x′ ∈

H : x′ >H x}. Then rmDR(Pol , i) := (Voc, R′, ◦) with R′ := R ∪ DR and

DR := {(i, u, d, p, a, ∅, ∅, dr)
∣
∣ u ∈ roots(UH ) ∧ d ∈ roots(DH )

∧ p ∈ roots(PH ) ∧ a ∈ roots(AH )}.
We abbreviate rmDR(Pol) := rmDR(Pol ,min(Pol ) − 1). �

We now show that a policy with removed default ruling is equivalent to the original
policy if i is smaller than all the precedences in the original policy.

Lemma 1. Let Pol = (Voc, R, dr) be a privacy policy and i ∈ Z with i < min(Pol ).
Then rmDR(Pol , i) ≡ Pol . In particular, this implies rmDR(Pol ) ≡ Pol . �

Proof. Let a request q ∈ Req and an assignment χ ∈ Ass⊆(Var) be given. Since Pol
and rmDR(Pol ) have the same vocabulary, we can show refinement using the evalu-
ation of Pol and rmDR(Pol) instead of Pol∗ and rmDR(Pol)∗ as defined in Defini-
tion 15. Equal vocabularies also imply that either both policies rule (scope error , ∅) or
none of them.

If Pol rules (conflict error , ∅) then so does rmDR(Pol , i), since the rules in DR
have lower precedence than all rules in R. Furthermore, all rules in DR have iden-
tical ruling; hence they cannot induce a conflict error. Thus either both policies rule
(conflict error , ∅) or none of them.

If a rule ρ from R applies to this request, it applies for both policies, since every rule
of Pol is also contained in the ruleset of rmDR(Pol , i). Moreover, every rule in DR
has lower priority than ρ by construction. Hence neither a rule in DR nor the default



174 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

ruling applies. Thus Pol and rmDR(Pol , i) output the same pair (r, ō). Conversely, if
a rule ρ ∈ DR applies, this means that no rule of R applies, but the request is in scope
of the policy. In this case Pol outputs (dr , ōacc), where ōacc is the set of obligations
accumulated while processing R. The policy rmDR(Pol , i) applies the rule ρ, which
also yields (dr , ōacc) since no obligation is added by any rule in DR.

Next, we introduce an operation for changing the precedence of the rules of a policy,
e.g., to overcome possible conflicts when merging the policy with another one. As a
collective change for all rules seems useful, we define a precedence shift, which adds
a fixed number to the precedence of all rules in a policy. This is particularly useful for
the example at the beginning of this section, where the department policy can be shifted
downwards to have lower precedences than the policy of the CPO.

Definition 19 (Precedence Shift). Let Pol = (Voc, R, dr) be a privacy policy and
j ∈ Z. Then Pol + j := (Voc, R + j, dr ) with R + j := {(i + j, u, d, p, a, c, ō, r) |
(i, u, d, p, a, c, ō, r) ∈ R} is called the precedence shift of Pol by j. We define Pol −
j := Pol + (−j). �

Lemma 2. A privacy policy Pol is equivalent to Pol + j for all j ∈ Z. �

Proof. By Theorem 1, it is sufficient to show that Pol refines Pol + j for all j ∈ Z.
Let j, a request q ∈ Req , and an assignment χ ∈ Ass⊆(Var) be given. By con-

struction, the rules that apply to this request in Pol and Pol + j can only differ in their
precedence. Furthermore, if a rule applies in Pol , it also applies after the precedence
shift, since the precedence of all rules in Pol + j has been shifted similarly. Applying
the same rule in both policies in particular yields the same set of obligations. Hence
Pol refines Pol + j.

We now define the normalization of a policy. This corresponds to a precedence shift
yielding a default ruling of precedence 0. Normalized policies are used in the definition
of the ordered composition of two policies defined below.

Definition 20 (Normalized Policy). Let Pol be a privacy policy. Then norm0(Pol ) :=
rmDR(Pol − min(Pol ) + 1, 0) is called the normalized policy for Pol . �

Lemma 3. For every privacy policy Pol , we have norm0(Pol ) ≡ Pol . �

Proof. By definition, the precedence of all rules in norm0(Pol) is greater than 0. Hence
the claim follows from Lemmas 1 and 2.

4.2 Definition of Composition

We now have the tools ready to turn our attention to policy composition. The simplest
case of merging two policies with compatible vocabularies is to compute the union of
the two rule sets. This direct composition assumes that the precedences used in both
policies have a common meaning. However, translating the default ruling of a policy is
tricky: If elements are in the scope of only one policy, the default ruling of this policy
should apply. If elements are covered by both policies, a conflict between the two default
rulings needs to be resolved.



A Toolkit for Managing Enterprise Privacy Policies 175

Definition 21 (Direct Composition). Let Pol1 and Pol2 be two privacy policies
with compatible vocabularies. Let m := min{min(Pol1),min(Pol2)} and Pol ′i :=
(Voci, R

′
i, ◦) := rmDR(Pol i, m) for i = 1, 2. Then

Pol1
⋃

Pol2 := (Voc1 ∪ Voc2, R
′
1 ∪ R′

2, ◦)

is called the direct composition of Pol1 and Pol2. �

In our second type of composition, the rules of one policy, here Pol2 should be applied
preferably. Hence the rules of the other policy are downgraded using a precedence shift.
This also applies to the default ruling of the preferred policy, i.e., the downgraded policy
is only used where it extends the scope of the preferred policy, or if no rule of the
preferred policy applies and the default ruling is ◦.

Definition 22 (Ordered Composition). Let Pol1 and Pol2 be two privacy policies
with compatible vocabularies. Let (Voc1, R

′′
1 , ◦) := rmDR(Pol1 − max (Pol1) − 1),

and (Voc2, R
′
2, ◦) := norm0(Pol2). Then

Pol1 <

⋃
Pol2 := (Voc1 ∪ Voc2, R

′′
1 ∪ R′

2, ◦)

is called the ordered composition of Pol1 under Pol2. �

By the intuitive introduction to ordered compositions, an ordered composition should
serve as a refinement of Pol2. This is captured in the following lemma.

Lemma 4. For all privacy policies Pol1 and Pol2 with compatible vocabularies, we
have Pol1 <

⋃
Pol2 ≺ Pol2. �

Proof. Let Pol i =: (Voci, Ri, dr i) for i := 1, 2, and we use all notation from Defi-
nition 22. Let a request q = (u, d, p, a) and an assignment χ ∈ Ass⊆(Var1 ∪ Var2)
be given. Let Pol∗2 and (Pol1 <

⋃
Pol2)∗ be defined according to Definition 15. Note

further that (Pol1 <
⋃

Pol2)∗ = Pol1 <
⋃

Pol2 since their vocabularies are equal. We
distinguish four cases:

1. Pol∗2 rules (conflict error , ∅): In this case, two rules of the same precedence i
collided in Pol∗2. Since i is larger than the precedence of any rule of R′′

1 by the
shifts, we also get a conflict in Pol1 <

⋃
Pol2, and an output (conflict error , ∅).

2. Pol∗2 rules (scope error , ∅): Nothing has to be shown for this case.
3. Pol∗2 rules (r2, ō2) with r2 �= ◦: This means that a rule (i2, u, d, p, a, c2, ō2, r2)

from R′
2 is applicable. Because of r2 �= ◦ the evaluation function will stop at the

precedence level i2. Since the precedences of R′′
1 are always less then zero by con-

struction whereas i2 ≥ 0 by normalization, the same rules applies in Pol1 <
⋃

Pol2
and we obtain identical outputs, i.e., Pol1 <

⋃
Pol2 also rules (r2, ō2). Note that sev-

eral rules might have already occurred that added obligations only. However, they
occur in both Pol∗2 and Pol1 <

⋃
Pol2 and hence do not cause any harm.

4. No rule of R′
2 fits the current request, but the request is in the scope of Pol∗2. In

this case, the (expanded) default ruling of Pol2 applies for both Pol1 <
⋃

Pol2 and
Pol∗2, since this ruling has higher precedence than any rule in R′′

1 . If dr2 �= ◦,



176 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

both policies rule (◦, ō2) for some obligation set ō2, which is again equal for both
policies since they processed the same set of rules so far. If dr2 = ◦ then the
evaluation function starts searching for matching rules in R′′

1 . Here Pol∗2 outputs
(◦, ō2), whereas Pol1 <

⋃
Pol2 outputs (r, ō2∪ ō1) for some r and ō1 ⊆ O1. In order

to prove refinement, we obtain ō1∪ō2 →O2 ō2 because of ō2 ⊆ ō1∪ō2. This further
implies ō1 ∪ ō2 →O1∪O2 ō2. Because of ō2 →O2 ō2 we obtain ō1 ∪ ō2 →O1∪O2

ō2 →O2 ō2, which proves refinement since ō2 ∈ O2 = (O1 ∪ O2) ∩ O2.

The composition operators fulfill certain laws:

Lemma 5 (Laws for Policy Composition). Direct composition is commutative and
ordered composition is associative, i.e., for all privacy policies Pol i for i = 1, 2, 3 with
pairwise compatible vocabularies, we have

Pol1
⋃

Pol2 ≡ Pol2
⋃

Pol1;

(
Pol1 <

⋃
Pol2

)
<

⋃
Pol3 ≡ Pol1 <

⋃ (
Pol2 <

⋃
Pol3

)
. �

Proof. (Sketch) The commutativity part is obvious. We now show the associativity part.
The composition of vocabularies is associative. For the rulesets, (Pol1 <

⋃
Pol2) <

⋃
Pol3

yields a ruleset where 0 is the lowest precedence of Pol3 and higher than the highest
precedence of Pol2, while Pol1 <

⋃
(Pol2 <

⋃
Pol3) yields a ruleset where 0 is the lowest

precedence of Pol2 and higher than the highest precedence of Pol1. By shifting the
second ruleset by max (Pol2 )−min(Pol2)+1 one obtains a ruleset that is identical, and
thus clearly equivalent, to the first set. Since this precedence shift retains equivalence,
the second ruleset is equivalent to the first ruleset.

5 Two-Layered Privacy Policies

An enterprise must abide by the law. In addition, the consent that an individual has
granted when submitting data to an enterprise is mandatory and should not be changed.
In contrast, unregulated and non-promised issues can be freely decided by the enter-
prise, i.e., enterprise privacy practices can be changed by the CPO or the administrators
of the enterprise. In order to reflect this requirement, we now introduce a distinction be-
tween mandatory and discretionary parts of a policy. This represents a modal view of a
policy semantics [18]: The mandatory part must be adhered to under any circumstances,
the remaining part may be adhered to. We capture this view by introducing two-layered
policies.

The real value of this notion lies in new possibilities for composition that cannot
be captured by just taking the ordered composition of the discretionary part under the
mandatory part.

5.1 Syntax and Semantics of Two-Layered Privacy Policies

Syntactically, a two-layered policy is simply a pair of (usual) privacy policies. The first
element is the mandatory part and the second element the discretionary part.



A Toolkit for Managing Enterprise Privacy Policies 177

Definition 23. A pair Pol = (Pol1,Pol2) of privacy policies with compatible vocab-
ularies is called a two-layered policy. The policy Pol1 is called the mandatory part of
Pol , and Pol2 the discretionary part. �

The semantics of such a two-layered policy is described as an algorithm, given an au-
thorization request q ∈ Req and an assignment χ ∈ Ass⊆(Var1 ∪ Var2):

– Evaluate mandatory policy. Evaluate the request q under Pol1, yielding (r1, ō1).
– First policy dominates. If r1 �∈ {◦, scope error}, output (r1, ō1).
– Evaluate second policy. If r1 ∈ {◦, scope error}, evaluate the request q under

Pol2, yielding (r2, ō2). If r2 = scope error and r1 = ◦, output (r1, ō1), else
output (r2, ō1 ∪ ō2).

This captures the intuition that Pol1 is mandatory: Only if Pol1 does not care about
a request, or if it does not capture the request, the discretionary part Pol2 is executed.
Note that the mandatory part can still be used to accumulate obligations, e.g., for strictly
requiring that every employee has to send a notification to his or her manager before a
specific action.

We now show that the resulting semantics is the same as that of ordered composi-
tion, as one would expect. Recall, however, that the composition operators make use of
the fact that a two-layered policy retains the information which parts were mandatory.

Lemma 6. For Pol := (Pol1,Pol2), the two-layered semantics is equivalent to the
ordinary semantics of an ordered composition: Pol ≡ Pol2 <

⋃
Pol1. �

Proof. We have to show that evaluation of Pol and PolC := Pol2 <
⋃

Pol1 always re-
turn the same ruling and equivalent obligations. . Let us first assume that the evaluation
of Pol outputs (r1, ō1) with r1 ∈ {+,−} (first policy dominates), i.e., the request was
in the scope of Pol1 and produced a ruling + or −. Hence when evaluating PolC , only
higher precedence rules of Pol1 are used and PolC also outputs (r1, ō1).

Let us now assume that r1 = scope error in Pol . Then the result is determined by
Pol2. The same holds for PolC .

Let us finally assume that (r1, ō1) was output by Pol1 with r1 = ◦. If the request is
in the scope of Pol2, then Pol and PolC will output the ruling of Pol2 with a union of
both obligations. If the request is out of the scope of Pol2, the pair (r1, ō1) is output in
both cases.

This lemma and Lemma 4 imply that (Pol1,Pol2) ≺ Pol1, i.e., that every two-layered
policy refines its mandatory part.

5.2 Refinement and Composition of Two-Layered Policies

For two-layered privacy policies, we define the following notion of refinement.

Definition 24 (Two-Layered Refinement). Let two-layered policies Pol =
(Pol1,Pol2) and Q = (Q1, Q2) be given where Pol1 and Q1 as well as Pol2 and
Q2 have compatible vocabularies. Then Pol is a refinement of Q, written Pol ≺ Q, iff
Pol1 ≺ Q1 and Pol2 ≺̃ Q2. �



178 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

The distinction between mandatory and discretionary parts enabled us to use the notion
of weak refinement: We require that the mandatory part is a normal refinement. This re-
flects that access rights as well as denials must be preserved. The discretionary part may
be weakly refined. This reflects the fact that this part can be modified at the discretion
of the enterprise.

Coming up with a meaningful definition of composing two-layered policies is more
difficult. The main goal is to never violate any mandatory part. Composing the manda-
tory parts either according to Definition 21 or 22 would typically overrule some manda-
tory rules, which would defeat this goal. Therefore, we only allow to compose two-
layered policies if the rulesets of their respective mandatory parts are collision-free,
which means that for all requests and all assignments, it is never the case that one
mandatory part accepts the request (i.e., it rules +), whereas the other one denies the
request (i.e., it rules −).

Definition 25 (Collision-Free). Two privacy policies Pol1 and Pol2 with compatible
condition vocabularies are called collision-free if for all requests q ∈ Req and all
assignments χ ∈ Ass⊆(Var1 ∪ Var2) the following holds: If Pol i rules (ri, ōi) for
i = 1, 2, then {r1, r2} �= {+,−}. �

Two-layered policies with conflicting mandatory parts cannot be composed. For two-
layered policies with collision-free mandatory parts, we define composition as follows:

Definition 26 (Two-Layered Composition). Let two-layered policies Pol =
(Pol1,Pol2) and Q = (Q1, Q2) be given where Pol1 and Q1 as well as Pol2 and Q2

have compatible vocabularies, and Pol1 and Q1 are collision-free. Then the composi-
tion of Pol and Q is defined as Pol

⋃
Q := (Pol1

⋃
Q1,Pol2

⋃
Q2). Similarly, the or-

dered composition of Pol under Q is defined as Pol <
⋃

Q := (Pol1 <
⋃

Q1,Pol2 <
⋃

Q2).
�

The following lemma shows the main property that this composition wants to preserve,
i.e., that the resulting composed policy refines both mandatory parts.

Lemma 7. Let two-layered policies Pol = (Pol1,Pol2) and Q = (Q1, Q2) be given
such that Pol1 and Q1 as well as Pol2 and Q2 have compatible vocabularies. More-
over, Pol1 and Q1 are collision-free. Then Pol <

⋃
Q is a refinement of Q . Furthermore,

PolC := Pol <
⋃

Q is a refinement of Pol1 and Q1. �

Proof. The first claim follows directly from Lemma 4. Lemma 6 implies that PolC ≡
(Pol2 <

⋃
Q2) <

⋃
(Pol1 <

⋃
Q1). The fact that PolC is a refinement of Q1 follows from

Lemma 4.
Let us now assume that PolC does not refine Pol1. Since PolC refines (Pol1 <

⋃

Q1), this implies that (Pol1 <
⋃

Q1) does not refine Pol1. This implies that there exists
a request within the scope of Pol1 and Q1 such that Q1 does not rule ◦ since otherwise
the ruling of Pol1 would be output. For this request, the rulings of Pol1 and Q1 differ,
which contradicts our assumption that Pol1 and Q1 are collision-free.



A Toolkit for Managing Enterprise Privacy Policies 179

6 Conclusion

Privacy policies are a core component for enterprise privacy technologies. The current
proposals for privacy policies required policy authors to create one single overall policy
for the complete enterprise(s) that are covered. We therefore described a toolkit to han-
dle multiple policies. This includes refinement for auditing and policy validation and
composition for multi-domain or delegated-authorship policies. In addition, we intro-
duced a new notion of two-layered policies to track mandatory and discretionary parts.
This enables privacy administrators to detect and resolve conflicts between mandatory
policies, e.g., if a customer promise or another contract would violate a law. These
tools enable the privacy officers of an enterprise to create and manage the complex pri-
vacy policy of an enterprise more efficiently while retaining the semantic rigor that is
required for trustworthy privacy management.

Acknowledgments

We thank Günter Karjoth, Calvin Powers, and Michael Waidner for valuable discus-
sions.

References

1. P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter. Enterprise Privacy Authorization
Language (EPAL). Research Report 3485, IBM Research, 2003. http://www.zurich.
ibm.com/security/enterprise-privacy/epal/specification.

2. P. Ashley, S. Hada, G. Karjoth, and M. Schunter. E-P3P privacy policies and privacy autho-
rization. In Proc. 1st ACM Workshop on Privacy in the Electronic Society (WPES), pages
103–109, 2002.

3. A. Belokosztolszki and K. Moody. Meta-policies for distributed role-based access control
systems. In Proc. 3rd IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY), pages 106–115, 2002.

4. C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekerat. Obligation monitoring in policy
management. In Proc. 3rd IEEE International Workshop on Policies for Distributed Systems
and Networks (POLICY), pages 2–12, 2002.

5. P. A. Bonatti, E. Damiani, S. De Capitani di Vimercati, and P. Samarati. A component-
based architecture for secure data publication. In Proc. 17th Annual Computer Security
Applications Conference, pages 309–318, 2001.

6. P. A. Bonatti, S. De Capitani di Vimercati, and P. Samarati. A modular approach to compos-
ing access control policies. In Proc. 7th ACM Conference on Computer and Communications
Security, pages 164–173, 2000.

7. P. A. Bonatti, S. De Capitani di Vimercati, and P. Samarati. An algebra for composing access
control policies. ACM Transactions on Information and System Security, 5(1):1–35, 2002.

8. A. Cavoukian and T. J. Hamilton. The Privacy Payoff: How successful businesses build
customer trust. McGraw-Hill/Ryerson, 2002.

9. S. De Capitani di Vimercati and P. Samarati. An authorization model for federated systems.
In Proc. 4th European Symposium on Research in Computer Security (ESORICS), volume
1146 of Lecture Notes in Computer Science, pages 99–117. Springer, 1996.



180 Michael Backes, Birgit Pfitzmann, and Matthias Schunter

10. S. Fischer-Hübner. IT-security and privacy: Design and use of privacy-enhancing security
mechanisms, volume 1958 of Lecture Notes in Computer Science. Springer, 2002.

11. Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and C. Xu. IPSec/VPN security
policy: Correctness, conflict detection and resolution. In Proc. 2nd IEEE International Work-
shop on Policies for Distributed Systems and Networks (POLICY), volume 1995 of Lecture
Notes in Computer Science, pages 39–56. Springer, 2001.

12. V. Gligor, H. Khurana, R. Koleva, V. Bharadwaj, and J. Baras. On the negotiation of access
control policies. In Proc. 9th International Workshop on Security Protocols, 2002.

13. H. Hosmer. The multipolicy paradigm. In Proc. 15th National Computer Security Confer-
ence, pages 409–422, 1993.

14. S. Jajodia, M. Kudo, and V. S. Subrahmanian. Provisional authorization. In Proc. E-
commerce Security and Privacy, pages 133–159. Kluwer Academic Publishers, 2001.

15. S. Jajodia, P. Samarati, M. L. Sapino, and V. Subrahmanian. Flexible support for multiple
access control policies. ACM Transactions on Database Systems, 26(4):216–260, 2001.

16. G. Karjoth and M. Schunter. A privacy policy model for enterprises. In Proc. 15th IEEE
Computer Security Foundations Workshop (CSFW), pages 271–281, 2002.

17. G. Karjoth, M. Schunter, and M. Waidner. The platform for enterprise privacy practices –
privacy-enabled management of customer data. In Proc. Privacy Enhancing Technologies
Conference, volume 2482 of Lecture Notes in Computer Science, pages 69–84. Springer,
2002.

18. J. D. Moffett and M. S. Sloman. Policy hierarchies for distributed systems management.
IEEE JSAC Special Issue on Network Management, 11(9):1404–31414, 1993.

19. Platform for Privacy Preferences (P3P). W3C Recommendation, Apr. 2002. http://www.
w3.org/TR/2002/REC-P3P-20020416/.

20. C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes. SPL: An access control language for
security policies with complex constraints. In Proc. Network and Distributed System Security
Symposium (NDSS), 2001.

21. TRUSTe. Privacy Certification. Available at www.truste.com.
22. eXtensible Access Control Markup Language (XACML). OASIS Committee Specification

1.0, Dec. 2002. www.oasis-open.org/committees/xacml.


	1 Introduction
	2 Syntax and Semantics of E-P3P Enterprise Privacy Policies
	2.1 Hierarchies, Obligations, and Conditions
	2.2 Syntax of E-P3P Policies
	2.3 Semantics of E-P3P Policies

	3 Refinement of Privacy Policies
	4 Composition of Privacy Policies
	4.1 Policy Normalization
	4.2 Definition of Composition

	5 Two-Layered Privacy Policies
	5.1 Syntax and Semantics of Two-Layered Privacy Policies
	5.2 Refinement and Composition of Two-Layered Policies

	6 Conclusion
	References

