
Abstract

programming

A TOP-DOWN APPROACH TO TEACHING PROGRAMMING

Margaret M. Reek
Department of Computer Science
Rochester Institute of Technology

102 Lomb Memorial Drive
Roehester, NY 14623

mmr@cs.rit.edu

is traditionally taught using a bottom-

up approach, where details of syntax and implementation
of data structmes rue the predominant concepts. The top-
down approach proposed focuses instead on understanding
the abstractions ~presented by the classical data struc-
tures without regard to their physical implementation.
Only after the students are comfortable with the behavior
and applications of the major data structures do they learn
about about their implementations or the basic data types
liie arrays aud pointers that me used. This paper
discusses the benefits of such au approach and how it is
beii used in a Computer Science curricuhnn.

1. What do we mean by a top-down approach?

In this context, “top-down” refers to teaching pro-
gramming with an initial emphasis on the use of pr-
eexisting components, deferring low-level implementation
issues until later in the student’s studies. These com-
ponents may include the classical abstract data types such
as stacks, queues, lists, and trees, or sections of an appli-
cation program such as an ATM machine or a card game.

We choose to focus on the abstractions in the belief
that they me the mcne important concepts. Our experi-
ence has been that implementation issues distract the stu-
dents to the point that they do not really understand the
abstractions, particularly with the classical data structures.

Partial support for this work has been provided by the
National Science Foundation’s Instrumentation and
Laboratory Improvement Program, award #DUE-9451 123

Permission to oopy without fee all or part of this material is
granted provided that the oopies are not made or distributed for
direct commercial advanta e, the ACM copyrigM notice and the

%stitle of the publication and date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, raquiras a fee
and/ors aeific permission.

zSIGCS ’95 3/95 Nashville, TN USA
0 1995 ACM O-89791 -893-X19510003 . . ..50.5O

2. problems we saw in a bottom-up approach

Programming is typically taught using a bottom-up
approach. Starting with simple statements, we go on to
Boolean expressions and conditional statements, pro-
cedures, and finally arrays and nxmrds. Only then are the
abstract data structures such as stacks, queues, trees
addressed. We show students what a stack is and how it
is implemented, iirst with en array and later with pointers
and dynamically allocated storage; this is the approach
taken in many texts [12,4,13].

At RI’I’, we have been using this same basic
approach since the inception of the department in 1972.
As abstract data types gained importance, we tried to

teach our students to think about them in more general

terms. However, our bottom-up approach thwarted these
efforts. All of the students’ previous education concen-

trated primarily on implementation details, so some had a
hard time thking about the abstract behavior Ix%i
implemented. They perceived a stack as “an array that
is manipulated in this way”. The students fol,rnd it
difficult to see the abstract behavior through the forest of

implementation details, even when it was pointed out.

We then tried starting with the abstract concept and show-

ing examples. This did not work well, because the exam-

ples wem immediately followed by a discussion of how to
build one, and the abstract behavior once again became
tied in their minds to a specific implementation. Our
approach of examining a data structure like a stack
abstractly, seeing some uses for it, and then seeing how it
could be implemented failed because it left the student
with the idea that the implementation was the important

pwt Students’ minds are sometimes like a stack the

most recent item put in is all that is accessible!

We tested the student’s ability to work with abstrac-
tions by asking questions such as this on tests:

Write a procedurenamedBofromStuckthat returns the
bottom element of a stack while leming the contents
of the stsck unchanged. You MUST make use of

standard stack operations, such as those found in the
attached listing of a prototypical stack library named
StackLib - you will receive NO POINI’S for this
problem if you accessthe stsek directly.

A significant portion of the students couldn’t solve the
problem without accessing the stack directly. This was

6



after discussions about and examples of similar problems,
and debating the benefits of using the interface rather than
accessing the data structme directly, as the solution would
then be independent of the actual implementation.

The studenta’ thinkhg of abstract structures in
terms on a cuncrete implementation made it difficult to
talk about general issues, such as when a particular struc-
ture is appropriate and the tradeoffs in using one structure
or another to solve a problem. The students couldn’t find
the forest because they couldn’t see past the leaves, much
less the trees.

The problem isn’t that the students are stupid, but
rather that at age eighteen their thinking maturity is still
at the concrete level. They are much more comfortable
with concrete th’an abstract thinkkg, and the bottom-up
approach makes it easier for them to fall back on their old
habits rather than developing new ones. It is likely they
will feel unccaufortable for a while with the top-down
approach as it forces them to deal with the abstraction so
much of the time. Immersing them in this way of think-
ing should get them over this hurdle faster.

Another problem with the bottom-up approach is
that students with experience see the same things they
shady know, and it reinforces a tendency in some stu-
dents to think they know it “all”. When we get to new
material a few weeks into the course, they’ve already
stopped coming to class because they think there is noth-
ing new to le-, these studenta have problems later
because they’ve missed so much. Also, many fmd the
material dull because it is difficult to find interesting
problems for them to solve with the limited set of skills
they have.

3. Benefits of a top-down approach

In the fall of 1994 we are starting to teaching pro
gramming using a top-down approach. We are making
this change because we believe that it will solve the
major problem of the bottom-up approach, as well as hav-
ing other benefits. At this writing these are anticipated
benefits; the experiences section will describe our first
results.

The first benefit of this approach is that we can dis-
cuss the classic data structures such as stacks, queues,
lists and trees much earlier because we are not discussing
implementations. The students will be using predefine
routines from libraries, so the only basics they need to
know iue how to write a sequence of procedure calls and
pass parametm. They don’t need to know the details of
how procedures are declared, or the differences between
every parameter passing technique, just enough to allow
them to use something that aheady exists to solve a new
problem. We teach stacks and lists in the fifth week of
the lirst term, even before conditional statements are
covered. If we were not spending a week on testing, we

would reach stacks and lists even sooner.

A benefit of focusing on the use of components
rather thau their implementation is that students can do
“interesting” things much earlier than they can in the
traditional approach [7]. With knowledge of the abstract
behavior of the classical data structures, students can
solve moderately complex problems because they c,an
focus on using the right tools to implement a soluthm
rather than on implementing the tools themselves. (h
students will work with a faixly complex card game, can-
plete with a graphical interface, even before we teach any
data strucw, all they need to know to see the high
level logic is how to identify which library components
are needed and how to call them in the appropriate order.

We believe that this approach will help students to
think of programs as collections of large components
interacting with each other rather than a single very long
sequence of basic instructions. Only when they me CQIIm-
fortable with this thinkhg do we discuss the implementa-
tions of the tools they have been using; this will occur at
the beginuing of the sophomore year. Some texts have
some of the flavor of this approach [5,6,13] but most still
deal with the implementations in the same course and
text. We are pushing the conceptual introduction and the
implementation much farther apart to separate the two in
the student’s mind.

We remgnize that it is important for Computer Sci-
ence students to be able to implement the tools they wiii
be using, but by delaying this for so long we hope to get
them used to using existing tools to solve problems. We
believe that this will prevent them from getting the idea
that “writing a program” always means implementing
every bh of evexy part of it themselves.

This approach will also get studenta used to the idea
they don’t have to know how something is implemented
to use it which is a crucial step in using libraries and
reusing components. Also using existing tools without
knowing how they rue implemented will make it painfully
clear that good documentation and expressive names are
crucial, not just something you do to get a good grade. H
these me missing, it is not possible to use an existing tool
without seeing the implementation. We will use exanm-
plCX th~ demonstrate both good and bad style and have
the studenta work with them to Rinforce this point.

4. Language support needed

The top-down approach can be taken, to some
extent, with any language that allows the definition of the
interface uf a module to be separated from its implemen-
tation either a procedural or an object-oriented language
may be used. However, some languages will be better
than others. A language like Modula-2 provides a reason-
able degree of abstraction, but not generic types. We
used Modula-2 for mauy years, but its lack of genericity

7



was limiting. For example, after discussing the abstract
behavior of stacks, we were unable to implement a truly
generic stack module; the language nquired it to be
declared as a “stack of some spectic type”. The best we
could do was to abstract the data type by putting the
details of the individual element and some basic opera-
tions on it into a separate module, but still could not use
one stack module in a single application to handle both a
stack of integers and a stack of nxords. Languages that
support generic types would alleviate these kinds of prob-
lems.

A library of existing components with a consistent
interface is crucial; this can either be purchased or
developed in-house. ConsMency makes it easy to teach
students how to search the library for the needed com-
ponents and features.

5. How we are using this in our curriculum

We are using this approach in our tit two years
for Computer Science and related majom starting in Fall
1994. Stacks and lists are introduced in the first course,
and queues and trees in the second course; these are 10
week courses. It is not until the start of the sophomore
year that we look at concrete implementations of these
using arrays and pointers. By that time the students will
have ample experience using these structures and should
be completely comfortable with them. They will have
also learned a second language by then, which will help
reinforw the idea that the abstract type is more important
than the details of how it is implemented in one language
or another.

We are also switching to a strong software
engineering approach using an object-oriented environ-
ment for our new curriculum. We are using Eiffel [9] in
the tit * courses, which supports true generics and
comes with a very large library of mmponents. This
language facilitates our top-down approach, though other
languages could also be used.

6. Experiences to date

Atthedme ofthiswriting, theiirstcourse has been
offered once. The results so far have been promising.
The students seem to have a fundamental grasp of the
essence of the data structunx, to the extent that they have
figured out many things on theh own without us telling
them. For example, they intuitively know that a stack is
something that can be used to reverse the order of data.
This sounds obvious to us, but many students in previous
years couldn’t grasp that concept even though we expli-
citly told them. Now, when presented with problems that
have them choose the most appropriate data structme,
most students are able to do it. A further test of this will
come in the second course where many mcxe data struc-

tures will be pmented.

We were concerned about the growning disparity
between incoming students with programming experience
and those without, and had hoped to “level the playing
field” through the top-down and object-oriented
approacbs in our curriculum. This has been a bit disap-
pointing. Both groups of students seemed to grasp the
basic concepts equally well. However the non-
programmers typically had a harder time expressing them-
selves in terms of the designing control structures. The
problem was in the our implementati~ not the approach.
We spent a lot of time on high level design examples, but
what the studenta really needed to see at least once was
the entire process from specification to code. In the
future, we will spend more time iu class cm complete
examples from design through implementation and testing.
A series of exercises similar to the “gateway labs” used
at SUNY Geneseo [3] would also be helpfuk we’ve
developed several of these using Mosaic, but more are
needed.

We are finding that attendance in both lecture and
lab is much higher than in the past. The experienced stu-
dents nalize right away that they don’t know everything
so they come. to class. We cm also do more interesting
assignments early in the term, which tends to capture all
the students’ interest. The withdrawal rate from the
course is lower than in the past even though the overall
course GPA is roughly equivalent. The percentage of stu-
dents cmhuing ontothe next course ishigher thanin
the past. It would appear that we are able to capture and
hold their interest better than before; only time will tell if
what we am seeing is due the approach itself or is merely
the “Hawthorne effect”.

We are finding that we can present the abstract data
structures and their uses more easily now because students
are used to the library notation and seeing the the class
interface but not the coding details. A pleasant surprise
was that the studenta didn’t seem to mind not being
shown how things were done and virtuaUy no one asked
questions about it. ‘hey didn’t even seem tempted to
look at the code, although they had ample opportunity to
do so, We kept reinfdng the notion that the interface
was the important parc we don’t really cm how it is
impkmented, as long as the job gets done as advertised.
They are comfortable with the idea that you don’t have to
write every piece of code yourself, nor do you have to
know how something was implemented to use it. This
Rinforces the notion of “design by contract” which we

have been stressing.

Lastly, we are really pleased with our choice of first
lauguage. Eiffel and the environment we are using [8]
are extxemely well suited to our goals, The syntax
diagrams for the enthe hmguage fit easily on a double
sided sheet of paper (yes, in type large enough to read),
yet its support for design by contract and muse is superb.
A very complete set of libraries [10] is provided. Their

8



consistent presentation and naming convention makes it
easy for students to learn to read the interfaces to find the
features they need. For example, on the final exam we
gave them an interface to a library class that they were
unfamiliar with and asked them to use it to solve a small
problem. Even though they were unfamiliar with this par-
ticular class, the vast majority were able to solve the
problem satisfactorily. They also recognize the similari-
ties amongst initially disparate data structures more easily.
For example, many realize that a list and a file are essen-
tially similar and should have many features in common.
Because the libraries we use have a consistent structure
the students see that this is indeed the case.

The biggest problem we’ve had in this ventme is
lack of appropriate textbook support for both our
approach and the language. We use Designing Object-

Oriented Sofhvare [14] as a language independent book
on software development. It is a very nice treatment of
the sub~, but doesn’t have any of the data structure
information the students would find helpful. The
definitive text on Eiffel is Eiffel: The Lunguage [91but it
is not appropriate for an introductory programmer. We
am currently using Eiffel: An Introduction [12] but it
doesn’t have enough detail or complete examples to be
adequate for beginning students. A number of new texts
me about to be published and we hope to tid one mare
appropriate for our needs.

7. Looking to the future

Atthiswriting thesecond course is@t aboutto
start. We anticipate that the students will continue to
grasp the basic concepts, and we will try to remediate
some of the mistakes from the first course. The lirst
course is being offenxi again this term, and we will be
fixing the problems we observed the first time around. By
thetime of theconference, our second quarter willbe
completed and we can present results of this next phase.

We are particularly interested in seeing how well
the students are able to retain the abstract concepts in the
third course, where we start the switch from EiHel to
C++. Of major concern are the more involved inheritance
concepts that are supported so cleanly in Eiffel and less
elegantly in C*. Itwillalso beinteresting to see
whether the students who couldn’t wait to learn C++
because is it a “real” language will be equally vocal
about wanting to stay with Eiffel because of its simple yet
powerful support for object-oriented design. We’ll let
you know next year.

8. References

(3) Cowley, B; Scragg, G.; Baldwin, D. “Gateway
Laboratories: integrated, interactive learning
modules” SKXSE Bulletin, Vol. 25 No. 1, pp 180-
1831993.

(4) Dale, N, Lilly, S. Pascal PIw Data Structures,

Algorithms, and Advanced Programming D.C. Heath
and Company. 1991

(5) Decker, R HirsMeld S. The Object Concept: AN
Introduction to Programming Using C++. PWS
Publishing Inc. 1994.

(6) lkdingt~ M, Riley, D. Data Abstraction and

Structures using C++. D.C. Heath and Company.
1994.

(7) Hilburn, T. “A Top-Down Approach to Teaching
an Introductory Computer Science Course.” SHXE
Bulletin, Vol. 25 No. 1, pp 58-62. 1993.

(8) Meyer, R Eiffel: The Environment. Pnmtice Hall.
1994

(9) Meyer, B. Eiflel: The Language. Prentice Hall.
1992

(10) Meyer, B. Eiffel: The Libraries. Prentice HalE
1994

(11) Nyhoff. L; Leestma S. Data Structures and Pro-

gram Design in Moduia-2. Mwmillan Publishing
company. 1990.

(12) Switzer, R. Eiffel: An introduction Prentice Hall.

1993.

(13) Tucker, A Bradley, WJ; Cupper, R Epstein, R.
Fundamentals of Computing II: Abstraction, Data
Structures and Large Software System. McGraw-
Hill Inc. 1993.

(14) Wirfs-Brock, R.; Wilkerson, B.; Wiener, L. Design-

ing Object-Oriented Software. Prentice Hall. 1990.

(1) Be@n, J. Data Abstraction: The Object-oriented
Approach Using C++. McGraw-Hill Inc. 1994.

(2) Budd, T. Classical Data Structures in C+-+.
Addison-Wesley Publishing Company. 1994.


