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Abstract—Locating buggy code is a time-consuming task in
software development. Given a new bug report, developers must
search through a large number of files in a project to locate
buggy code. We propose BugScout, an automated approach to
help developers reduce such efforts by narrowing the search space
of buggy files when they are assigned to address a bug report.
BugScout assumes that the textual contents of a bug report and
that of its corresponding source code share some technical aspects
of the system which can be used for locating buggy source files
given a new bug report. We develop a specialized topic model that
represents those technical aspects as topics in the textual contents
of bug reports and source files, and correlates bug reports and
corresponding buggy files via their shared topics. Our evaluation
shows that BugScout can recommend buggy files correctly up to
45% of the cases with a recommended ranked list of 10 files.

Index Terms—Defect Localization, Topic Modeling.

I. INTRODUCTION

To ensure software integrity and quality, developers always
spend a large amount of time on debugging and fixing software
defects. A software defect, which is informally called a bug,
is found and often reported in a bug report. A bug report is a
document that is submitted by a developer, tester, or end-user
of a system. It describes the defect(s) under reporting. Such
documents generally describe the situations in which the soft-
ware does not behave as it is expected, i.e. fails to follow the
technical requirements of the system. Being assigned to fix a
bug report, a developer will analyze the bug(s), search through
the program’s code to locate the potential defective/buggy files.
Let us call this process bug file localization.

This process is crucial for the later bug fixing process.
However, in a large system, this process could be overwhelm-
ing due to the large number of its source files. At the same
time, a developer has to leverage much information from
the descriptive contents of the bug report itself, from his
domain knowledge of the system and source code, from the
connections between such textual descriptions in a report and
different modules in the system, and from the knowledge
on prior resolved bugs in the past, etc. Therefore, to help
developers target their efforts on the right files and raise their
effectiveness and efficiency in finding and fixing bugs, an
automated tool is desirable to help developers to narrow the
search space of buggy files for a given bug report.

In this paper, we propose BugScout, a topic-based approach
to locate the candidates of buggy files for a given bug report.
The key ideas of our approach are as follows:

1) there are several technical functionality/aspects in a
software system. Some functionality/aspects might be buggy,
i.e. incorrectly implemented. As a consequence, a bug report
is filed. The textual contents of the bug report and those of
the corresponding buggy source files (comments and identi-
fiers) tend to describe some common technical aspects/topics
(among other different technical topics). Thus, if we could
identify the technical topics that are described in the bug
reports and source files, we could recommend the files that
describe the common technical topics with a given bug report.

2) Some source files in the system might be more buggy
than the others (e.g. they are more defect-prone) [9].

3) Similar bugs might be related to similar fixed files, thus,
if a given bug report x has some similar topic(s) with a
previously resolved bug report y in the history, the fixed files
associated with y could be the candidate buggy files for x.

In this paper, we extend Latent Dirichlet Allocation
(LDA) [4] to model the relation among a bug report and
its corresponding buggy source files. LDA is a generative,
machine learning model that is used to model the topics in
a collection of textual documents. In LDA, a document is
considered to be generated by a “machine” which is driven via
parameters by the hidden factors called topics, and its words
are taken from some vocabulary [4]. One can train the model
with historical data to derive its parameters. Terms in the
documents in the project’s history are the observed data. LDA
considers that all documents are generated by that “machine”
with its parameters. When LDA is applied to a new document,
it uses its process to “generate” that document, thus, it can tell
the topics that are described in the document’s contents and
the corresponding terms for those topics.

In BugScout, the technical aspects in the system including in
bug reports and source code are modeled by topics. BugScout
model has two components, representing two sets of docu-
ments: source files and bug reports. The S-component for a
source file is a LDA model in which a source file is modeled
as a document influenced by the topic distribution parameter
and other parameters of the LDA model. For some buggy
source files, some of their technical topics might be incorrectly
implemented. As a consequence, a bug report is filed to report
on the buggy topic(s). The second component, B-component,
is designed to model bug reports. B-component is an extended
LDA model in which a bug report is modeled as a document
that are influenced not only by its own topic distribution
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parameter, but also by the topic distribution parameters of the
buggy source files corresponding to that bug report.

The rationale behind this design is that the contents of a bug
report are written by the tester/reporter and describe about the
occurrence of the bug(s). Thus, the technical topics of the
buggy files must be mentioned in the bug report. At the same
time, a bug report is also a relatively independent document
and can discuss about other topics. For example, a bug report
on memory leaking could also mention about the related topics
on file loading when the memory leaking was observed. The S-
component models the source files from the developers’ point
of view, while the B-component models the bug reports written
from the point of view of the reporters. Two components are
connected to form BugScout.

We also developed the algorithms for training and predicting
buggy files for a given bug report. Parameters in BugScout are
the parameters combined from two components. They can be
derived by our training algorithm with the historical data of
the previous bug reports and corresponding buggy files. When
a new bug report is filed, BugScout is applied to find its topics.
Then, the topics of that report are compared with the topics of
all source files. The source files that have had more defects in
the past and have shared topics with the new bug report will
be ranked higher and recommended to developers.

We have conducted an empirical evaluation of BugScout on
several large-scale, real-world systems. BugScout can recom-
mend candidate buggy files correctly up to 33% of the cases
with one single file, and up to 45% of the cases with a ranked
list of 10 files. That is, in almost half of the cases, the top 10
files in the recommended ranked list contain the actual buggy
file(s). The key contributions of this paper include

1. BugScout, a topic model that accurately recommends a
short list of candidate buggy files for a given bug report,

2. Associated algorithms for model training and predicting
of buggy files for a new bug report; and

3. An empirical evaluation on the usefulness of BugScout.
Section 2 presents the motivating examples. Section 3 pro-

vides the details of our model BugScout. Section 4 describes
the associated algorithms for training and inferring candidate
buggy files. Section 5 is for our empirical evaluation. Section 6
discusses the related work and conclusions appear last.

II. MOTIVATING EXAMPLES

Let us discuss some real-world examples that motivate our
approach. We collected the bug reports and their corresponding
fixed files from an industrial project of a large corporation.
The 3-year development data from that project includes source
files, documentation, test cases, defects and bug reports,
change data, and communication data among developers. In
that project, for a work item, a general notion of a development
task, the data contains a summary, a description, a tag, and
relevant software artifacts. There are 47,563 work items, of
which 6,246 are marked as bug reports. As a developer fixed
a bug in response to a bug report, (s)he was required to record
the fixing changes made to the fixed files. We wrote a simple
tool to extract the data and observed the following examples.

Bug Report #50900
Summary: Error saving state returned from update of external object;
incoming sync will not be triggered.
Description: This showed up in the server log. It’s not clear which
interop component this belongs to so I just picked one of them. Seems
like the code run in this scheduled task should be able to properly handle
a stale data by refetching/retrying.

Fig. 1: Bug report #50900

InteropService.java
// Implementation of the Interop service interface.
// Fetch the latest state of the proxy
// Fetch the latest state of the sync rule
// Only return data from last synchronized state
// If there is a project area associated with the sync rule,
// Get an advisable operation for the incoming sync
// Schedule sync of an item with the state of an external object
// The result of incoming synchronization (of one item state).
// Use sync rule to convert an item state to new external state.
// Get any process area associated with a linked target item....
// For permissions checking, get any process area associated with the
target item. If none, get the process area of the sync rule.
// return an instance of the process server service...
// Do incoming synchronization of one state of an item.
public IExternalProxy processIncoming (IExternalProxyHandle ...) {...
...}

Fig. 2: Source file InteropService.java

Example 1. Figures 1 and 2 display bug report #50900 and the
corresponding fixed/buggy file InteropService.java (for brevity,
only comments are shown in Figure 2). The report is about a
software defect in which incoming synchronization tasks were
not triggered properly in a server. We found that the developers
fixed the bug at a single file InteropService.java by adding code
into two methods processIncoming and processIncomingOneState
to handle a stale data by refetching. As shown, both bug report
#50900 and the buggy file InteropService.java describe the same
problematic functionality of the system: the “synchronization”
of “incoming data” in the interop service. This faulty techni-
cal aspect (was described and) could be recognized via the
relevant terms, such as sync, synchronization, incoming, interop,
state, schedule, etc. Considering the bug report and the source
file as textual documents, we could consider this technical
aspect as one of their topics. This example suggests that the
bug report and the corresponding buggy source files share the
common buggy technical topic(s). Thus, detecting the common
technical topic(s) between a bug report and a source file could
help in bug file localization.

Example 2. We also found another report #45208 (Figure 3)
that was also fixed at the single file InteropService.java, but at
two different methods processOutgoing and processOutgoingOn-
eState. It reported a different technical topic: the permission
issue with background outgoing tasks in interop service.
Examining those two methods, we saw that the bug report
and the source file also share that common topic, which is
expressed via the relevant terms such as outgoing, synchronize,
permissions, process, state, interop, service, etc.

This example also shows that a source file, e.g. InteropSer-
vice.java, could have multiple buggy technical aspects, and thus,
could be traced/linked from multiple bug reports.
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Bug Report #45208
Summary: Do not require synchronize permissions for background
outgoing sync task.
Description: The background outgoing sync task in Interop component,
which runs as ADMIN, is currently invoking a process-enabled operation
to save external state returned from some external connection. It causes
a problem because ADMIN needs to be granted process permissions. A
periodic server task should be “trusted”, however, so it shouldn’t invoke
process-enabled operations.

Fig. 3: Bug Report #45208

Bug Report #40994
Summary: Mutiple CQ records are being created
Description: There are 5 records in CQ db which seem to have
identical information. They all have the same headline - CQ Connector
Use Case for RTC Instance with Multiple Project Areas. On the client
side there is only 1 item, 40415, corresponding to all these.

Fig. 4: Bug Report #40994

Example 3. We also examined bug report #40994 (Figure 4).
Analyzing it carefully, we found that it reported on three tech-
nical aspects including an issue with the interop service con-
nection, an issue with the connection to CQ database, and an
issue with the instance of RTC framework. For this bug report,
developers made several fixing changes to nine different files
including InteropService.java. This example shows that a bug
report could also describe multiple technical aspects and could
be linked/mapped to multiple files. Moreover, despite having
multiple topics, this bug report and the corresponding fixed file
InteropService.java share the common buggy topic on “interop
service connection”. That common buggy topic was described
in parts of the report and in parts of InteropService.java.
Observations and Implications. The motivating examples
give us the following observations:

1. A system has several technical aspects with respect to
multiple functionality. Some aspects/functionality might be
incorrectly implemented.

2. A software artifact, such as a bug report or a source file,
might contain one or multiple technical aspects. Those tech-
nical aspects can be viewed as the topics of those documents.
Each topic is expressed via a collection of relevant terms.

3. A bug report and the corresponding buggy source files
often share some common buggy technical topics.

4. Some source files in the system might be more buggy
than the others.

Those observations suggest that, while finding the source
files relevant to a bug report, developers could explore 1)
the similarity/sharing of topics between them; and 2) the bug
profile of the source files. That is, if a source file shares some
common topic(s) with a bug report, and is known to be buggy
in the history, it is likely to be relevant to the reported bug(s).

III. MODEL

In BugScout, each software system is considered to have K
technical aspects/topics. Among other types of artifacts in a
system, BugScout concerns two types of artifacts: source files
and bug reports. Source file is a kind of software artifacts

Summary: Do not require synchronize permissions for background outgoing

Description: The background outgoing sync task in the Interop component,

which runs as ADMIN, is currently invoking a process-enabled operation to

save external state ...

Bug report b with N   wordsb

Topic

...

1 2 K

Topic proportion θ
b
for b

... Topic

vector

z   of size N
b b

sync task

Topic 1

interop      0.25

synchronize 0.2

outgoing     0.12

state            0.12

process       0.10

permission 0.10

Topic 2

connection 0.3

RTC         0.25

database   0.18

CQ           0.04

priority     0.03

view         0.02

Topic K

file            0.25

repository 0.03

content      0.02

editor        0.01

open          0.01

view          0.00

...

... ... ...

Vocabulary of V words = {sync, interop, incoming, state, ...}

φ
1 φ2 φK

Per-topic word distribution φBR

Fig. 5: Illustration of LDA [4]

written in a programming language. Each source file imple-
ments one or multiple technical aspects of a software system.
Some of them might be incorrectly implemented and cause
bugs. A bug report is a kind of software artifacts that describe
buggy technical aspect(s). Our model has two components for
those two types of artifacts: S-component for source files and
B-component for bug reports. The S-component models the
source files from the developers’ point of view, while the B-
component models the bug reports written from the point of
view of bug reporters. Two components are connected to form
BugScout. Let us describe them in details.

A. S-Component

S-component in BugScout is adopted from LDA [4]. In gen-
eral, source code always includes program elements and are
written in some specific programming language. In BugScout,
a source file is considered as a text document s. Texts from
the comments and identifiers in a source file are extracted to
form the words of the document s.
Topic vector. A source document s has Ns words. In S-
component, each of the Ns positions in document s is con-
sidered to describe one specific technical topic. Therefore, for
each source document s, we have a topic vector zs with the
length of Ns in which each element of the vector is an index
to one topic (i.e. 1-K).
Topic Proportion. Each position in s describes one topic, thus,
the entire source document s can describe multiple topics. To
represent the existence and importance of multiple topics in a
document s, LDA introduces the topic proportion θs. θs for
each document s is represented by a vector with K elements.
Each element corresponds to a topic. The value of each



D
RA

FT

element of that vector is a number in [0-1], which represents
the proportion of the corresponding topic in s. The higher
the value θs[k] is, the more important topic k contributes to
the document s. For example, in the file InteropService.java, if
θs = [0.4, 0.4, 0.1, ...], 40% of words are about outgoing sync,
other 40% are about incoming sync, etc.
Vocabulary and Word Selection. Each position in source
code document s is about one topic. However, to describe that
topic, one might use different words which are drawn from a
vocabulary of all the words in the project (and other regular
words in any dictionary of a natural language). Let us call
the combined vocabulary V oc with the size of V . Each word
in V oc has a different usage frequency for describing a topic
k, and a topic can be described by one or multiple words.
LDA uses a word-selection vector ϕk for the topic k. That
vector has the size of V in which each element represents the
usage frequency of the corresponding word at that element’s
position in V oc to describe the topic k. Each element v in
ϕk can have a value from 0 to 1. For example, for a topic
k, ϕk = [0.3, 0.2, 0.4, ...]. That is, in 30% of the cases the
first word in V oc is used to describe the topic k, 20% of
the cases the second word is used to describe k, and so on.
For a software system, each topic k has its own vector ϕk

then K topics can be represented by a K × V matrix ϕsrc,
which is called per-topic word distribution. Note that ϕsrc

is applicable for all source files, rather than for s individually.
LDA is a machine learning model and from its generative

point of view, a source file s in the system is considered as
an “instance” generated by a “machine” with three aforemen-
tioned variables zs, θs, ϕsrc. Given a source code document s
of size Ns, based on topic proportion θs of the document, the
machine generates the vector zs describing the topic of every
position in the document s. For each position, it then generates
a word ws based on the topic assigned to that position and the
per-topic word distribution ϕsrc corresponding to that topic.
This is called a generative process. The terms in the source
files in the project’s history are the observed data. One can
train the LDA model with historical data to derive those three
parameters to fit the best with the observed data. As a new
document s′ comes, LDA uses the learned parameters to derive
the topics of the document and the proportion of those topics.

B. B-Component

Let us describe the B-component in our BugScout model,
which is extended from LDA [4]. As a consequence of an
incorrect implementation of some technical aspects in the
system, a bug report is filed. Thus, a bug report describes the
buggy technical topic(s) in a system. Similar to S-component,
B-component also considers each bug report b as a document
with three variables zb, θb, ϕBR (Figure 5). A bug report b
has Nb words. The topic at each position in b is described by
a topic vector zb. The selection for the word at each position
is modeled by the per-topic word distribution ϕBR. Note that
ϕBR applies to all bug reports and it is different from ϕsrc.

The bug report b has its own topic proportion θb. However,
that report is influenced not only by its own topic distribution,

α

θsM+1 θs
M

θs1
... θ

b

zsM+1 s
M

s1
...

b
z z z

sM+1 s
M

s1 b
w ...w w w
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BRφ

src
φ
src

φ
src

β

...

Fig. 6: BugScout Model

but also by the topic distribution parameters of the buggy
source files corresponding to that bug report. The rationale
behind this design is that in addition to its own topics,
the contents of a bug report must also describe about the
occurrence of the bug(s). That is, the technical topics of the
corresponding buggy files must be mentioned in the bug report.
At the same time, a bug report might describe about other
relevant technical aspects in the system from the point of view
of the bug reporter.

Let us use s1, s2, ..., sM to denote the (buggy) source files
that are relevant to a bug report b. The topic distribution of b is
a combination of its own topic distribution θb (from the writing
view of a bug reporter) and topic distributions of s1, s2, ..., sM .
In BugScout, we have θ∗b = θs1.θs2.....θsM .θb. The equation
represents the sharing of buggy topics in a bug report and
corresponding source files. If a topic k has a high proportion
in all θs and θb (i.e. k is a shared buggy topic), it also has a
high proportion in θ∗b . The generative process in B-component
is similar to S-component except that it takes into account the
combined topic proportion θ∗b = θs1.θs2.....θsM .θb.

C. BugScout Model

To model the relation between a bug report and correspond-
ing buggy source files, we combine the S-component and B-
component into BugScout (Figure 6). For a bug report b, in
the B-component side, there are 3 variables that control b: zb,
θb, and ϕBR. However, if the source files s1, s2, ..., sM are
determined to cause a bug reported in bug report b, the topic
vector zb will be influenced by the topic distributions of those
source files. That is, there are links from θs1 , θs2 , ...θsM to zb.
For each source document, there are 3 variables that control s:
zs, θs, and ϕsrc (Figure 6). There are two hyper parameters α
and β whose conditional distributions are assumed as in LDA.
α is the parameter of the uniform Dirichlet prior on topic dis-
tributions θs and θb. β is the parameter of the uniform Dirichlet
prior on the per-topic word distributions ϕsrc and ϕBR.
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For training, the model will be trained from historical data
including source files, bug reports and the links between bug
reports and corresponding fixed source files. The variables of
BugScout will be trained to derive its parameters and to make
the model fit most with both the document data and the links
between bug reports and corresponding buggy source files.

For predicting, the model will be applied to a new bug report
bnew. BugScout uses its trained parameters to “generate” that
bug report and estimate its topic proportion θbnew . That topic
proportion will be used to find corresponding source files that
share most topics. Cosine distance is used to determine the
topic proportion similarity. We use sim(s, b) to denote the
topic proportion similarity between a source file s and a bug
report b. The topics of that bug report are compared with the
topics of all source files. Finally, the files that have shared
the buggy topics with the new bug report will be ranked and
recommended to the developers.

Because BugScout has two components and the dependen-
cies among variables in the internal model become much
different from LDA, we developed our own algorithms for
training BugScout with historical data and predicting for a
new bug report. We will present them in Section IV.
Integrating with Defect-Proneness of Source Files: In a
software system, some files might be more buggy than the oth-
ers. We integrate this characteristic into BugScout to improve
its accuracy in buggy file prediction. We use the following
equation to formulate the idea:

P (s|b) = P (s) ∗ sim(s, b)

In the equation, P (s|b) is the total relevance measure of a
source file to a given bug report b. sim(s, b) is the similarity
of the topics of the source file and those of the bug report.
P (s) is the bug profile of source file s. In BugScout’s current
implementation, P (s) is determined by the number of bugs in
the file s in the history and by its size. Other strategies for
computing defect-proness of a source file can be used for P (s).

The equation implies the inclusion of both defect-proneness
and the buggy topics of a source file. Given a new bug report,
if a source file is determined as having higher buggy potential,
and it also contains shared buggy topics with the bug report, it
will be ranked higher in the list of possible buggy files. Next
section will describe our training and predicting algorithms.

IV. ALGORITHMS

A. Training Algorithm

The goal of this algorithm is to estimate BugScout’s pa-
rameters given the training data from a software system. The
collection of source files S, that of bug reports B, and the
set of links Ls(b) between a bug report and corresponding
source file(s) will be used to train BugScout and estimate its
parameters (zs, θs, ϕsrc), and (zb, θb, ϕBR).
Algorithm Overview. Our algorithm is based on Gibbs sam-
pling method [7]. The idea of Gibbs sampling is to estimate
the parameters based on the distribution calculated from other
sampled values. The estimation is made iteratively between the

1 // −−−−−−−−−−−−−−− Training −−−−−−−−−−−−−−−−−
2 function TrainModel(SourceFiles S, BugReports B, Links Ls(b))
3 zS , zB , ϕsrc, ϕBR ← random();
4 repeat
5 z′

S ← zS , z′
B ← zB

6 // Update the variables for source documents
7 for (SourceFile s ∈ S)
8 for (i = 1 to Ns)
9 zs[i] = EstimateZS(s, i) //estimate topic assignment at position i

10 end
11 θs[k] = Ns[k]/Ns //estimate topic distribution
12 end
13 ϕsrc,k[wi] = Nk[wi]/N //estimate per−topic word distribution
14 // Update the variables for bug reports
15 for (BugReports b ∈ B)
16 for (i = 1 to Nb)
17 zb = EstimateZB1(wb, Ls(b), i)
18 end
19 θb[k] = Nb[k]/Nb

20 end
21 ϕBR,k[wi] = Nk[wi]/N
22 until (|z − z′| <= ϵ)
23 return zS , zB , θS , θB , ϕsrc, ϕBR

24 end
25 // −−−−−−−−− Estimate topic assignment for s −−−−−−−
26 function EstimateZS(SourceFile ws, int i)
27 for (k = 1 to K)

28 p(zs[i] = k)← (ns[−i,k]+α)
(ns−1+Kα)

(nsrc,k[−i,wi]+β)

(nsrc,k−1+V β)

29 end
30 zs[i]← sample(p(zs[i]))
31 end
32 // −−−−−−−−− Estimate topic assignment for b −−−−−−−
33 function EstimateZB1(BugReport wb, int i, Links Lws (wb))
34 for (k = 1 to K)

35 p(zb[i] = k)←

(nb[−i,k]

∏
s∈Ls(b)

ns[k] + α)

((nb−1)

∏
s∈Ls(b)

ns + Kα)

(nBR,k[−i,wi]+β)

(nBR,k−1+V β)

36 end
37 zb[i]← sample(p(zb[i]))
38 end

Fig. 7: Model Training Algorithm

values until the estimated parameters reach their convergent
state (i.e. the new estimated value of a parameter do not change
in comparison with its previous estimated value).

Figure 7 shows the pseudo-code of our training algorithm.
Function TrainModel() is used to train BugScout by using the
collections of source files (S), bug reports (B) and the set of
links Ls(b) between the bug reports and the corresponding
buggy source files. Line 3 describes the initial step where
the parameters zs, zb, ϕsrc, ϕBR are assigned with randomly
values. Lines 4-22 describe the iterative steps in estimating
the parameters using Gibbs sampling. The iterative process
terminates when the values of parameters are convergent. The
convergent condition is determined by checking whether the
difference between the current estimated values and previous
estimated ones is smaller than a threshold. In our implementa-
tion, the process is stopped after a number of iterations, which
is large enough to ensure a small error. In each iteration, the
parameters are estimated for all source code documents s in
S (lines 7-13) and all bug reports b in B (lines 15-21).
Detailed Description. Let us explain in details all the steps.
Step 1: Estimating the topic assignment for source documents
in S (lines 7-10). With each document s in S, BugScout
estimates the topic assignment zs[i] for position i (line 9).
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Function EstimateZS (lines 26-31) provides the detailed com-
putation. For each topic k in K topics, BugScout estimates
the probability that topic k will be assigned for position i in
document s. Then, it samples a topic based on the probabilities
of ks (line 30). The equation follows the topic assignment
estimation by Gibbs sampling in LDA [7]:

p(zi = k|zs[−i], ws) =
(ns[−i, k] + α)

(ns − 1 +Kα)

(nsrc,k[−i, wi] + β)

(nsrc,k − 1 + V β)
(1)

where ns[−i, k] is the number of words in s (except for the
current position i) that are assigned to topic k; ns is the total
number of words in s; nsrc,k[−i, wi] is the number of words
wi in all source documents S (except for the current position)
that are assigned to topic k; and nsrc,k is the number of all
words in S that are assigned to topic k.

The intuition behind this equation is that, given a word
ws[i] at position i of document s, the probability a topic k
that is assigned to that position can be estimated based on
both the proportion of the terms in s (excluding the current
one) that describe topic k (i.e. (ns[−i,k])

(ns−1) ) and the probability
that the current term ws[i] appears if topic k is assigned (i.e.
(nsrc,k[−i,wi])

(nsrc,k−1) ). Moreover, the current position value can be
estimated by prior knowledge of surrounding positions.
Step 2: Estimating topic proportion θs for a source file
(line 11). Line 11 shows the estimation for the topic proportion
of source file s. Once topic assignments for all positions in
s are estimated, the topic proportion θs[k] of topic k in that
document can be approximated by simply calculating the ratio
between the number of words describing the topic k and the
length of the document.
Step 3: Estimating word distribution ϕsrc (line 13). Line 13
shows the estimation for the per-topic word distribution for
each word wi from V oc (size V ) and topic k. ϕsrc,k is a vector
of size V representing how often each word in vocabulary V oc
can be used to describe topic k in the source file collection S.
Element at index i in ϕk determines how often the word with
index i in V oc can be used to describe k. Thus, ϕk[wi] can be
approximated by the ratio between the number of times that
the word index i in V oc is used to describe topic k and the
total number of times that any word that is used to describe k.
Step 4: Estimating the topic assignment for bug reports in B
(lines 16-18). For each bug report b in B, BugScout estimates
the topic assignment zb[i] for position i (line 17). Function
EstimateZB1() (lines 33-38) provides the detail. For each topic
k in K, BugScout estimates the probability that topic k will
be assigned for position i. It then samples a topic based on the
probabilities of ks (line 37). The estimate equation is similar
to that for a source file document:

p(zb[i] = k|zb[−i], wb) =
(n∗b [−i, k] + α)

(n∗b [−i] +Kα)

(nBR,k[−i, wi] + β)

(nBR,k − 1 + V β)
(2)

where nBR,k[−i, wi] is the number of words wi in all bug
reports in B, except the current position, that are assigned to
topic k, and nBR,k is the number of words in S describing k.

The crucial difference between (2) and (1) is that because
a bug report describes the buggy topic(s) in the correspond-
ing source documents, the proportion θ∗ of a topic k de-
scribed in the bug report includes its own topic proportion
θb and the topic proportions of corresponding source files
θs1 , θs2 , ..., θsM , where s1, s2, ..., sM ∈ Ls(b) (i.e. the set
of buggy source files linking to bug report b). That leads to

n∗b [−i, k] = nb[−i, k]
∏

s∈Ls(b)

ns[k] and

n∗b [−i] = (nb − 1)
∏

s∈Ls(b)

ns, in which nb[−i, k] is the

number of words in b (except for the current position i) that
are assigned to topic k. nb is the total number of words in b.
For each buggy source document s linked to b, ns[k] is the
number of words in s (except for the current position i) that
are assigned to topic k. ns is the total number of words in s.
Step 5: Estimating topic proportion θb for a bug report b and
estimate word distribution ϕBR (line 19 and line 21). Those
estimation steps are similar to the steps for θs and ϕsrc.

B. Predicting and Recommending Algorithm

The goal of this algorithm is to estimate the topic proportion
of a newly arrived bug report bnew and derive a candidate
list of potential buggy source files that cause the reported
bug(s). The algorithm uses the trained model from the previous
algorithm to estimate the topic proportion of bnew, then it uses
a similarity measure to compute the topic similarity between
bnew and each source file s in S. The similarity, in combination
with P(s), will be used to estimate how likely s can cause the
bug reported in b. The output of the algorithm will be a list
of potential buggy source files corresponding to the given bug
report. Our algorithm is also based on Gibbs sampling.

Figure 8 describes the steps of our algorithm. Lines 4-10
show the estimation step for parameters zbnew and θbnew for
new bug report bnew (we do not need to recalculate ϕBR

because they are fixed after the training phase). Because we do
not know the buggy links between source files and bnew, we
use LDA Gibbs sampling formula to estimate topic assignment
and topic proportion for bnew. The function for estimating
zbnew is described in EstimateZB2 (lines 18-23). In the equation,
nbnew

[−i, k] is the number of words in bnew (except the
current position i) that are assigned to topic k. nbnew is the
total number of words in bnew. nBR,k[−i, wi] is the number of
words wi in all source files S (except the current position) that
are assigned to topic k. nBR,k is the number of all words in S
that are assigned to topic k. BugScout calculates δ(s, bnew),
i.e. the probability that source file s causes the bug reported
in bnew (lines 12-14). δ(s, bnew) is calculated by multiplying
the buggy profile p(s) of s and the topic similarity measure
sim(...) between s and bnew (lines 24-28). Finally, it returns a
ranked list of potential buggy files corresponding to bnew.

V. EVALUATION

This section describes our empirical evaluation on buggy
files recommendation accuracy of BugScout for given bug
reports in comparison with the state-of-the-art approaches. All
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1 // −−−−−−−−−− Predict and return relevant list −−−−−−−−−
2 function Predict(zS , zB , θS , θB , ϕsrc, ϕBR, BugReport bnew , Prior P (s))
3 // Estimate topic proportion of new bug report bnew

4 repeat
5 z′

bnew
← zbnew

6 for (i = 1 to Nb)
7 zbnew = EstimateZB2(bnew , i) //estimate topic assignment at position i
8 end
9 θbnew [k] = Nbnew [k]/Nbnew //estimate topic proportion

10 until (|zbnew − z′
bnew

| <= ϵ)
11 // Calculate relevance of source files to a bug report
12 for (SourceFile s ∈ S)
13 δ(s, bnew)← P (s) ∗ sim(s, bnew) //calculate prob of s causing the bug
14 end
15 return rankedList(δ(s, bnew))
16 end
17 // −−−−−−−−− Estimate topic assignment for b −−−−−−−−
18 function EstimateZB2(BugReport bnew ,, int i)
19 for (k = 1 to K)

20 p(zbnew [i] = k)←
(nbnew

[−i,k]+α)

(nbnew
−1+Kα)

(nBR,k[−i,wi]+β)

(nBR,k−1+V β)

21 end
22 zbnew [i]← sample(p(zbnew [i]))
23 end
24 // −−Calculate topic similarity between a source file and a bug report −
25 function sim(SourceFile s,BugReport bnew)
26 σ ←

∑
k=1..K

θs[k]θbnew [k] //calculate dot product

27 Sim← 1
1+exp(−σ)

28 end

Fig. 8: Predicting and Recommending Algorithm

experiments were carried out on a computer with CPU AMD
Phenom II X4 965 3.0 GHz, 8GB RAM, and Windows 7.

A. Data Sets

We collected several datasets in different software projects
including Jazz (a development framework from IBM), Eclipse
(an integrated development environment), AspectJ (a compiler
for aspect-oriented programming), and ArgoUML (a graphical
editor for UML). Eclipse, ArgoUML, and AspectJ datasets are
publicly available [24], and have been used as the benchmarks
in prior bug file localization research [19], [24]. All projects
are developed in Java with a long history.

Each data set contains three parts. The first part is the set
of bug reports. Each bug report has a summary, a description,
comments, and other meta-data such as the levels of severity
and priority, the reporter, the creation date, the platform and
version. The second part is the source code files. We collected
all source files including the buggy versions and the fixed
files for all fixed bug reports. The third part is the mapping
from bug reports to the corresponding fixed files. For Jazz
project, the developers were required to record the fixed files
for bug reports. For other projects, the mappings were mined
from both version archives and bug databases according to
the method in [24]. Generally, the change logs were mined to
detect special terms signifying the fixing changes. Details are
in [24]. Table I shows the information on all subject systems.

B. Feature Extraction

Our first step was to extract the features from bug reports
and source files for our model. For the bug reports/files,
grammatical words and stopwords were removed to reduce
noises, and other words were stemmed for normalization as

TABLE I
Subject Systems

System Jazz Eclipse AspectJ ArgoUML
# mapped bug reports 6,246 4,136 271 1,764
# source code files 16,071 10,635 978 2,216
# words in corpus 53,820 45,387 7,234 16,762

in previous work [19], [13]. Tf-Idf was then run to determine
and remove the common words that appear in most of the bug
reports. The remaining words in the bug reports were collected
into a common vocabulary V oc. A word was indexed by its
position in the vocabulary.

Only fixed bug reports were considered because those
reports have the information on corresponding fixed source
files. We used the summary and description in a bug report
as a bug report document in BugScout. For a fixed source
document, we used the comments, names, and identifiers.
Identifiers were split into words, which were then stemmed.
Next, a feature vector was extracted from each document. A
vector has the form Wi = (wi0, wi1, . . . , wiN ), where wik is
an index of the word at position k in V oc, and N is the length
of the source or bug report document. The vectors were used
for training and predicting. For prediction, BugScout outputs
a ranked list of relevant files to a given bug report.

C. Evaluation Metrics and Setup

To measure the prediction performance of BugScout, we use
the top rank evaluation approach. Our prediction tool provides
a ranked list of 1-20 (n) potential fix files for each bug report
in a test set. n could be seen as the number of candidate
files to which developers should pay attention. The prediction
accuracy is measured by the intersection set of the predicted
and the actually fixed files. We consider a hit in prediction, if
BugScout predicts at least one correct fixed/buggy file in the
ranked list. If one correct buggy file is detected, a developer
can start from that file and search for other related buggy files.
Prediction accuracy is measured by the ratio of the number of
hits over the total number of prediction cases in a test set.
Accuracy was reported for all top-rank levels n.

In our experiment, we used the longitudinal setup as in [19]
to increase the internal validity and to compare with prior
results. The longitudinal setup allows data in the past history to
be used for training to predict for the more recent bug reports.

First, all bug reports in a subject system were sorted
according to their filing dates, and then distributed into ten
equally sized sets called folds: fold 1 is the oldest and fold
10 is the newest in the chronological order. BugScout was
executed several times in which older folds were used for
training and the last fold was used for prediction. Specifically,
at the first run, fold 1 was used for training to predict the
result for fold 2 (fold 1 was not used for prediction because
there is no prior data). For each bug report in fold 2, we
measured the accuracy result for that report by comparing the
predicted fixing files with the actual fixed files. An average
accuracy was recorded for fold 2. We continued for fold 3
using both folds 1 and 2 as the training set. We repeated until
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fold 10 using all first nine folds as the training set. For each
top-rank level n=1-20, we also measured the average accuracy
across all nine test sets from folds 2-10. By using this setup,
we could have a realistic simulation of real-world usage of
our tool in helping bug fixing as a new bug report comes. If
data is randomly selected into folds, there might be the cases
where some newer data would be used for training to predict
the buggy files corresponding to the older bug reports.

D. Parameter Sensitivity Analysis

Our first experiment was to evaluate BugScout’s accuracy
with respect to the number of chosen topics K. We chose
ArgoUML for this experiment. Two hyper-parameters α and
β were set to 0.01. We compared the results when the defect-
proneness information of source files P (s) was used and was
not used (Section III). We varied the values of K: if K is from
1-100, the step is 10 and if K is from 100-1,000, the step is
100. The accuracy values were measured for each top-rank
level n=1-20. Figure 9 shows the top-1 to top-20 accuracy
results. As shown, for this dataset in ArgoUML, the accuracy
achieves its highest point in the range of around 300 topics.
That is, this particular data set might actually contain around
that number of topics. As K is small (< 50), accuracy was
low because there are many documents classified into the same
topic group even though they contain other technical topics.
When K is around 300, the accuracy reaches its peak. That is
because those topics still reflect well those reports and files.
However, as K is large (>500), then the nuanced topics may
appear and topics may begin to overlap semantically with each
other. It causes one document having many topics with similar
proportions. This overfitting problem degrades accuracy. This
phenomenon is consistent for all top-rank levels.

We repeated the same experiment, however, in this case, we
used BugScout with the defect-proneness information P (s) of
the files, i.e. the number of bugs of the files in the past history
and the sizes of the files (Section III). Figure 10 shows the
result. As seen, with this information about the source files, at
K = 300, BugScout can improve from 3-11% for top-5 to top-

Fig. 10: Accuracy and the Number of Topics with P(s)

20 accuracy. Importantly, for this dataset, accuracy is generally
very good. With top-5 accuracy of 24%, when BugScout
recommends a ranked list of 5 files, one in four cases, that
list contains a correct buggy file for the bug report. With the
ranked list of 10 files, the accuracy is about 33%, that is, one
of three cases, a buggy file for the bug report is actually in that
recommended list. This result also shows that BugScout can
potentially be combined with other defect-proness prediction
algorithms [15], [17], [21] to improve accuracy.

E. Accuracy Comparison

Our next experiment was to evaluate BugScout’s accuracy
in comparison with that of the state-of-the-art approaches: the
Support Vector Machine (SVM)-based approach by Premraj et
al. [19] and the approach by Lukins et al. [12] that combines
LDA and Vector Space Model (VSM). For the former ap-
proach, we re-implemented their approach by using the same
machine learning tool LIBSVM [5] as in their work. For the
latter one, we re-implemented their LDA+VSM approach with
our own code. For our tool, we performed the tuning process
to pick the right number of topics as described earlier.

Figure 11 shows the accuracy result on Jazz dataset. The X-
axis shows the size n of the top-ranked list. As seen, BugScout
outperforms both SVM and LDA+VSM. For top-1 accuracy, it
achieved about 34%: when BugScout recommended one single
file for each bug report in a test set, it correctly predicted the
buggy file 34% on average. That is, in one of three cases,
the single recommended file was actually the buggy file for
the given bug report. The corresponding top-1 accuracy levels
for SVM and LDA+VSM are only 25% and 7%, respectively.
Thus, in top-1 accuracy, BugScout outperformed those two
approaches by 9% and 27%, respectively. With the ranked list
of 5 files, the top-5 accuracy is around 40%. That is, in four
out of ten cases, BugScout was able to recommend at least one
correct buggy file among its 5 recommended files. The cor-
responding numbers for SVM and LDA+VSM are only 31%
and 18%. At top-10 accuracy, BugScout also outperformed the
other two approaches by 7% and 16%, respectively.
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Fig. 12: Accuracy Comparison on AspectJ dataset

Interesting examples. Examining those results, we found
that BugScout could detect within the top-10 ranked list
all buggy files of bug reports in Section II and several
similar cases. BugScout also correctly detected the buggy
files that have never been defective in the past. For ex-
ample, for bug report #47,611 in Jazz, BugScout correctly
detected with its single recommendation the buggy file
com.ibm.team.scm.service.internal.IScmDataMediator, which was
not in the training set (i.e. not found buggy before).

Figure 13 shows the comparison result on Eclipse dataset.
Figure 12 and Figure 14 display the comparison results
on AspectJ and ArgoUML datasets, respectively. As seen,
BugScout consistently achieved higher accuracy from 8-20%
than the other two approaches for top-1 to top-5 ranked lists.
For top-10 accuracy, the corresponding number is from 5-19%.
Time Efficiency. Table II displays running time of our tool.
Both average training time and prediction time for one bug
report is reasonably fast: 0.3s-1.3s and 0.8s-25s, respectively.
Generally, BugScout is scalable for systems with large num-
bers of bug reports, thus, is well-suited for daily practical use.
Threats to Validity. Our experiment was only on 4 systems.
We also re-implemented the existing approaches since their

Fig. 13: Accuracy Comparison on Eclipse dataset

Fig. 14: Accuracy Comparison on ArgoUML dataset

tools are not available. However, we used the same library as
used in their tools for our re-implementation.

TABLE II
Time Efficiency

System Jazz Eclipse AspectJ ArgoUML
Average Training Time per BR (s) 1.31 1.16 0.32 0.97
Average Prediction Time per BR (s) 25 20.1 0.79 11.6

VI. RELATED WORK

A related work to BugScout is from Lukins et al. [12].
They directly applied LDA analysis on bug reports and files
to localize the buggy files. They perform indexing on all source
files with the detected topics from LDA. Then, for a new bug
report, a textual query is formed from its description and a
search via Vector Space Model (VSM) is performed among
such indexed source files. In contrast, BugScout correlates the
topics in both source files and bug reports, and uses topics
as a random variable in our model. Moreover, their approach
does not work well if the code contains few common terms
with a new bug report. As shown in Section V, BugScout
outperformed their approach of LDA+VSM.
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TRASE [1] combines LDA with prospective traceability,
i.e. capturing developers’ activities during development, for tr-
acing between architecture-based documents and source code.
Instead of directly using LDA, BugScout correlates bug reports
and buggy files via shared topics. Prospective tracing links are
also incorporated in BugScout via the links from bug reports
and corresponding fixed files recorded during bug fixing.

Bugtalks from Premraj et al. [19] addresses the bug localiza-
tion using bug reports’ information. They combine a machine
learning approach using Support Vector Machine (SVM) on
textual features in documents with a usual suspect list (i.e. the
list of frequently buggy locations) with the philosophy that
bugs tend to concentrate in selected code components. To train
the SVM model, bug reports are paired with their fixed files
in the usual suspect list to form positive examples. However,
their approach faces unbalanced data with a huge number
of negative examples, which are the incorrect pairs of bug
reports and files. Thus, their accuracy depends much on the
randomly selected set of such negative examples. Moreover,
their approach assumes that a bug report contains similar
terms as the identifiers in the fixed files. BugScout does not
need negative examples and it correlates the reports and fixed
files via common topics. Evaluation results also show that
BugScout achieves higher top-5 accuracy from 5-12%.

Ostrand et al. [18] and Bell et al. [3] developed negative
binomial regression models to predict the expected number
of faults in each file of the next release. Despite using
information from modification requests (MRs) (release IDs,
abstract, category), their model is mainly based on the code,
bugs, and the modification histories of the files.

In software traceability and concept/feature location re-
search, several Information Retrieval (IR) approaches have
been proposed to trace the relations of high-level concepts
in code. The followings and their combined approaches are
popular: formal concept analysis [11], Latent Semantic In-
dexing [13], probabilistic topic models and LDA [10], [1],
name-based model [2], and a combination of IR and execution
traces [11]. Comparing to IR approaches, BugScout is able to
learn the correlation of the topics in two different types of
documents: bug reports and corresponding buggy code.

Our approach complements well to bug prediction ap-
proaches [17], [23], [9]. Some relies on code churns and
code changes [15], [22], [17], [21]. They focus on code
properties and changes, rather than on textual information
in bug reports as in BugScout. They can provide excellent
a-priori information on defect-proneness of source files for
BugScout. Moser et al. [15] built machine learners with logis-
tic regression, Naı̈ve Bayes, and decision trees with metrics on
code changes. Nagappan et al. [17]’s model uses the metrics
based on change bursts. Canfora and Cerulo [6] store textual
descriptions of fixed change requests, use them to index the
source files for searching from a new change request. Other
prediction approaches rely on code and change complexity
metrics [16], [14], [8]. Others also show that files depending on
buggy modules are likely to be error-prone [23]. BugCache [9]
maintains a cache of locations that are likely to have faults.

VII. CONCLUSIONS

We propose BugScout, an automated approach to localize
the buggy files given a bug report. It assumes that the textual
contents of a bug report and those of its corresponding source
code share some technical aspects of the system. We develop
a specialized topic model, that represents the technical aspects
in the textual contents of bug reports and source files as topics,
and correlates bug reports and buggy files via the shared topics.
Empirical results show that BugScout is accurate in localizing
buggy files and outperforms existing approaches. We plan to
explore convergence measures for Gibb sampling as in [20].
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