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Work of Ehresmann and Schein shows that an inverse semi-
group can be viewed as a groupoid with an order structure;
this approach was generalized by Nambooripad to apply to
arbitrary regular semigroups. This paper introduces the no-
tion of an ordered 2-complex and shows how to represent any
ordered groupoid as the fundamental groupoid of an ordered
2-complex. This approach then allows us to construct a stan-
dard 2-complex for an inverse semigroup presentation.

Our primary applications are to calculating the maximal
subgroups of an inverse semigroup which, under our topo-
logical approach, turn out to be the fundamental groups of
the various connected components of the standard 2-complex.
Our main results generalize results of Haatja, Margolis, and
Meakin giving a graph of groups decomposition for the max-
imal subgroups of certain regular semigroup amalgams. We
also generalize a theorem of Hall by showing the strong em-
beddability of certain regular semigroup amalgams as well as
structural results of Nambooripad and Pastijn on such amal-
gams.

1. Introduction.

In the fifties, there were two attempts to axiomatize the underlying structure
of pseudogroups of diffeomorphisms of manifolds. One approach, by Wagner
(and independently by Preston [16]), was via inverse semigroups; the other,
by Ehresmann, was via ordered groupoids, namely the so-called inductive
groupoids popularized amongst semigroup theorists by Schein [18]. It is fas-
cinating that some results are proved more easily via the inverse semigroup
approach, while others are more naturally proved from the point of view
of ordered groupoids. In his seminal paper [11], Nambooripad extended
this equivalence to an equivalence between regular semigroups and, what we
shall call in this paper, r-inductive groupoids. Recent work [15] emphasizes
the importance of inverse semigroups in the theory of C∗-algebras.

In this paper, building on the idea that any groupoid can be realized as
the fundamental groupoid of a 2-complex, we introduce the notion of an
ordered 2-complex and show that any ordered groupoid can be realized as
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the fundamental ordered groupoid of an ordered 2-complex. In the process,
we introduce the notion of a presentation of an ordered groupoid. While an
inverse semigroup presentation is different from an ordered groupoid presen-
tation, we show how to construct an ordered groupoid presentation from any
inverse semigroup presentation by constructing what we call the standard
ordered 2-complex of an inverse semigroup presentation (generalizing the
usual notion from group presentations). This complex is closely related to
the Munn and right letter mapping representations of the inverse semigroup.

The maximal subgroups of the inverse (regular) semigroup will turn out
to be the fundamental groups of the connected components of an ordered
2-complex representing the semigroup. This will allow us to obtain a quick
topological proof that if a maximal subgroup of a finitely presented inverse
semigroup acts on the left of itsR-class with finite quotient, then it is finitely
presented.

We also introduce the Schützenberger complex of an inverse semigroup
presentation. This complex is a π1-trivial covering space of the standard
ordered 2-complex of the presentation and plays a role in the theory sim-
ilar to that played by the Cayley complex (which it generalizes) in group
theory. The 1-skeleton of the Schützenberger complex is the union of all
the Schützenberger graphs of the presentation [24]. This complex and the
standard ordered 2-complex, both of which are built from semigroup the-
oretic tools, provide a link between the semigroup and ordered groupoid
approaches to the subject.

Our main result is a structure theorem for maximal subgroups of certain
amalgams. In [3], it is proved that a maximal subgroup of a full amalgam
of regular semigroups has a certain graph of groups decomposition. In this
paper, we are able to weaken the restrictions and, at the same time, obtain
a much simpler proof. The proof of [3] relies on Bass-Serre theory whence
they have to construct an action of the maximal subgroup on a tree with
appropriate stabilizers; they use normal forms for the amalgamated product
in order to do this. Our approach is to show that the amalgamated product
can be represented by a topological space which is a segment of disconnected
2-complexes; the structure of the maximal subgroups then follows from an
obvious decomposition of such a graph of 2-complexes into a graph of con-
nected 2-complexes. In the process, we extend a result of Hall [4] on the
strong embeddability of regular semigroup amalgams as well as structural
results of Nambooripad and Pastijn [12] on such. We obtain further results
for certain inverse semigroup amalgams, overlapping at times with results
of Bennet [1]. We also obtain results for certain amalgams in the category
of inverse semigroups and prehomomorphisms. For some related results on
inverse semigroup amalgams, see [22].
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Future work, will show that the various structure theorems for idempotent
pure morphisms of inverse semigroups correspond to facts about when a
morphism of ordered 2-complexes can be extended nicely to a covering.

2. Preliminaries.

If A is a set, we let Ã = A ∪ A−1. Then Ã+ will denote the free semigroup
and Ã∗ the free monoid with involution on A.

If S is a semigroup, an element e ∈ S is an idempotent if e2 = e. The set
of idempotents of S will be denoted E(S). An element s ∈ S is called regular
if s = sts for some t ∈ S. A semigroup in which each element is regular
is called a regular semigroup. If s and t are such that sts = s and tst = t,
then s and t are said to be inverses of each other. One can show that an
element is regular if and only if it has an inverse [6]. A semigroup S is called
an inverse semigroup if each element s ∈ S has a unique inverse (denoted
s−1) or, equivalently, if it is regular and has commuting idempotents [7].
The notation S1 is used for the monoid obtained by adding an identity to
S. We refer the reader to [7] for more on inverse semigroups. In this paper,
we shall primarily focus on inverse semigroups, only occasionally speaking
of more general regular semigroups.

We briefly recall Green’s relations [6]. If S is a semigroup, then we write
s ≤R t if sS1 ⊆ tS1; this is a preorder and we use R for the associated
equivalence relation. The preorder ≤L and equivalence relation L are defined
dually. One sets H= R ∩ L and D = R ◦ L; D is the smallest equivalence
relation containing R and L. If e ∈ E(S), then the H-class of e is the
maximal subgroup with identity e [6]. For an inverse semigroup, s R t if
and only if ss−1 = tt−1 [7] and dually for L.

If I is an inverse semigroup, there is a natural partial order on I defined
by s ≤ t if s = ss−1t. This order is well-known to be compatible with the
operations of multiplication and taking inverses [7].

Inverse semigroups can be viewed as a variety of unary semigroups and as
such there is a free inverse semigroup on any set as well as a notion of inverse
semigroup presentations; see [24] for some graph-theoretical techniques for
working with inverse semigroup presentation.

A morphism ϕ of partially ordered sets is called an order embedding if
ϕ(x) ≤ ϕ(y) if and only if x ≤ y. A surjective order embedding is called an
order isomorphism.

3. Ordered graphs.

Following the Serre convention [19], we define a graph X to consist of: A
set V (X) of vertices; a set E(X) of edges; an involution e 7→ e−1 on E(X);
and a function d : E(X) → V (X) which selects the initial vertex of an
edge (the terminology d is chosen to suggest the word domain). We define
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r : E(X) → V (X) by r(e) = d(e−1) (and r(e) is called the terminal vertex
of e). One defines, for v ∈ V (X), Star(v) = d−1(v). In general, we shall
require e−1 6= e, the exception being when we view groupoids as graphs
in which case local group elements of order 2 will have this property. Our
reason for choosing this unorthodox notation for graphs is because many of
our graphs will, in fact, be groupoids, where the terms domain and range
have obvious meanings.

Graph morphisms are defined in the obvious way. If ϕ : X → Y is a graph
morphism and, for each v ∈ V (X), ϕ : Star(v) → Star (ϕ(v)) is, respectively,
injective, surjective, bijective, then ϕ is called, respectively, an immersion,
a fibration, a covering.

An ordered graph is a graph X such that: V (X) and E(X) are partially
ordered sets; the involution and d preserve order (whence r preserves or-
der); and if e ∈ E(X), v ∈ V (X) are such that v ≤ d(e), then there is a
unique edge of X, denoted (v|e), with d(v|e) = v and (v|e) ≤ e, called the
restriction of e to v. Note that this third condition implies that the edges of
Star(v) are incomparable for any vertex v. Observe that if v ≤ d(e), then
(v|e)−1 = (r(v|e)|e−1). Morphisms of ordered graphs are graph morphisms
which preserve the partial order.

If v1, v2 ∈ V (X) and v1 ≤ v2, we can define a restriction map resv1
v2

:
Star(v2) → Star(v1) by resv1

v2
(e) = (v1|e). The above, together with straight-

forward reasoning, shows that these restriction maps satisfy the following
three properties:

(1) v1 ≤ v2 ≤ v3 =⇒ resv1
v2

resv2
v3

= resv1
v3

;
(2) r(resv1

v2
(e)) ≤ r(e);

(3) resv1
v2

(e)−1 = res
r(res

v1
v2

(e))

r(e) (e−1).

Any morphism of ordered graphs automatically preserves these restrictions
maps.

Conversely, given a graph X such that V (X) is partially ordered and
given maps resv1

v2
: Star(v2) → Star(v1), whenever v1 ≤ v2, satisfying the

above three properties, we can turn X into an ordered graph by defining,
for e1, e2 ∈ E(X), e1 ≤ e2 if d(e1) ≤ d(e2) and e1 = resd(e1)

d(e2)(e2). We shall
use freely throughout these two equivalent formulations of the definition of
an ordered graph.

An ordered subgraph of an ordered graph is a subgraph which is an or-
dered graph with the induced ordering (that is, a subgraph closed under
restrictions).

4. Ordered groupoids.

If G is an ordered graph, then two edges e1, e2 are said to be composable if
r(e1) = d(e2). An ordered groupoid is an ordered graph with an associative
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multiplication on composable edges satisfying, whenever the compositions
make sense:

(1) xx−1y = y;
(2) x1 ≤ y1, x2 ≤ y2 =⇒ x1x2 ≤ y1y2.

The first condition implies that at each vertex v there is a unique identity
which will be denoted 1v. It is easy to show that the map v 7→ 1v is an order
isomorphism.

In terms of the restriction maps, the second condition becomes: If x1x2

is defined and v ≤ d(x1), then

(v|x1x2) = (v|x1)(r(v|x1)|x2).

Remember that, for groupoids, we do allow e = e−1.
An ordered subgroupoid of an ordered groupoid is a subgroupoid which is

an ordered subgraph.
An inductive groupoid is an ordered groupoid G in which V (G) is a semi-

lattice; we shall call G r-inductive if V (G) is a biordered set [11]. These
definitions make perfect sense for ordered graphs and we shall extend their
domains to that realm. The notions of ordered and inductive groupoids are
due to Ehresmann [2]; see also Schein [18].

Any inverse semigroup I can be realized as an inductive groupoid as fol-
lows: V (I) = E(I); E(I) = I; the order is the natural partial order; the
inverse is the inverse; d(s) = ss−1; and the product is the usual multipli-
cation. Conversely, given an inductive groupoid I, we can define an inverse
semigroup whose elements are E(I). If s, t ∈ E(I), we define

st = (r(s) ∧ d(t)|s−1)−1(r(s) ∧ d(t)|t).

These two constructions are inverse to each other; see [7] for more details.
We observe that theR-class of an idempotent e ∈ E(I) is Star(e), theH-class
of e is the local group at e (see below for the definition), and the D-class of e
is the connected component of the groupoid containing e. Inverse semigroup
homomorphisms correspond to ordered groupoid morphisms which preserve
the inductive structure.

There is a similar, but more complicated, correspondence between regular
semigroups and r-inductive groupoids [11].

A groupoid in the usual sense is an ordered groupoid under the equality
ordering. In particular, any group is an inductive groupoid.

If v ∈ V (G) is a vertex of an ordered groupoid G, then

Gv = {g ∈ E(G)|d(g) = v = r(g)}

is a group called the local group or maximal subgroup of G at v.
An order ideal in a partially ordered set is a subset I such that x ≤

y ∈ I implies x ∈ I. If G is an ordered groupoid, we use Id (G) to denote



372 BENJAMIN STEINBERG

the ordered subgroupoid consisting of all vertices and identities. It can be
shown [7] that E(Id(G)) is an order ideal in E(G).

5. Paths and free ordered groupoids.

A path in a graph is defined in the usual way; we allow an empty path at
each vertex. If p is a path, we shall use d(p) for its initial vertex, r(p) for its
terminal vertex, and p−1 for the reverse path. A path p is said to be closed if
d(p) = r(p). If p is a closed path, we say that a path p′ is a cyclic conjugate
of p if p = st and p′ = ts (that is, p and p′ are “the same path” starting from
different vertices). A closed path is called simple if the only repetition of
vertices when tracing the path occurs when one reaches the end. Connected
components of a graph are defined in the usual way. Using terminology
suggestive of semigroup theory, connected components will also be called
D-classes. If v is a vertex, then Dv will denote the D-class of v. Note that
all maximal subgroups at vertices of the same D-class are isomorphic.

We say that a path p is obtained from a path p′ by an elementary homo-
topy if p is gotten from p′ by inserting or deleting a subpath of the form ee−1.
One says that paths p and p′ are homotopic if p can be turned into p′ by a
finite sequence of elementary homotopies; this is an equivalence relation and
equivalent elements are coterminal. It is well-known that this definition is
equivalent to asking that the paths be homotopic (in the topological sense)
in the geometric realization of the graph.

We now aim to prove that the fundamental groupoid of an ordered graph
is an ordered groupoid in a natural way. We shall need several lemmas to
achieve this. First we define restriction maps for paths which are compatible
with homotopy. If X is an ordered graph, p = e1e2 . . . en is a path, and
v ≤ d(p) we define (v|p) as follows: First set e′1 = (v|e1); then, inductively,
set e′i+1 = (r(e′i)|ei+1) for 1 ≤ i ≤ n− 1. It is straightforward to check that

(v|p) = resv
d(p)(p) = e′1 . . . e

′
n

is a path starting at v. Observe that r(v|p) = r(e′n) ≤ r(en). One can show
by induction that if v1 ≤ v2 ≤ v3, then resv1

v2
resv2

v3
= resv1

v3
.

Lemma 5.1. Suppose p = e1 . . . en and p′ = f1 . . . fm are paths in an or-
dered graph with r(p) = d(p′) and v ≤ d(p). Then:

(1) (v|pp′) = (v|p)(r(v|p)|p′);
(2) resr(v|p)

r(p) (p−1) = (v|p)−1.

Proof. The inductive nature of the definition of the restriction of a path
shows that to prove 1, it suffices to show that the (n + 1)st edge of (v|pp′)
is (r(v|p)|f1). Letting e′1, . . . , e

′
n be as above, we see that the (n+ 1)st edge

is (r(e′n)|f1) = (r(v|p)|f1) as desired.
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We note that (2) follows immediately from (1) using induction (the base
case being part of the definition of an ordered graph). �

We now see how elementary homotopies behave under restriction.

Lemma 5.2. Suppose that e is an edge of an ordered graph and v ≤ d(e).
Then (v|ee−1) = (v|e)(v|e)−1.

Proof. By definition, (v|ee−1) = (v|e)(r(v|e)|e−1), but the right-hand side is
(v|e)(v|e)−1. �

Corollary 5.3. If p, p′ are homotopic paths in an ordered graph and v ≤
d(p) = d(p′), then (v|p) and (v|p′) are homotopic.

Proof. Follows immediately from Lemmas 5.1 and 5.2. �

What we have now proved is that if X is an ordered graph, then the
fundamental groupoid of X is an ordered groupoid. That is, we define an
ordered groupoid Π1(X) by taking V (Π1(X)) = V (X) and E(Π1(X)) to
be the set of all homotopy classes of paths in X; d and the involution are
defined in the obvious way. We can then use path composition and the path
restriction maps (defined above) to turn Π1(X) into an ordered groupoid,
Lemmas 5.1 and 5.2, together with Corollary 5.3, providing the necessary
verifications. This groupoid is called the fundamental ordered groupoid of X.
Its underlying groupoid is just the usual (simplicial) fundamental groupoid
of X (it is the subgroupoid of the topological fundamental groupoid whose
vertices are vertices of X and whose edges are homotopy classes of edge
paths). Note that X embeds in Π1(X) in a natural way and that if X is an
(r-)inductive graph, then so is Π1(X).

We leave the following ordered analog of a standard topological fact to
the reader:

Proposition 5.4. Let X be an ordered graph, G an ordered groupoid, and
ρ : X → G a morphism of ordered graphs. Then there is a unique ordered
groupoid morphism ρ : Π1(X) → G extending ρ. Furthermore, ρ is a,
respectively, immersion, fibration, covering if and only ρ is. In the (r)-
inductive setting, ρ preserves the (r)-inductive structure if and only if ρ
does.

Proposition 5.4 shows that Π1(X) is the free ordered groupoid generated
by X. To make this precise, we say that an ordered graph X generates
an ordered groupoid G if there is a morphism ρ : Π1(X) → G which is an
order isomorphism on vertex sets and surjective on edge sets. We warn the
reader that in the (r-)inductive setting, this concept does not correspond to
a choice of semigroup generators. The kernel

ker ρ =
{
p ∈ Π1(X) | ρ(p) = 1d(p)

}
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is then an order ideal. This leads us to the notion of an ordered groupoid
presentation.

If X is an ordered graph and R is a collection of closed paths in X, then R
is called a set of relators if p ∈ R and v ≤ d(p) implies (v|p) ∈ R (that is, R
is closed under restrictions). It then follows that the image of R in Π1(X) is
an order ideal. The ordered groupoid presented by generatorsX and relators
R, denoted 〈X|R〉, is then the quotient of Π1(X) obtained by identifying
two paths p, p′ if p can be gotten from p′ by a finite sequence of elementary
homotopies and insertions or deletions of paths in R∪R−1 (or, equivalently,
cyclic conjugates of such). The fact that R is closed under restrictions allows
one to show, similarly to the argument with elementary homotopies, that
the path restrictions induce well-defined maps on the quotient groupoid.
Note that every ordered groupoid G has a presentation since we can choose
G, itself, as the generating graph and all paths mapping into the kernel of
the canonical surjection as the set of relators. We call this the multiplication
table presentation.

If G is a group with generators A and relators R, then we can view Ã as
a bouquet of circles labeled by Ã, that is to say, as a graph X with a single
vertex and with edge set Ã; we impose the equality ordering. Then Π1(X)
is the free group on A and G is the ordered groupoid presented by A and R.

We remark that any ordered groupoid generated by an (r-)inductive graph
is (r)-inductive.

6. Ordered 2-complexes.

In the previous section, we saw how to add relations to the fundamental
ordered groupoid of an ordered graph; in this section, we look at the geo-
metric analog: Gluing in 2-cells. There are several ways in which we could
do this. For now, we shall choose a rather general method; future develop-
ments, especially the consideration of higher dimensional complexes, might
make it necessary to impose more stringent restrictions.

From now on, we shall be a little less formal about topological ideas (thus
requiring a greater familiarity with such on the part of the reader) to avoid
the cumbersome task of defining coverings of 2-complexes combinatorially.

We define a 2-cell to be a regular n-gon in R2, n > 0, where, by convention,
we take a regular 1-gon to be the unit disk with a single vertex (0, 1) and
one edge pair {e, e−1}, and we take a regular 2-gon to be the unit disk with
vertices (−1, 0) and (1, 0) with the obvious two edge pairs. If c is a 2-cell,
its boundary will be denoted ∂c.

An ordered 2-complex X consists of an ordered graphX(1) (the 1-skeleton)
and a set C(X) consisting of pairs (c, fc) where c is a 2-cell and fc : ∂c →
X(1) is a graph morphism called the attaching map for c. Topologically, c
is glued to X(1) via fc. We shall write V (X) and E(X) for the vertex and
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edge sets of X(1). A defining path for (c, fc) ∈ C(X) is the image under fc

of a simple, nonempty, closed path in ∂c. We then require, for any defining
path p for (c, fc) and w ≤ d(p), that (w|p) is a defining path for some
(c′, fc′) ∈ C(X). Future work may show that we actually want to order
C(X) and have a restriction map.

Given an ordered 2-complex, we can define a set of relators by

RX = {p | p is a defining path for some (c, fc) ∈ C(X)} ;

the definition of an ordered 2-complex insures that RX is closed under re-
strictions. We define

Π1(X) = 〈X|RX〉

to be the fundamental ordered groupoid of X. As before, one can verify that
two paths in X(1) are homotopic topologically in (the geometric realization
of) X if and only if they are equivalent in Π1(X); that is, Π1(X) embeds
naturally as a subgroupoid of the topological fundamental groupoid. Once
again, we have the standard (simplicial) fundamental groupoid if we ignore
the ordering.

If v ∈ V (X), then π1(X, v) will be used to denote the local group at
v and is called the fundamental group of X at v. If Y is a connected 2-
complex, then π1(Y ) will be used to denote the abstract group to which
all fundamental groups of Y are isomorphic. The majority of 2-complexes
which we shall consider will not be connected and so we cannot in general
speak of the fundamental group of X. An ordered 2-complex will be called
π1-trivial if its fundamental group at each vertex is trivial (or, equivalently,
each connected component is simply connected).

If G is a group given by generators and relators, then its standard 2-
complex with the equality ordering has fundamental ordered groupoid ex-
actly the group. More generally, it is immediate how to realize any ordered
groupoid given by generators and relators as the fundamental ordered group-
oid of an ordered 2-complex.

We shall call an ordered 2-complex (r-)inductive if its 1-skeleton is such.
In this case, the fundamental groupoid will be (r-)inductive as well. It
follows that any inverse (regular) semigroup can be represented as the fun-
damental ordered groupoid of an ordered 2-complex, generalizing the usual
result for groups.

Morphisms of ordered 2-complexes are defined in the obvious way. Let
ϕ : X → Y be a morphism of ordered 2-complexes. Then there is an
induced morphism ϕ∗ : Π1(X) → Π1(Y ). If ϕ is a covering morphism in
the topological sense, then ϕ∗ will be a covering morphism, but the converse
fails. In general, ϕ∗ being a, respectively, immersion, fibration, covering is
equivalent to ϕ having, respectively, at most one lift to any vertex of each
path in Y , unique path-lifting, path-lifting.
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7. The Schützenberger complex.

In this section, we construct a π1-trivial covering of an ordered 2-complex
which plays a role in the theory analogous to that of the Cayley complex
(or universal covering) in group theory. The goal of this section is to prove
the following theorem:

Theorem 7.1. Let X be an ordered 2-complex. Then there is a π1-trivial
ordered 2-complex X̃ and a surjective ordered covering ϕ : X̃ → X. More-
over, for each vertex v ∈ V (X), there is a connected component X̃v and a
free action of π1(X, v) on X̃v such that Dv = π1(X, v)/X̃v.

Let X be an ordered 2-complex. Then the Schützenberger graph of X,
denoted X̃(1), is defined as follows:

(1) V (X̃(1)) = E(Π1(X));
(2) E(X̃(1)) = {(g, x) | g ∈ E(Π1(X)), x ∈ E(X), and r(g) = d(x)}.

We define d(g, x) = g and (g, x)−1 = (gx, x−1). The order on V (X̃(1)) is
as on E(Π1(X)), while the order on E(X̃(1)) is the product order. It is
straightforward to check that this is an ordered graph.

For the case of the standard ordered 2-complex of an inverse semigroup
presentation (to be defined shortly), the connected components of X̃(1) will
be the usual Schützenberger graphs of the various R-classes whence the
name. In the case that X is the standard 2-complex of a group presentation,
X̃(1) is the usual Cayley graph.

Lemma 7.2. The ordered graph morphism ϕ : X̃(1) → X(1) given on ver-
tices by g 7→ r(g) and on edges by projection to the second coordinate is a
surjective covering.

Proof. It is clear that the map is an ordered graph morphism. To see it
is a cover, if v ∈ V (X), g ∈ V (X̃(1)) with r(g) = v, and x ∈ E(X) with
d(x) = v = r(g), then (g, x) is the unique lift of x to g. It follows ϕ is a
covering. Surjectivity is clear. �

We now define the Schützenberger complex to be the ordered 2-complex
with 1-skeleton X̃(1) and whose collection of 2-cells consists of all possible
lifts of 2-cells of X under the 1-skeleton covering ϕ. It is clear X̃ is an
ordered 2-complex and ϕ induces a topological covering. If X is the stan-
dard 2-complex of a group presentation, the resulting complex is the Cayley
complex of the presentation.

We observe that the connected components of X̃ correspond to the ver-
tices of X; that is, for each v ∈ V (X), there is a connected component X̃v

of X̃ whose vertices consists of Star(v), and all connected components are
of this form.
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If v, v′ ∈ V (X) with v ≤ v′, one can check that the restrictions induce
an ordered graph morphism from X̃

(1)
v′ to X̃

(1)
v which can be extended to

an ordered 2-complex morphism in a natural way. While this will not be
important in our current work, we do mention that it is connected with the
notion of an ordered forest as per [25].

We now show that X̃ is π1-trivial. Indeed, a path in X̃v is of the form

(g, x1)(gx1, x2) . . . (gx1 . . . xn−1, xn)

where g ∈ Π1(X) with d(g) = v and p = x1 . . . xn is a path in X with
d(p) = r(g). To be closed, we must have gp = g in Π1(X) whence p is a null
homotopic, closed path in X. The homotopy killing p can then be lifted to
X̃; it follows X̃ is π1-trivial.

Our next goal is to show that Π1(X) acts freely on X̃ and that the quotient
can be identified with X. In the non-ordered case this is standard, so we
don’t go into great detail.

Let G be an ordered groupoid and X an ordered 2-complex. Then a left
action (analogous to the case of an ordered groupoid acting on an ordered
groupoid [21]) (π,A) of G on X consists of the following data: First we
require an ordered graph morphism π : X(1) → Id(G). Now define an
ordered 2-complex (G,X) by:

V (G,X) = {(g, v) | g ∈ E(G), v ∈ V (X), and r(g) = π(v)};
E(G,X) = {(g, x) | g ∈ E(G), x ∈ E(X), and r(g) = π(x)}.

We let (g, x)d = (g, xd) and (g, x)−1 = (g, x−1); the order is the product
order. The 2-cells are of the form (g, c) where c is a 2-cell of X whose
attaching map has image in π−1(r(g)). It is straightforward to check that
this is an ordered 2-complex. We then require an ordered 2-complex mor-
phism A : (G,X) → X (which we normally denote by left multiplica-
tion, A(g, x) = gx) such that the following axioms hold (we use ∃gx if
r(g) = π(x)):

(A1) If ∃gx, then π(gx) = d(g);
(A2) if ∃g1g2,∃g2x, then g1(g2x) = (g1g2)x;
(A3) 1vx = x, v ∈ V (G), whenever it is defined;

where, in the above, g, g1, g2 ∈ E(G) and x is an n-cell of X, n = 0, 1, 2.
The action is said to be free if gx = x implies g is an identity for such an x.

We now define an action of Π1(X) on X̃ by defining π : X̃ → X to be
the map which takes X̃v to v. The map A is defined by letting, for g, g′ ∈
E(Π1(X)) with r(g) = d(g′), A(g, g′) = gg′. For g, g′ ∈ E(Π1(X)), x ∈ X
with r(g) = d(g′) and r(g′) = d(x), we define g(g′, x) = (gg′, x). The map
is extended to 2-cells in the obvious way. This action is clearly free since if
gg′ = g′, then g is an identity. We leave it to the reader to check the details.
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Observe that if v ∈ v(X), then π1(X, v) acts freely on X̃v. Hence, if this
action is co-compact (has compact quotient), π1(X, v) is finitely presented.

The following proposition is a standard fact about the action of the fun-
damental groupoid on the universal cover:

Proposition 7.3. Let ϕ : X̃ → X be the covering projection. Then two
n-cells are identified by ϕ if and only if they are in the same orbit under the
action of Π1(X). In fact, if v ∈ V (X), then Dv = π1(X, v)/X̃v.

One can even do better by showing that if we define an order on the
quotient complex Π1(X)/X̃ by [x] ≤ [x′], with x ∈ V (X) or x ∈ E(X), if,
for each y′ ∈ [x′], there exists y ∈ [x] such that y ≤ y′ (where we use brackets
for orbits), then this order turns the topological homeomorphism of X and
Π1(X)/X̃ into an isomorphism of ordered 2-complexes. As we shall not use
this fact in the sequel, we leave its verification as a tedious exercise.

8. The standard ordered 2-complex of an inverse semigroup
presentation.

Let I = Inv 〈A|R〉 be an inverse semigroup presentation. We now construct
an ordered 2-complex X which we call the standard ordered 2-complex of
the presentation Inv 〈A|R〉 of I. The vertices of X are E(I); this makes it
clear that our complex will not necessarily be finite for a finite presentation
and might not be, in any sense, effectively constructible. The edges are
pairs (e, x) where e ∈ E(I), x ∈ Ã and ex R e. We define d(e, x) = e
and (e, x)−1 = ((ex)−1ex, x−1). We call x the label of (e, x) and extend the
notion to paths in the obvious way. If I is a group, then one has a wedge of
circles labeled by the elements of A (and their inverses). We define a partial
order by (e, x) ≤ (f, y) if e ≤ f and x = y. It is straightforward to see that
X(1) satisfies the axioms of an inductive graph. Note that the inverse and
restriction maps respect labels. If A is a finite set, then X(1) is locally finite.

Proposition 8.1. Let e ∈ V (X) and w ∈ Ã∗ be a word. Then w labels a
path starting at e if and only if ew R e in I. The endpoint of such a path is
(ew)−1(ew).

Proof. First suppose that w labels such a path; we proceed by induction on
|w|, the case |w| = 0 being clear. Suppose w = ux with x ∈ Ã and u ∈ Ã∗.
Since u labels a path starting at e, we have, by induction, that eu R e and
the path ends at f = (eu)−1eu. It now follows that the last edge of the path
labeled by w from e is (f, x) whence fx R f and the endpoint is (fx)−1fx.
We can conclude that ufx R uf ; but uf = uu−1eu = eu whence we have

ew = eux R eu R e.
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Also,

(fx)−1fx = (u−1eux)−1(u−1eux)

= x−1u−1euu−1eux = w−1ew = (ew)−1(ew)

and the result follows.
Suppose now that w is such that ew R e. We induct on |w|, the case

|w| = 0 being clear. Suppose w = ux with x ∈ Ã and u ∈ Ã∗. Then
e R ew ≤R eu ≤R e whence eu R e and so, by induction, u labels a path p
from e with endpoint (eu)−1eu = u−1eu. But

u−1eux = u−1ew R u−1e R u−1eu

so we can add an edge ((eu)−1eu, x) to p to get a path from e labeled by w.
One can verify, as above, that the endpoint of ((eu)−1eu, x) is (ew)−1ew. �

Corollary 8.2. Let R′ = {uv−1 | u = v ∈ R} (note that we do not reduce
the word uv−1); then every path in X labeled by an element of R′ is a closed
path.

Proof. Suppose w ∈ R′ labels a path from a vertex e. Then, by Proposi-
tion 8.1, ew R e and the path ends at (ew)−1ew. But w ∈ E(I), whence
ew ∈ E(I). Since R-equivalent idempotents are equal, it follows (ew)−1ew =
ew = e. �

We now attach a 2-cell for every path labeled by an element of R′ (such
paths are closed by Corollary 8.2). Clearly the restriction of a defining path
is a defining path and so X is an ordered 2-complex. Alternatively, one can
describe the 2-cells as follows: For each relation u = v ∈ R, whenever we
find a vertex w from which both u and v label a path (in which case both
these paths have the same terminus), we add a cell with boundary uv−1.

If I is a group, then X is the standard 2-complex of the corresponding
group presentation 〈X|R′〉 (again not reducing the elements of R′); here,
there may be some spheres with boundaries xx−1 or x−1x, where x is a
generator, as we use the same relations for the inverse semigroup and group
presentations).

Viewing I as an inductive groupoid, we can define an ordered graph mor-
phism ψ : X → I by the identity on vertices and on edges by ψ(e, x) = ex.

Proposition 8.3. The map ψ is an ordered graph morphism. Furthermore,
any defining path is sent to an idempotent (that is, a local identity).

Proof. First we show that d is preserved. Indeed, if (e, x) ∈ E(X), then
ex R e whence d(ex) = e = d(e, x). As to inverses,

ψ((ex)−1ex, x−1) = x−1exx−1 = x−1xx−1e = x−1e = (ex)−1.

Order is preserved since the natural partial order on an inverse semigroup
is compatible with multiplication. An easy induction argument shows that



380 BENJAMIN STEINBERG

a path in X, starting at e, labeled by w, is sent to ew. If p is a defining
path, then p is labeled by a cyclic conjugate of a word uv−1 with u = v or
v = u ∈ R. Let e be the vertex in p from which uv−1 can be read. Then, by
Proposition 8.1, e R euv−1 whence e = euv−1 since uv−1 is an idempotent.
Suppose uv−1 = st and the label of p is ts. Then, by Proposition 8.1, p
starts at (es)−1es = s−1es. So ψ(p) = s−1ests = s−1euv−1s = s−1es ∈ E(I)
as desired. �

It now follows that ψ induces a map ψ : Π1(X) → I. We wish to show
that this is an isomorphism. Define a map τ : A → Π1(X) (where we now
view the latter as an inverse semigroup) by x 7→ (xx−1, x). If τ induces
a morphism from I, then, since ψτ is the identity on A, it would have to
induce an isomorphism.

Lemma 8.4. The map induced by τ from Ã+ to Π1(X) takes a word w to
the path labeled by w from ww−1 to w−1w.

Proof. First we observe that, since ww−1w R w, Proposition 8.1 shows that
w labels a path from ww−1 to w−1w. We prove the result by induction,
the case |w| = 1 following from the definition. If w = ux with u ∈ Ã+ and
x ∈ Ã, then, by induction, u maps to the path p labeled by u from uu−1 to
u−1u. If u−1u R u−1ux, then

u = uu−1u R uu−1ux = w,

so there is an edge (u−1u, x), and w maps to p(u−1u, x) which is a path
from uu−1 = ww−1 to (u−1ux)−1u−1ux = w−1w labeled by w. If u−1ux <R
u−1u, then the image of w is the product of the path labeled by u ending
at u−1uxx−1 with the edge (u−1uxx−1, x). But Proposition 8.1 shows that
the path labeled by u−1 from u−1uxx−1 ends at

(xx−1u−1)−1xx−1u−1 = uxx−1u−1 = ww−1.

The result follows. �

Proposition 8.5. The map τ induces a morphism from I to Π1(X) .

Proof. Suppose u = v ∈ R. Let f = uu−1 = vv−1; then f = uv−1 = fuv−1.
It follows, by Proposition 8.1, that uv−1 labels a path from f to f inX which,
by construction, is a defining path. Thus the paths from f labeled by u and
v exist and are homotopic. But these paths are the images of the words u
and v in Ã+ by Lemma 8.4. It follows that τ induces a morphism. �

Corollary 8.6. Let I = Inv 〈A|R〉 be an inverse semigroup presentation
and X the standard ordered 2-complex for this presentation. Then I =
Π1(X).

Keeping our previous notation, the maximal group image of I is the group
G presented by 〈A|R′〉. Furthermore, there is a natural morphism ψ from
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X to the standard 2-complex Y for G with the above presentation (again,
we do not reduce the words in R′ and we may have sphere representing the
trivial relations: xx−1 = 1 = x−1x). This map collapses all the vertices
and projects to the second coordinate on edges. The 2-cells are mapped in
the natural way. This map is, in fact, an immersion [20] on the 1-skeleton;
also, any based 2-cell has at most one based lift to any vertex. McAlister’s
P -theorem [10] can easily be shown to be equivalent to stating that I is
E-unitary (that is, the natural projection to G is idempotent pure) if and
only there is an ordered 2-complex Z containing X and an extension of ψ
to Z which is a covering such that Π1(Z) is an enlargement of Π1(X) in the
sense of [7, 21]. In fact, all the results of [21] can be restated and proved
more generally in the context of ordered 2-complexes where the role of the
derived ordered groupoid is replaced by what is called in homotopy theory,
the mapping fiber. More on this will appear in a future paper.

We now turn to some examples.

Example 8.7. Let I be the free inverse semigroup given by the presentation
Inv 〈A| 〉. Then the standard ordered 2-complex X consists of all finite
subtrees of the Cayley graph of a free group on A (with respect to generators
A) containing 1 as a vertex (called Munn trees). We will denote a vertex
by a pair (T, g) where T is a Munn tree and g ∈ G labels a vertex of T .
Edges will be denoted by triples (T, g, x) where T is a Munn tree, g ∈ G
is a vertex of T , and x ∈ A labels an edge in T from g. The domain of
(T, g, x) is (T, g), (T, g, x)−1 = (T, gx, x−1). The order on V (X) is given by
(T, g) ≤ (T ′, g′) if and only if g = g′ and T ′ ⊆ T . The order on E(X) is
given by (T, g, x) ≤ (T ′, g′, x′) if and only if g = g′, x = x′, and T ′ ⊆ T .
Note that X is π1-trivial.

Example 8.8. A Brandt semigroup is an inverse semigroup whose under-
lying set is (J ×G× J)∪ 0, with G a group and J a set, and whose nonzero
multiplications are given by

(i, g, j)(j, g′, i′) = (i, gg′, i′).

This inverse semigroup will be denoted M0(J,G). Suppose J has a distin-
guished element j1. If G = 〈A|R〉 is a presentation for G, we can obtain
a presentation M0(J,G) by taking as generators J \ j1 ∪ A ∪ z where, for
j ∈ J \ j1, j 7→ (j, 1, j1), for a ∈ A, a 7→ (j1, a, j1), and z maps to 0. Choose
a distinguished element a0 ∈ A. For relations, we use: The relations of R
but where 1 is replaced by a0a

−1
0 ; the relations j−1j = a0a

−1
0 , j ∈ J \ j1;

j−1j′ = z if j 6= j′ ∈ J \ j1; xj = z, x ∈ A ∪ J \ j1; aa−1 = a−1a, a ∈ A;
aa−1 = a0a

−1
0 , a ∈ A; and the relations needed to make z a zero. The stan-

dard ordered 2-complex X has two connected components. One component
has a single vertex 0 and edges which are loops labeled by A ∪ J \ j1 ∪ z.
The 2-cells give us the standard 2-complex for G plus some 2-cells with
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contractible defining paths and some 2-cells with defining paths homotopic
to the various edges and their conjugates by z (whence the local group is
trivial). The other component has vertices of the form (j, 1, j) with j ∈ J .
At the vertex (j1, 1, j1) there is a copy of the standard 2-complex of G plus
some 2-cells with contractible defining paths. For j ∈ J \ j1, there is an
edge from (j, 1, j) to (j1, 1, j1) labeled by j. There are also 2-cells with con-
tractible defining paths labeled by j−1ja0a

−1
0 . This connected component

is clearly homotopy-equivalent to a wedge of the standard 2-complex for G
and some spheres, so the local group is G.

Example 8.9. Consider the bicyclic semigroup I = Inv 〈x|xxx−1 = x〉.
One can check that standard ordered 2-complex has 1-skeleton: The interval
[0,∞) with its usual graph structure; the vertices are ordered by ≥; the
edges are incomparable. Each interval of length two is the seam glued of
an attached American football. Thus the complex is homotopy-equivalent
to a countably infinite wedge of spheres, and hence has trivial fundamental
group.

Let X be the standard ordered 2-complex of an inverse semigroup presen-
tation I = Inv 〈A|R〉. We now consider the 1-skeleton of the Schützenberger
complex X̃. The vertices are the elements of I. Edges are of the form
(s, (e, x)) where s−1s = e and (e, x) is an edge of X. Thus edges can be
more succinctly described as pairs (s, x) with s ∈ I and s−1sx R s−1s or,
equivalently, sx R s; d(s, x) = s, (s, x)−1 = (sx, x−1). Connected compo-
nents correspond to R-classes and 2-cells are added whenever an element of
R′ labels a path. The reader familiar with the work of Stephen [24] will see
immediately that the 1-skeleton of the connected component corresponding
to an R-class is the Schützenberger graph of that R-class. Stephen’s Todd-
Coxeter-like procedure to construct the Schützenberger graph can easily be
modified to construct the corresponding component of the Schützenberger
complex by adding a 2-cell every time an expansion is performed. We note
that the left action of I on X̃ is “essentially” the left Preston-Wagner rep-
resentation [7].

The covering ϕ : X̃ → X takes a vertex s to s−1s and takes the connected
component of X̃e corresponding to an idempotent e onto the D-class De of
X corresponding to the D-class of e in I. Two elements of the R-class of e
get identified if and only if they are H-equivalent. In fact, He, the H-class
of e, acts freely on the left of X̃e and the quotient is De by Proposition 7.3.
Thus we have the following result:

Theorem 8.10. Suppose that I is a finitely generated (presented) inverse
semigroup and He is a maximal subgroup with identity e such that the left
action of He on its R-class Re has finitely many orbits. Then He is finitely
generated (presented).
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Proof. Let X be the standard ordered 2-complex and De ⊆ X the D-class
of e. Our above discussion shows that V (De) = He/Re and hence is finite.
Since I is finitely generated, it follows that D(1)

e is a finite vertex, locally
finite graph: That is, D(1) is finite. Thus He = π1(De) is finitely generated.
If I is also finitely presented, then R′ (defined as above) is finite. Since D(1)

e

is also finite, we can only find finitely many paths in De labeled by elements
of R′ whence, by construction of X, De is a finite 2-complex. It follows
He = π1(De) is finitely presented. �

It is a simple exercise to give an explicit presentation of He using the
standard techniques for computing the fundamental group of a finite 2-
complex. Similar results were obtained in [17] for semigroup presentations
of regular semigroups using Reidemeister-Schreier-type rewriting systems.

This result leads us to define a finitely generated inverse semigroup to
be hyperbolic if X̃ is a Gromov hyperbolic (disconnected) space, and all the
maximal subgroups act co-compactly on the corresponding component of
X̃. This would be a generalization of hyperbolic groups and an immediate
consequence of the definition is that all the maximal subgroups are hyper-
bolic (since any group acting properly discontinuously and co-compactly on
a hyperbolic space is hyperbolic). Similarly, we define a finitely presented
inverse semigroup to be Fuchsian if its Schützenberger complex is planar
(after identifying 2-cells which give rise to the same defining paths, and
removing 2-cells with contractible defining paths), and each maximal sub-
group acts co-compactly on the corresponding component of X̃. Once again,
this implies that the maximal subgroups are Fuchsian. These classes will be
studied in future papers; also notions of Van Kampen diagrams over inverse
semigroup presentations will be introduced in future work.

We end this section with the following observation: If D is a D-class of I,
then I acts on the right of the set of L-classes of D by partial bijections. The
transition inverse semigroup is what Rhodes calls the right letter mapping
semigroup of I corresponding to D [6]. One can then form the right letter
mapping graph of D whose vertices are the L-classes of D and whose edges
are of the form (b, x) whenever bx is defined in the right letter mapping
transformation semigroup. One has d(b, x) = b and (b, x)−1 = (bx, x−1). It
is straightforward to verify that the map taking b to the unique idempotent
in b is an isomorphism of the right letter mapping graph with the D-class of
X corresponding to D. The hypothesis of Theorem 8.10 can be rephrased
in terms of asking that the right letter mapping transformation semigroup
of the D-class of e be finite. Since the Munn representation is the direct
sum of the right letter mapping representations, X(1) can be viewed as the
graph of the Munn representation. Similarly, X̃(1) can be view as the graph
of the right Preston-Wagner representation which is the direct sum of the
Schützenberger representations.
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9. Amalgams.

In this section, we study amalgams of the various structures we have been
considering.

9.1. Amalgams of partially ordered sets. An amalgam of partially or-
dered sets is a triple of partially ordered sets (S,U, T ) with S ∩T = U . The
amalgamated product S

∐
U T is the partially ordered set S ∪ T with order

the union of the orders of S and T and, in addition, for s ∈ S and t ∈ T , one
defines s ≤ t if there exists u ∈ U with s ≤ u ≤ t (note that if s, respectively,
t is in U , this situation occurs if and only if s ≤ t in S, respectively, T );
t ≤ s is defined similarly.

Proposition 9.1. S
∐

U T is a partially ordered set and, given any partially
ordered set P and morphisms ϕ : S → P , ψ : T → P , agreeing on U , there
is a unique morphism τ : S

∐
U T → P extending ϕ and ψ.

Proof. For anti-symmetry, it suffices to show that, for s ∈ S and t ∈ T , s ≤ t
and t ≤ s implies s = t. Indeed, we then have u, u′ ∈ U with s ≤ u ≤ t and
t ≤ u′ ≤ s; so s ≤ u ≤ u′ ≤ s and u ≤ t ≤ u′ whence s = u = u′ = t. As
for transitivity, the only cases to deal with (up to exchanging the role of s
and t) are: s ≤ s′, s′ ≤ t; s ≤ t, t ≤ t′; and s ≤ t, t ≤ s′ where s, s′ ∈ S and
t, t′ ∈ T . In the first case, we have s ≤ s′ ≤ u ≤ t for some u ∈ U whence
s ≤ t; the second case is similar. For the third case, we have u, u′ ∈ U such
that s ≤ u ≤ t and t ≤ u′ ≤ s′ whence u ≤ u′ and s ≤ u ≤ u′ ≤ s′.

Now set τ = ϕ ∪ ψ. To see that τ preserves order, it is enough, without
loss of generality, to show that, for s ∈ S, t ∈ T , if s ≤ t then τ(s) ≤ τ(t).
But in this case, we have u ∈ U with s ≤ u ≤ t whence

τ(s) = ϕ(s) ≤ ϕ(u) = ψ(u) ≤ ψ(t) = τ(t)

and the result follows. �

Proposition 9.2. Suppose (S,U, T ) is a partially ordered set amalgam with
U an order ideal of S and T . Then S

∐
U T is just S ∪ T with the union of

the two partial orders, and S, T , and U are order ideals.

Proof. We first prove the statement about order ideals. Suppose x ≤ s ∈ S
and x ∈ T . Then there exists u ∈ U with x ≤ u ≤ s and so x ∈ U ⊆ S.
Thus S and, by a dual argument, T are order ideals. Since U = S ∩ T , U
is also an order ideal. It now follows immediately that the order is just the
union of the orders. �

We now give a condition under which the partially ordered set amalga-
mation of a semilattice amalgam is a semilattice.

Proposition 9.3. Suppose (S,U, T ) is a partially ordered set amalgam with
U an order ideal of S and T . Suppose, further, that S and T are semilattices
and that U has a maximum e. Then S

∐
U T = S ∪ T is a semilattice.
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Proof. Note first that, since U is an order ideal in S and T , it is a semilattice.
By Proposition 9.2, it suffices to show that if s ∈ S and t ∈ T , then s and
t have a meet. We claim that the meet is (s ∧ e) ∧ (e ∧ t); this element is
well-defined since U is an order ideal in S and T . Indeed, any common lower
bound g is in S ∩ T = U . Thus g ≤ s, t, e whence g ≤ s ∧ e, e ∧ t ∈ U and
the result follows. �

9.2. Amalgams of ordered 2-complexes. An amalgam of ordered 2-
complexes consists of a triple of ordered 2-complexes (X,Y, Z) with Y =
X ∩ Z. The amalgamated product X

∐
Y Z is defined to be the universal

ordered 2-complex with morphisms of X and Z into it agreeing on Y (if
such exists).

Suppose (X,Y, Z) is an amalgam of ordered 2-complexes. Then X ∪ Z
has the natural structure of a 2-complex with ordered vertex and edge sets;
that is:

(1) V (X ∪ Z) = V (X)
∐

V (Y ) V (Z);
(2) E(X ∪ Z) = E(X)

∐
E(Y )E(Z);

(3) C(X ∪ Z) = C(X) ∪ C(Y ).
There are naturally induced, order-preserving maps d and e 7→ e−1 by the
universal property of the amalgamated product of partially ordered sets
(also e 6= e−1 if such is true for X and Z). We call this the natural order
structure on X ∪ Z.

We say an amalgam of ordered 2-complexes is tame if X ∪ Z with the
natural order structure is an ordered 2-complex. It is immediate that in this
case X

∐
Y Z = X ∪ Z. We now give some examples of tame amalgams.

Proposition 9.4. Suppose (X,Y, Z) is an ordered graph amalgam such that
V (Y ) is an order ideal of V (X) and V (Z). Then (X,Y, Z) is tame.

Proof. We first show that (X∪Y )(1) is an ordered graph. Suppose v ≤ w and
e ∈ Star (w); we must show there is a unique edge e′ ≤ e in Star (v). Without
loss of generality, assume e ∈ E(X) (and so w ∈ V (X)). Then, since V (X)
is an order ideal by Proposition 9.2, v ∈ V (X) and (v|e) is one such edge.
Suppose e′ is another such (necessarily v ∈ V (Y ) and e′ ∈ E(Z)). But then
there is an edge e′′ ∈ E(Y ) with e′ ≤ e′′ ≤ e, so e′ = (v|e′′) ∈ E(Y ) ⊆ E(X)
and e′ ≤ e whence e′ = (v|e) as desired. Note that the above argument
shows that E(X) and E(Z) are order ideals in E(X ∪ Z).

Assume now that p is a defining path of (c, fc) ∈ C(X) ∪ C(Y ) and v ≤
d(p). Without loss of generality, assume (c, fc) ∈ C(X). Then v ∈ V (X)
(since V (X) is an order ideal), and the restriction (v|p) in X and in X ∪ Z
coincide whence (v|p) is a defining path of a 2-cell in X. �

In particular, all amalgams of unordered groupoids are tame.
An ordered subcomplex (subgroupoid) Y of an ordered 2-complex (group-

oid) X is said to be D-saturated in X if it is a union of D-classes of X.
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Proposition 9.5. Let (X,Y, Z) be an amalgam of inductive groupoids such
that Y is D-saturated in both X and Z. Then (X,Y,X) is tame.

Proof. We begin by showing that (X ∪ Y )(1) is an ordered graph. Suppose,
without loss of generality, that e ∈ E(X) and v ≤ d(e). If v ∈ V (X), then
(v|e) ≤ e and if f ≤ e with d(f) = v and f 6= (v|e), then f ∈ E(Z) and
v ∈ V (Y ). But Y is D-saturated in Z, so f ∈ E(Y ) whence f = (v|e)
proving uniqueness in this case. Suppose now v ∈ V (Z) \ V (Y ), then there
exists w ∈ V (Y ) with v ≤ w ≤ d(e). Then, since Y is D-saturated in X,
(w|e) ∈ Y whence f = (v|(w|e)) ≤ e and d(f) = v. Suppose now that f ′ ≤ e
with d(f ′) = v. Then f ′ ∈ E(Z) and there exists y ∈ E(Y ) with f ′ ≤ y ≤ e.
Let u = w ∧ d(y) ∈ V (Y ). Then (u|y) = (u|e) = (u|(w|e)) whence

f ′ = (v|y) = (v|(u|e)) = (v|(w|e))

and we have uniqueness.
Now suppose p is the defining path of (c, fc) ∈ C(X) ∪ C(Z); without

loss of generality, we take (c, fc) ∈ C(X). Suppose v ≤ d(p). If v ∈ V (X),
then (v|p) is the same in X and X ∪ Z, so it is a defining path of some
2-cell in C(X). Suppose now v ∈ V (Z)\V (Y ). Then there exists w ∈ V (Y )
with v ≤ w ≤ d(p). Since Y is D-saturated in X, (w|p) is in Y and is the
defining path of a 2-cell of X which must, in fact, belong to Y since Y is
D-saturated. Then (v|(w|p)) is the defining path of a 2-cell in Z. �

9.3. Graphs of groups. To study the maximal subgroups of an amalga-
mated product of ordered groupoids, we need to recall the notion of a graph
of groups [19]. A graph of groups (G, X) consists of a graph X and an as-
signment to each vertex v of a group Gv, to each pair of edges {e, e−1} of
a group Ge = Ge−1 , and to each edge e an inclusion ιe : Ge → Gd(e). If
(G, X) is a connected graph of groups and T is a maximal subtree of X,
then fundamental group of (G, X) with respect to the tree T is

π1(G, X) = 〈Gv (v ∈ V (X)), ye (e ∈ E(X))|yt = 1 (t ∈ T ),

y−1
e = ye−1 (e ∈ E(X)), y−1

e ιe(g)ye = ιe−1(g) (e ∈ E(X), g ∈ Ge)〉.

This group is independent of the choice of T [19].
A graph of 2-complexes (C, X) consists of a graph X and an assignment

to each vertex v of a 2-complex Xv (called a vertex complex ), to each pair
of edges {e, e−1} of 2-complex (called an edge complex ) Xe = Xe−1 , and
to each edge e an inclusion ιe : Xe → Xd(e). The realization of (C, X) is
obtained by replacing each vertex v by Xv and each pair of edges {e, e−1}
by Xe × [0, 1]; one then glues, for each pair of edges {e, e−1}, Xe × 0 to the
copy of Xe in Xd(e) and Xe× 1 to the copy in Xr(e). In general, we say that
a graph of 2-complexes X gives a graph of 2-complexes decomposition of a
2-complex Y if Y is homotopy-equivalent to the realization of (C, X).
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A simple application of the Seifert-Van Kampen Theorem shows that if X
is the geometric realization of a connected graph of connected 2-complexes,
then π1(X) is isomorphic to the fundamental group of the graph of groups
obtained by replacing each vertex and edge complex by its fundamental
group. Conversely, the fundamental group of any connected graph of groups
can be so realized.

The following simple observation, which we state as a proposition, will be
key to studying the structure of maximal subgroups of amalgams:

Proposition 9.6. Let (C, X) be a graph of 2-complexes. Then its realization
has the following decomposition as a graph (C′, Y ) of connected 2-complexes:
V (Y ) is the set of D-classes of the vertex complexes of X; E(Y ) is the set
of D-classes of the edge complexes of X; if e ∈ E(X) and Z is a D-class
of Xe, then Z is a subcomplex of a unique D-class of Xd(e) which we define
to be the domain of the edge corresponding to Z; the inverse of the edge
corresponding to Z is the copy of Z in Xe−1; and the vertex (edge) complex
corresponding to a D-class is the D-class itself.

We illustrate the above proposition in Figure 1 where we have a segment
of disconnected complexes as this is the case of interest.

z1

z2

z3

z4

z3

z4

x1 x2

z2

y1

y2

y3

z1

Figure 1. An illustration of Proposition 9.6.

Here, the left vertex complex (surrounded in large thick dashes) has two
D-classes x1 and x2 (dashed lines); the right vertex complex (surrounded
in small thick dashes) has three D-classes y1, y2, and y3 (dashed lines);
the edge complex (surrounded in thick solid lines) has four D-classes z1,
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z2, z3, and z4 (dotted lines). The resulting decomposition is a connected,
bipartite graph of connected 2-complexes with five vertices and four edges
(see Figure 2); this will always be the case for a segment of 2-complexes
although in general the bipartite graph will not be connected.

x2 y3

y2

y1x1
z1

z2

z3

z4

Figure 2. The underlying graph in Figure 1.

Proposition 9.6 gives us a means to obtain a graph of groups decomposi-
tion of any maximal subgroup of the fundamental groupoid of a 2-complex
with a graph of 2-complexes decomposition. The main such decomposition
of interest in the is paper is the following:

Proposition 9.7. Let (X,Y, Z) be a tame amalgam of ordered 2-complexes.
Then X

∐
Y Z is homotopy-equivalent to the realization of the graph of 2-

complexes (C,W ) whose underlying graph is a segment with X as the left
vertex complex, Z as the right vertex complex, and Y as the edge complex.

Proof. By assumption X
∐

Y Z = X ∪ Z. The homotopy equivalence is
induced by applying to the realization of (C,W ) the contraction of Y × [0, 1]
to Y × 0. �

9.4. Amalgams of ordered groupoids. An amalgam of ordered group-
oids consists of a triple (S,U, T ) such that U = S ∩ T . The amalgamated
product S

∐
U T is then the universal object with maps of S and T , agreeing

on U , into it (if such exists). Our goal is to study topologically the struc-
ture of the maximal subgroups of the amalgamated product. Our results
generalize those of [3, 12] for full amalgams of regular semigroups, but our
techniques are different.

If (S,U, T ) is an ordered groupoid amalgam, we define a graph of groups
(G(S,U,T ),Γ) as follows: V (Γ) is the union of the set of D-classes of S and the
set of D-classes of T ; E(Γ) is the set of D-classes of U (and formal inverses
of such); each D-class of U is contained in a unique D-class of S, which we
take as the initial vertex of the corresponding edge, and a unique D-class
of T , which we take as its final vertex; we associate to each vertex and
edge the maximal subgroup of the corresponding D-class with the obvious
inclusion maps (cf. [3]). If v ∈ V (S)∪V (T ), we let (Gv,Γv) be the connected
component of (G(S,U,T ),Γ) containing the D-class of v.



A TOPOLOGICAL APPROACH TO INVERSE 389

We say an ordered 2-complex amalgam (X1, X2, X3) represents an ordered
groupoid amalgam (S1, S2, S3) if Π1(Xi) = Si, i = 1, 2, 3. Abstract nonsense
shows that if X1

∐
X2
X3 exists, then S1

∐
S2
S1 = Π1(X1

∐
X2
X3). We say

that an ordered groupoid amalgam is tame if it can be represented by a
tame ordered 2-complex amalgam.

Theorem 9.8. Suppose (S,U, T ) is a tame ordered groupoid amalgam. Then
S
∐

U T exists, has vertex set V (S) ∪ V (T ), and the maximal subgroup cor-
responding to a vertex v is π1(Gv,Γv).

Proof. Choose a tame ordered 2-complex amalgam (X,Y, Z) representing
(S,U, T ). Then, X

∐
Y Z = X ∪ Z has a graph of 2-complexes decomposi-

tion as per Proposition 9.7 whence Proposition 9.6 shows that the maximal
subgroups are as described in the theorem statement. �

Note that the theorem always applies if the groupoids are unordered.

Corollary 9.9. Suppose (S,U, T ) is a tame ordered groupoid amalgam such
that U has only trivial subgroups. Then the local groups of S

∐
U T are

free products of local groups of S, local groups of T , and free groups. In
particular, if all the local groups of S and T are trivial, then the subgroups
of S

∐
U T are free.

Proof. The fundamental group of a connected graph of groups in which all
edge groups are trivial is a free product of vertex groups and a free group. �

Proposition 9.10. Let (S,U, T ) be an ordered groupoid amalgam. Suppose
that either V (U) is an order ideal of V (S) and V (T ), or U is D-saturated
in S and T , and S, U , and T are inductive. Then (S,U, T ) is tame.

Proof. LetX, Y , Z be the multiplication table presentations of, respectively,
S, U , T . Then (X,Y, Z) represents (S,U, T ). In the case that V (U) is an
order ideal, we see that (X,Y, Z) is tame by Proposition 9.4, while in the case
that V (U) is D-saturated and the amalgam consists of inductive groupoids,
the result follows from Proposition 9.5. �

Note that if S, U , and T are inductive and U is D-saturated, then the
graph of groups (G(S,U,T ),Γ) consists of isolated vertices corresponding to
D-classes not in U and disjoint segments corresponding to D-classes in U ;
the inclusions are isomorphisms for these segments. It follows that if v ∈
V (S) ∪ V (T ) = V (S

∐
U T ), then the maximal subgroup at v is unchanged

on forming the amalgamated product.

9.5. Amalgams of inverse and regular semigroups. We now wish to
apply the above theory to inverse and regular semigroup amalgams. If
(S,U, T ) is an amalgam of inverse (regular) semigroups, we use S ∗U T
for the amalgamated product. In the case of inverse semigroup amalgams
(S,U, T ), a well-known theorem of Hall [4] shows that S and T embed in
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S ∗U T in such a manner that their intersection is U . He later generalized
this to full regular semigroup amalgams [5] (that is, amalgams (S,U, T ) such
that E(S) = E(U) = E(T )).

The following generalizes results of [3, 12] where the case of full amalgams
is considered; see [3] for examples; other generalizations (some of which we
shall obtain below) can be found in [1].

Theorem 9.11. Suppose (S,U, T ) is an inverse (regular) semigroup amal-
gam with E(S) = E(U) an order ideal of E(T ). Then S ∗U T = S

∐
U T ,

and the maximal subgroup corresponding to an idempotent e ∈ E(S ∗U T ) =
E(S) ∪ E(T ) is π1(Ge,Γe). In particular, if S and T only have trivial sub-
groups, then the subgroups of S ∗U T are free.

Proof. Since E(U) is an order ideal in E(S) and E(T ), Proposition 9.10 shows
(S,U, T ) is tame whence Theorem 9.8 applies. Since

V

(
S
∐
U

T

)
= V (S) ∪ V (T ) = V (T )

is a semilattice (biordered set), S
∐

U T is an (r-)inductive groupoid. Sup-
pose ϕ : S → I and ψ : T → I are homomorphisms agreeing on U where
I is an inverse (regular) semigroup. Then the induced ordered groupoid
map τ : S

∐
U T → I agrees with ψ on V (T ) = V (S

∐
U T ) and therefore

preserves the semilattice (biordered) structure and so τ is a homomorphism
of inverse (regular) semigroups. �

The above theorem applies, in particular, to the case of full amalgams.
Assume (S,U, T ) is a regular semigroup amalgam satisfying the hypotheses
of Theorem 9.11. If U has only trivial subgroups, then Corollary 9.9 and
the Kurosh Theorem [8] imply that the subgroups of S ∗U T are isomor-
phic to free products of free groups and subgroups of the factors S and T .
Work of Ordman [13, 14] gives normal forms for amalgamated products of
unordered groupoids. Since the above theorem implies that the underlying
groupoid of S ∗U T is the amalgamated product in the category of unordered
groupoids, his results (combined with our description of the order) can be
used to completely understand S ∗U T . Also, standard results on groupoid
amalgams [13, 14] show that S and T embed in S ∗U T = S

∐
U T with in-

tersection U . Since the inclusions are the identity on vertices, they preserve
the (r-)inductive structure. Thus we have the following generalization of a
theorem of Hall [5]:

Theorem 9.12. Let (S,U, T ) be a regular semigroup amalgam with E(U) =
E(S) an order ideal in E(T ). Then S and T embed in S∗UT with intersection
U .
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An illustrative example is the case where S = Inv 〈x|x3 = 0〉, T is a copy
of the subsemigroup of S generated by x2, made disjoint off the idempo-
tents, and U = E(T ). Note that U is an order ideal in E(S). Using the
multiplication table presentation, S can be represented by a 2-complex with
three components: The top component is a segment of length 1; the middle
component is a segment of length 2; and the bottom component is a regular
1-cell. One can similarly represent T , only one drops the top component.
Each of the original semigroups is finite with trivial subgroups. Then S ∗U T
is represented by identifying the two bottom components and gluing the two
middle components along the vertices. It follows that the maximal subgroup
corresponding to the middle component is free of rank 2 and the other max-
imal subgroups are trivial. We invite the reader to construct (G,Γ) and
verify that the answer obtained in this manner coincides.

We are now in a position to prove some more difficult results on amalgams
which coincide in part with results of [1]. Fix a tame inverse semigroup
amalgam (S,U, T ). The inclusions of S and T induce a natural ordered
groupoid morphism ϕ : S

∐
U T → S ∗U T . Our goal is to show that this

map is an embedding of S
∐

U T as a D-saturated ordered subgroupoid.

Lemma 9.13. Let (S,U, T ) be a tame amalgam of inductive groupoids.
Then the inclusions of S and T into S

∐
U T are embeddings. Furthermore,

if e, f ∈ E(S), then ef is the meet of e and f in S
∐

U T and dually for
e, f ∈ E(T ).

Proof. By Theorem 9.8, the inclusion of S into S
∐

U T is the identity on
vertices whence it gives an idempotent-separating inverse semigroup homo-
morphism onto its image (which is an inductive ordered subgroupoid of
S
∐

U T ). But, by Hall’s Theorem [4], the inclusion of S into S ∗U T is an
embedding. Since this inclusion factors through ϕ, it follows that S embeds
into S

∐
U T . The result for T is dual.

As to the second statement suppose g ∈ E(T ) \ E(U) and ef ≤ g ≤ e, f .
Then there exist u, u′ ∈ E(U) with g ≤ u ≤ e and g ≤ u′ ≤ f whence
ef ≤ g ≤ uu′ ≤ ef . It follows that g = uu′, a contradiction. We conclude
ef is the meet of e, f in S

∐
U T ; a dual argument holds if e, f ∈ E(T ). �

By [7, Theorem 4.1.9], there is an inductive groupoid I so that S
∐

U T
sits inside I as an ordered subgroupoid and the inclusion preserves whatever
meets exist in S

∐
U T . It follows from the above lemma that S and T live as

inverse subsemigroups of I whence there is a morphism τ : S∗U T → I. Note
that τϕ is the identity on S and T and hence, by the universal property, on
S
∐

U T .

Lemma 9.14. Let (S,U, T ) be a tame amalgam of inductive groupoids.
Then ϕ|V (S

‘
U T ) is an order embedding.
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Proof. Suppose v, w ∈ V (S
∐

U T ) with ϕ(v) ≤ ϕ(w). Then

v = τ(ϕ(v)) ≤ τ(ϕ(w)) = w

and the result follows. �

Observe that ϕ(S
∐

U T ) is an ordered subgroupoid of S ∗U T since, by
Lemma 9.14, ϕ is an order embedding on the vertices. The following tech-
nical lemma will be important in proving our result:

Lemma 9.15. Let (S,U, T ) be a tame amalgam of inductive groupoids.
Suppose e ∈ V (S

∐
U T ), y ∈ S ∗U T and e ≤ d(y). Then ey ∈ ϕ(S

∐
U T ).

Proof. We induct on the length of a factorization of y as a product of el-
ements of S ∪ T . If y has length 1, then y ∈ S ∪ T . Since ϕ is an order
embedding, e ≤ y in S

∐
U T whence (e|y) exists in S

∐
U T . But then

ϕ(e|y) ≤ y and d(ϕ(e|y)) = e so ey = ϕ(e|y). Suppose, without loss of
generality, y = sz with s ∈ S and where z has factorization of length n− 1
as a product of elements of S ∪ T . Then e ≤ d(y) ≤ d(s), so, by the above
case, es = ϕ(w). Note that ey = (es)z and d(ey) = e = d(es). Thus

r(es) = s−1es = s−1d(esz)s = (s−1es)zz−1(s−1es) ≤ d(z).

Since r(es) = r(ϕ(w)) = r(w) ∈ V (S
∐

U T ), r(w)z = ϕ(v) for some v ∈
S
∐

U T by induction, and, necessarily, d(v) = r(es) = r(w). But then

ey = esz = esr(es)z = (es)(r(w)z) = ϕ(w)ϕ(v) = ϕ(wv)

and the result follows. �

Theorem 9.16. Let (S,U, T ) be a tame amalgam of inductive groupoids.
Then S

∐
U T embeds as a D-saturated ordered subgroupoid of S ∗U T . Thus

if e ∈ E(S) ∪ E(T ), then the maximal subgroup at e is π1(Gv,Γv). This
applies, in particular, if E(U) is an order ideal of E(S) and E(T ), or U is
D-saturated in S and T .

Proof. Let K be the D-saturated subgroupoid of S ∗U T consisting of the
D-classes of elements of S ∪ T . Notice this is an ordered subgroupoid of
S ∗U T and that ϕ(S

∐
U T ) ⊆ K. We show that ϕ : S

∐
U T → K is onto;

it will then follow that τ takes K to S
∐

U T , and that ϕτ |K is the identity
thereby proving the theorem.

First observe that to prove ϕ maps onto K, it suffices to show that it is
a fibration; indeed, any edge or vertex of K lies on a path starting at an
element of E(S)∪E(T ) and this path can be lifted under a fibration. Suppose
then that e ∈ E(S) ∪ E(T ) and x ∈ K with d(x) = e; then e ≤ d(x), so
Lemma 9.15 shows that x = ex ∈ ϕ(S

∐
U T ). �

Once again, this theorem completely describes the structure of the ordered
subgroupoid of S ∗U T consisting of the D-classes of idempotents of S or T .
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In the case that U is D-saturated in S and T and e ∈ E(U), then the
maximal subgroup at e in S and in T are the same. The following corollary
is then immediate from the remarks after Proposition 9.5:

Corollary 9.17. Let (S,U, T ) be an amalgam of inverse semigroups such
that U is D-saturated in S and T . Then, for e ∈ E(S) (respectively, E(T )),
the maximal subgroups at e in S ∗U T is the same as in S (respectively, T ).

The above situation occurs, for instance, if S and T have a common ideal
U . Another possible application is when S and T have a common D-class
U which is a group (for instance, the minimal ideal and the group of units
are always D-classes which are subgroups).

We end with a discussion of some constructions which are similar in spirit
to amalgams and to which our techniques apply.

A map of inverse semigroups ϕ : S → T is said to be a prehomomorphism
if ϕ(s−1) = ϕ(s)−1 and ϕ(st) ≤ ϕ(s)ϕ(t). It is shown [7] that prehomo-
morphisms correspond to general ordered groupoid morphisms of inductive
groupoids (as opposed to those preserving the meet). If (S,U, T ) is an in-
verse semigroup amalgam, then we define the pre-amalgamated product of
S and T over U , denoted S ∗′U T , to be the pushout [9] of S and T over
U in the category of inverse semigroups and prehomomorphisms. It follows
by considering the map from the pre-amalgamated product to the amal-
gamated product that S and T map injectively into the pre-amalgamated
product with intersection U .

As a simple example, if S and T are inverse semigroups with 0 and U = 0,
then S ∗′U T is the 0-direct union of S and T , that is, the semigroup S ∪ T
where all products of elements of S with elements of T are 0.

Theorem 9.18. Suppose (S,U, T ) is an amalgam of inverse semigroups
such that E(U) is an order ideal of E(S) and E(T ), and E(S) ∪ E(T ) is
a semilattice. Then S ∗′U T = S

∐
U T , the ordered groupoid amalgamated

product of S and T over U , and the maximal subgroups can be described as
per Theorem 9.8. Furthermore, the natural maps of S and T into S ∗′U T
are homomorphisms.

Proof. First observe that the hypotheses of Theorem 9.8 hold since (S,U, T )
is tame by Proposition 9.10. Our assumptions imply that V (S

∐
U T ) is

a semilattice so S
∐

U T is an inductive groupoid. The desired universal
property is then automatic. The last statement is clear from the construction
of S

∐
U T . �

Note that in the context of the above theorem, Theorem 9.16 implies that
S∗′UT lives in S∗UT as a D-saturated ordered subgroupoid; but the inclusion
does not in general preserve meets (think about the inclusion of S ∗′0 T into
S ∗0 T for inverse semigroups S and T with zeroes). Proposition 9.3 allows
us to find examples of when the theorem applies. One example is the case
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where S ∩ T is a common ideal U which is a monoid with identity e. The
case of the 0-direct union is such. It is easy to show that in this case S ∗U T
has the following structure: S ∗U T = S ∪ T with the product in S and T
as usual, and with the product st = (se)(et) for s ∈ S, t ∈ T . In this case,
of course, the structure of the maximal subgroups is transparent: They are
just the maximal subgroups of S and T .

A more general example is if S and T have ideals US , UT (respectively)
which are monoids with a common full inverse submonoid U (so E(US) =
E(U) = E(UT )). In this case, the theorem really does tell us something
about the structure of the maximal subgroups. The simplest example is
when S and T have minimal ideals and U is a common subgroup of the
minimal ideals.

We mention that Yamamura [25] defines a notion of a graph of full inverse
monoids and the fundamental inverse monoid of such. Full amalgams and
full HNN-extensions are special cases of this construction. In the paper,
he obtains a graph of groups decomposition of the maximal subgroups of
such a fundamental inverse monoid similar to that for full amalgams. We
leave it as an exercise for the reader to obtain these results by realizing
the fundamental inverse monoid as the fundamental ordered groupoid of an
ordered 2-complex with an obvious graph of 2-complexes decomposition and
then using Theorem 9.6.

We conjecture that actions of inverse semigroups on ordered forests, as
per [25], can be completely classified using ordered 2-complexes and the
usual translation between Bass-Serre theory and graphs and trees of 2-
complexes. In particular, we guess the solution will obtain the structure
of such as the fundamental ordered groupoid of an ordered graph of groups.

Appendix.

Since this paper was written and submitted, a survey [23] of the results
in this paper has been submitted to the proceedings of a school held in
Coimbra, Portugal during May and June of 2001. This survey offers many
illustrative examples (with figures). Also a slight improvement has been
made in the definition of the standard 2-complex so that cells whose bound-
aries are labeled by Dyck words are removed. In addition to streamlining
the construction (and making sure that it agrees exactly with the group
theoretic construction in the case of a group), this allows us to formulate a
slightly stronger version of Theorem 8.10.
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Birkhäuser, Boston, 1999, MR 2001a:22003, Zbl 0913.22001.

[16] G.B. Preston, Inverse semi-groups, J. London Math. Soc., 29 (1954), 396-403,
MR 16,215c, Zbl 0056.01903.

[17] N. Ruskuc, Presentations for subgroups of monoids, J. Algebra, 220 (1999), 365-380,
MR 2000h:20105, Zbl 0943.20057.

[18] B.M. Schein, On the theory of inverse semigroups and generalized groups, American
Math. Translations (2), 113 (1979), 89-122, Zbl 0404.20055.

[19] J.-P. Serre, Trees, Springer-Verlag, Heidelberg, 1980, MR 82c:20083, Zbl 0548.20018.

[20] J. Stallings, Topology of finite graphs, Invent. Math., 71 (1983), 551-565,
MR 85m:05037a, Zbl 0521.20013.

[21] B. Steinberg, Factorization theorems for morphisms of ordered groupoids and in-
verse semigroups, Proc. Edinburgh Math. Soc., 44 (2001), 549-569, MR 2002m:20098,
Zbl 0990.20043.

[22] , A note on amalgams of inverse semigroups, J. Austral. Math. Soc., 70 (2001),
71-75, MR 2001j:20098, Zbl 0982.20053.

http://www.ams.org/mathscinet-getitem?mr=86i:01059
http://www.emis.de/cgi-bin/MATH-item?0561.01027
http://www.ams.org/mathscinet-getitem?mr=97e:20076
http://www.emis.de/cgi-bin/MATH-item?0858.20055
http://www.ams.org/mathscinet-getitem?mr=52:3401
http://www.emis.de/cgi-bin/MATH-item?0326.20054
http://www.ams.org/mathscinet-getitem?mr=80d:20053
http://www.emis.de/cgi-bin/MATH-item?0401.20053
http://www.ams.org/mathscinet-getitem?mr=2000g:20123
http://www.ams.org/mathscinet-getitem?mr=58:28182
http://www.emis.de/cgi-bin/MATH-item?0368.20023
http://www.ams.org/mathscinet-getitem?mr=50:7275
http://www.emis.de/cgi-bin/MATH-item?0705.18001
http://www.ams.org/mathscinet-getitem?mr=50:10128
http://www.emis.de/cgi-bin/MATH-item?0297.20072
http://www.ams.org/mathscinet-getitem?mr=81i:20086
http://www.emis.de/cgi-bin/MATH-item?0457.20051
http://www.ams.org/mathscinet-getitem?mr=91g:20093
http://www.emis.de/cgi-bin/MATH-item?0697.20048
http://www.ams.org/mathscinet-getitem?mr=43:2102
http://www.emis.de/cgi-bin/MATH-item?0203.32303
http://www.ams.org/mathscinet-getitem?mr=2001a:22003
http://www.emis.de/cgi-bin/MATH-item?0913.22001
http://www.ams.org/mathscinet-getitem?mr=16:215c
http://www.emis.de/cgi-bin/MATH-item?0056.01903
http://www.ams.org/mathscinet-getitem?mr=2000h:20105
http://www.emis.de/cgi-bin/MATH-item?0943.20057
http://www.emis.de/cgi-bin/MATH-item?0404.20055
http://www.ams.org/mathscinet-getitem?mr=82c:20083
http://www.emis.de/cgi-bin/MATH-item?0548.20018
http://www.ams.org/mathscinet-getitem?mr=85m:05037a
http://www.emis.de/cgi-bin/MATH-item?0521.20013
http://www.ams.org/mathscinet-getitem?mr=2002m:20098
http://www.emis.de/cgi-bin/MATH-item?0990.20043
http://www.ams.org/mathscinet-getitem?mr=2001j:20098
http://www.emis.de/cgi-bin/MATH-item?0982.20053


396 BENJAMIN STEINBERG

[23] , A survey of a topological approach to inverse semigroups, in ‘Semigroup,
Algorithms and Languages’ (G. M. S. Gomes, J.-E. Pin, and P. V. Silva, eds.), World
Scientific, to appear.

[24] J.B. Stephen, Presentations of inverse monoids, J. Pure Appl. Algebra ,63 (1990),
81-112, MR 91g:20083, Zbl 0691.20044.

[25] A. Yamamura, A class of inverse monoids acting on ordered forests, preprint, 2000.

Received June 6, 2001 and revised December 14, 2001. The author was supported in
part by NSF-NATO postdoctoral fellowship DGE-9972697 and by FCT through Centro
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